(

ware “loolworks

The Soft

SHERMAN OAKS, CALIFORNIA

plus C source code for

| function library. Configuration program

Adds true 32 bit float and long data types to the Toolworks C/80
modifies C compiler to compile float and long declarations. Requires C/80 version 3.

language. Includes fast assembly language arithmetic library,

formatted 1/O routines and transcendenta

<
o
I
=
<
=
o
©
SN
(8]

The Software Toolworks*

15233 VENTURA BOULEVARD, SUITE 1118, SHERMAN OAKS, CALIFORNIA 91403 (818) 986-4885

TOOLWORKS C/80 MATHPAK

Float and Long Data Types
for Toolworks C/80 Version 3

Version 3.1
March 1984
Walt Bilofsky

Contents

l. INTRODUCTION.....'...........l"...l.‘.......z
2. THE -MATHPAK DISTRIBUTION DISKii.sidsidadesoaed

3. INSTALLING AND USING THE MATHPAK.:.:.ecocececeod
3.1. Installing the MATHPAK..cccoovsnsocnsesed
3.2. Using ‘the MATHPAK With AS . ceeeceseovcocssoe 4
3.3. Using the MATHPAK with Macro-80 or RMAC.4
3.4. Object Program Size Considerations......5

4. ADDITIONS TO THE C/80 LANGUAGE.:..:cescssescesb

5. ADDITICONS TO THE PUNCTION LIBRARY sevs el
S5.1. Printing Floats and LOBYS..sssssssnssans i
5.2. Using Printf Without Floats and Longs...8
5.3. Using Scanf with Floats and LongS.......8
5.4, FIcat and String ConvarsioN..sssrcessres8
5.5. Transcendental Function Library..seeeeeed

6. IMPLEMENTATION OF FLOATS AND LONGS....c00...10

Copyright (c) 1983, 1984 Walter Bilofsky. Sale of this software
conveys a license for its use on a single computer at a time,
owned or operated by the purchaser. Copying this software or
documentation by any means whatsoever for any other purpose is
expressly - prohibited. C/80 and Toolworks are trademarks of The
Software Toolworks.

C/80 MATHPAK -2 - Mar. 1984

1. INTRODUCTION

The Toolworks C/80 MATHPAK adds true 32 bit 1long and
float data types to the C/80 Version 3 compiler and runtime
library. It includes the CCONFIGF program to patch the C/80
compiler to recognize 1long and float, a runtime library to
perform 32 bit arithmetic, routines to convert between ASCII and
floating point representation, an augmented printf, and a
transcendental function library written in C.

Long integers in C/80 are 32 bit signed numbers in the
range -2,147,483,648 to 2,147,483,647. Floating point numbers
have 24 bits of precision, or about 7 decimal digits, and an
exponent in the range 10 to the plus or minus 38th power.

The C/80 MATHPAK requires the C/80 compiler, Version 3.0
or later.

Note: This document describes C/80 implementations for
both CP/M and HDOS. Where program names, devices,
etc., differ for the two systems, the CP/M names will
be used, with the HDOS equivalent in brackets, [like
this] .

C/80 MATHPAK -3 = Mar. 1984

2. THE MATHPAK DISTRIBUTION DISK

The C/80 MATHPAK distribution disk contains the following
files:

CCONFIGF.COM [or .ABS]
Program to patch the C/80 compiler, C.COM [or
C.ABS on HDOS], to compile floats and longs. An
augmented version of the CCONFIG program supplied
with YT/ B0 (S eCion *at L')

FLOATLIB.ASM The C/80 floating point 1library in assembler
form. When the AS assembler is used, this file
is automatically included in C/80 programs which
use floating point operations. Usually it should
reside on A: [SY0: on HDOS] at assembly time.
(Section 302)

LONGLIB.ASM The C/80 1long arithmetic 1library in assembler
form. Included in AS assemblies of C/80 programs
which use long arithmetic.

LGFLTLIB.ASM Common 32 bit arithmetié routines. Included in
AS assemblies of C/80 programs which use either
floats or longs.

FLIBRARY.REL A relocatable version of the complete float and
long arithmetic library, for use with Microsoft's
Link-80 or RMAC from Digital Research.

FPRINTF.C The C/80 formatted output routines, augmented for
float and long data types. (See Section 5.1.)

FPRINTF.H #Include file for use when fprintf is used with a
linking loader. (See Section 5.1.)

MATHLIB.C Transcendental function 1library, written in C.
(See Section 5.5.)

MATHLIB.REL Relocatable version of MATHLIB, for use with a
linking loader.

C/80 MATHPAK - 4 - Mar. 1984

3. INSTALLING AND USING THE MATHPAK.

3.1. Installing the MATHPAK.

To install the MATHPAK, run the CCONFIGF program and tell
it to patch the C/80 compiler file C.COM [or C.ABS]. The menu of
configurable options will be displayed, including a line which
reads:

N: Floats and longs available: NOT AVAILABLE
Type the letter N and press RETURN, to change this option to
AVAILABLE. Then type Y and RETURN to make the change in the
compiler.
To use the scanf function with float or long conversions,

you will need to edit file SCANF.C (supplied with C/80). See
Section 5.3.

3.2. Using the MATHPAK with AS.

If you use the AS assembler, copy the three .ASM library
files from the MATHPAK distribution disk to your A: disk [HDOS:
SV (or to the disk on which you keep CLIBRARY.ASM from the
C/80 distribution disk). Then compile and assemble your C/80
programs just as before. During assembly of programs which use
floats and longs, the required library files will automatically
be assembled in.

If you do not have room on your A: disk for the .ASM
library files, remember that the compiler can be told to look on
another disk for 'the 1library files. This is done by the -v
switch when running the compiler, or by wusing the CCONFIGF
program to patch the compiler; see the C/80 manual.

3.3. Using the MATHPAK with Macro-80 or RMAC.

If you use either the Macro-80 or RMAC relocatable
assembler, copy FLIBRARY.REL to a convenient disk. During the
load process, load it with the S switch, so that it is
selectively loaded as a library. For example, the following
commands will compile, assemble with Macro-80 and load a program
from file TESS.C, assuming that all files are on the current
drive:

c -m tess
m80 =tess
180 tess,flibrary/s,clibrary,tess/n/e

You will probably wish to use Microsoft LIB-80 to create
a single library, combining FLIBRARY.REL and CLIBRARY.REL, and
perhaps FPRINTF.REL and your own personal library files. Be sure
to load FLIBRARY.REL and CLIBRARY.REL last, in that order.

Because of object program size considerations (as noted

C/80 MATHPAK - 5 - Mar. 1984

in the following section), when compiling programs that do not
use floats or 1longs you may want to use the integer version
printf provided with your C/80 distribution. You may include
.REL files generated from both PRINTF.C and FPRINTF.C in your
library; the global symbols in each are distinct. Including
PRINTF.H or FPRINTF.H in your program source file will determine
which version of printf is linked.

A similar distinction may be made with scanf, but there

is not a unique floating point version of SCANF.C, so you will
have to prepare one yourself.

3.4. Object Program Size Considerations.

When AS is used, object programs which use longs will
contain about 1K bytes of long runtime library (in addition to
the 1.9K required by the basic C/80 1library). Floats will
require about 2.3K bytes. Because a few routines are common to
both, use of both floats and 1longs requires 2.9K bytes of
library.

When a relocatable assembler is used, the linking loader
is capable of loading only those portions of the float and 1long
libraries which are actually required. Thus, you can expect a
somewhat smaller overhead for library routines when using RMAC or
Macro-80. We recommend that one of these assemblers be used for
large projects or serious software development. -

C/80 MATHPAK =6 = Mar. 1984

4. ADDITIONS TO THE C/80 LANGUAGE.

With the MATHPAK installed, the only change to the C/80
language is that it recognizes the 1long, float and double
keywords in declarations, and long and float constants. Although
double is recognized, it is just a synonym for long.

Long constants are (1) a decimal constant outside the
range -32768 to 32767, or (2) an octal or hexadecimal constant
outside the range 0 to 65535, or (3) any constant which has the
letter 'L' or 'l' immediately following it. Examples of 1long
constants are:

32768
31415926
oL
Oxabcdl

A floating constant consists of a decimal number, with an
optional decimal point, followed by an optional exponent (power
of ten scaling factor) consisting of the 1letter 'E' or 'e',
perhaps a sign, and an integer number. Either the exponent or
the decimal point may be omitted, but not both. The value of the
constant is the number times ten to the exponent power. Examples
of floating constants are:

3.1415926
lel2
v hd
0.
2.71828e-31

The last number is 2.71828 times 10 to the =31 power.

With the C/80 MATHPAK, the compiler will accept long and
float data types almost anywhere char and int are allowed:
arrays, pointers, structure elements, and initializers for static
data. The only restriction 1is that constant expressions
involving floats or longs are not evaluated at compile time.

C/80 MATHPAK == Mar. 1984

5. ADDITIONS TO THE FUNCTION LIBRARY.

5.1. Printing Floats and Longs.

The printf supplied with the MATHPAK is an extension of
the version supplied with C/80. It contains conversions to print
float and long data types. These conversions are compatible with
the description of printf in The C Programming Language, by
Kernighan and Ritchie. For conversion of values other than float
and long, see the C/80 manual. '

Longs can be converted by prefixing 1 (lower case 'L')
immediately before the format conversion. The conversions for
longs are:

$1d Long decimal notation

$lo Long octal notation

$1x Long hexadecimal notation
$1lu Long unsigned (but see below)

Due to a limitation in the arithmetic library, unsigned long
conversion is not really supported, but is taken to be the same
as signed long decimal conversion.]

Floating point conversion is determined by the format
letter and optional precision. Recall that the conversion
consists of a %, an optional - (left justify), an optional width,
an optional . and precision, and a conversion letter. Floating
point numbers are printed using the conversions:

%e Exponent: [-]d.ffffffel[+/-]1xx
$f Floating: [-]ddd.ffffff
g The shorter of the %e and %f conversion

The precision, if specified, determines the number of digits in
the fractional part (shown as "ffffff" above). The default
precision is 6. The [-] indicates an optional minus sign; [+/-]
is either a + or -. Rounding is done in the last digit printed.
Non-significant zeros are printed in %e and %$f formats, but not
in %q. The number 0 is always printed as 0, to distinguish it
from a very small nonzero quantity.

When printing floating point numbers, remember that only
about seven digits of significance are available.

C/80 MATHPAK - 8 - Mar. 1984

8.2 Uéing Printf Without Floats and Longs

PE your program uses printf, the float and 1long
arithmetic in printf will force the float and long 1library
routines to be loaded with your program, even if you don't use
them. This will make your program bigger, and, if you use AS,
slower to assemble. Since long divide 1is relatively slow,
decimal output will also take longer.

You can avoid this by #define-ing the constants NOFLOAT
and/or NOLONG, either in the file FPRINTF.C, or in your source
file before including FPRINTF.C. The #define 1lines for these
constants are included in file FPRINTF.C, so all you have to do
is remove the initial "/*" on each line.

If NOFLOAT is defined, no floating point conversions or
arithmetic will be wused by printf. Similarly, defining NOLONG
suppresses long conversions and arithmetic.

If you prefer, you can simply use the version of printf
supplied with your original C/80 compiler when floats and longs
are not required.

Users of Macro-80 or RMAC can select the proper version
automatically from a relocatable library; see Section 3.3.

5.3. Using Scanf with Floats and Longs

The file SCANF.C (supplied with C/80) has the same
#defined symbols NOFLOAT and NOLONG as in file FPRINTF.C. As
supplied, these 1lines are commented out. In order to use scanf
with float and/or long conversions, you will need to comment out
the NOFLOAT and/or NOLONG lines, respectively.

5.4. Float and String Conversion

The following routines are provided in the floating point
library to convert between string and floating point
representations of float values:

atof(s) - S is a string containing the representation of a
floating point constant. Atof returns the float value
of the constant.

ftoa(fmt,digits,f,where) - Converts the floating point
number £ to a string in the char array where. Fmt is
the character 'e' or 'f' to specify exponential or
floating conversion, or 'E' or '"F' to specify
suppression of trailing zeros. Digits is the number of
digits after the decimal place. Note that as many as
digits+45 bytes may be needed to store a very large or
very small number in 'f' representation.

C/80 MATHPAK -G - Mar. 1984

5.5. Transcendental Function Library.

The file MATHLIB.C contains the following functions.
Note that all values are computed using 7 significant digits, so
the accuracy of the results may be no more than about 6
significant digits. All arguments and results are floating
point. Arguments outside the proper range for a function (i.e.,
sgqrt(-1.0)) will produce undefined results. Angles are
represented in radians. E is the natural log base (approximately
2¢711828...) «

sin(f) sine

cos (f) cosine

atan (£f) arc tangent

sqrt (£f) square root

exp(f) e to the f power
pow (g, £f) g to the f power
powlO (£) 10 to the f power
In(c) log base e of £

log (£f) log base 10 of £
fabs (£f) absolute value of £

The file MATHLIB.C contains #ifneed directives. Thus, if
it is included at the end of your source file, only the functions
actually called will be compiled. However, you must declare the
functions wused to be of type float before first using them, or
compile errors will result. An example of such a declaration is:

float sin() ,pow();

Alternatively, you can edit out the #ifneed directives
and include MATHLIB.C at the beginning of your source file.

Macro-80 or RMAC wusers may use the file MATHLIB.REL,
which contains a relocatable version of MATHLIB. 1t shoudd . be
loaded with the S switch so it is searched as a library.

C/80 MATHPAK e O Mar. 1984

6. IMPLEMENTATION OF FLOATS AND LONGS.

This section 1is presented for advanced programmers who
wish to interface C/80 floats and 1longs to assembly language
routines or other programs. It is not necessary to understand
this material in order to use the C/80 MATHPAK.

Longs are stored as four bytes, sign extended, with the
low order byte first (i.e., lowest memory address), as shown in
Figure 1.

Floats are stored as four bytes, with 23 bits of unsigned
mantissa in the first three bytes, low order byte first, and one
byte of power of two exponent in the fourth byte. The high order
bit of the mantissa is always 1 and is not stored. The high bit
of the third byte is the sign bit. The exponent 1is scaled by
adding 128; thus an exponent of 127 means a factor of 27-1, 131
means 273, etc. The value 0 is represented by a number with
exponent byte 0, regardless of the other three bytes.

When floats and longs are used as subroutine arguments,
they are pushed on the stack in the same order as stored in
memory. That 1is, the high byte or exponent is pushed first.
Subroutines return float or long values in the BCDE registers,
with the 1low byte in E and the high byte or exponent in B, as
shown in Figure 1.

If you need to know how to call the C/80 library routines
which perform float and long arithmetic, the best way to discover
the calling sequences is to write a simple C/80 program invoking
the operations in question, and inspect the code it generates.

In registers: E D c B

In memory: +0 +1 +2 +3

Qngtacics (SP) (SP+1) (SP+2) (SP+3)
Low High

Long: Byte oo aaie Byte
Low S| High

Float: Byte eiere B| Byte Expt.

... |Mantissa|...

Figure 1. Float and Long Representations
(SB is floating point sign bit.)

