
TOOLWORKS LISP/SO
bY'Walt. sHafsky
Release l.0
April 1984

CONTENTS

PREFACE "." ._ I) •••••••• It " .. 18 4 ••

INTRODUCT"ION __ Ii • III • " " .

1. RUNNING LISP/Q>O - AN EXAMPLE •••••••••••••••••••••••••

2. THE LISP/SO DISTRIBUTION DISK ••••••••••••••••••••••••

3. AN ORI>ENTATION FOR THE LISP BEGINNER ••••••••••••••••
3.1. welcome to '['-ISP ._ 41 •• ~ e III a

3.2. What- Good Is. L_ISP? "'••• - ': 0.0 •• e' •••• 111_._'
J ...3. -Atoms " e iii '" It -••• It' " ..- 0; (II e

3.4. Atoms, Names, and Values ••••••••••••••••••••.•••
3.5. Lists •••••~•••••••••••• ~~•••~••••••••••••• o •••• ~

3.6. Expressions and LISP Functional Notation ••••.••
3. 7. Time au t "" ~•It II Ie 0"." ..

3,8. Functi-on'sof -Li'sts ~ q. III "" •••

3Q9. Defining Functions ••••• ~•••••••••••••••••••••••
3.10. Recursion ." ••• dI •• O>9 III ell ••• jII." ••••••
3.11. -Counti'ng Pa-r.entheses. 81 Ii' " " ••

3;;.12. Conclusion " ..It II ". " ., ••• s •• ~

4 • -L-XSOp /'80 REF-ERENCE MANUAL a .. " -. 011 411 •• II Co

41111. Runnlng LISP/BO· .. iii (I. .'." ' oIt " III. e II!; jj .

4.:.2. Atoms ",•• ;a, I11 •••••••

4 ..3.. S-E-~p'reS$iOn-8 II ". " " ill .. , fI

4.4. Lists •••••••••• - 0 4 •• ., •••••••••••••

4. S. Other .S-E~prce8sionNotlltion ••.••••••••••••••••••
4.0. The LISP/SO Interpreter" EVALQUOTE ••••••••••••
4.7._ Functions •• 9 •••••.••••••••••••••••••••••••••••••

4.8. Functions of S-Expressions and Lists •••••••••••
4.9. Predicates and Logical Functions .
4_ .1Q. At.oms and Value-a 0. .- ..

4: .11,. P,f-o':per toY ;tal-s·t'S fI 90 -•• iIII ..

4.1~. Addresses, List St.ructures, and Altering Them.
4.13. Arithmetic Functlonsand Pr:edicates •••••••••••
4.14. Function Definition and Evaluation .

3

4

5

6

7
I7

7
I8

8
9

I10
10

I
11
12
13

I15
15

I16
16

I16
17

I17
18
19 I19
20
22
23
24
2S
27
28

4.15. Func'tions 0'£ Punctions •••••••••••••••••••••••• 29
4.16. LISP Programming constructs H •• , •••••••••••• "0 2~
4.17. FUnctiQns that:.Evaluate Expreuiol"ls ••••••••••• 31
4,.18,. String 'Mani,pulat.ion ••••••••••••••••••••••••••• 31
4.19. Inpu,t/Ou-_tpu-t. ill tf _~ e lie ••• ". ••• II! ~ e ~ .. , 4' t <II • " " OJ Q .- 'II <# 32
4 ..20;. Conu:a.e-nt.s Oil iii" • ..,. ea 4_~ If 1Il Q;' It 0 !II "" <II." .. 34.
4.21. TRACE, BREAK# Errors and Program 'l.'ermination •• 34
4' .•22-. Garbage- Col1'$ci:ion ,.,. e. 0 ~ 0 • tl ... It , " ... ~ __ " • ill III " • 0 "" e 36
4 •.2-3'= Storage Alloc-at.ion .-$Il~."'Ii.-Goe •• iI,.-fl.- .e$." ••• /jIO'll 36-
4.24. Wtiting Assembly Lan,guageSUilaS •••• A< •........ 38

lie EDITOR AN!) !'ILE PACKAGE •••••••••••••••••••••••••••• 41
5-.1.. Int.~-ocS:uc:t..i-cn 6:. _ -1'1 '. -. It-. !Ia -. • -. " II _... to 111 _II '•• 6 -. ~ a .. ~ •• '. -It Q -\1
-5.2." -Edt tor ••• -8 « ••• -e 0 ,. -e .. '10 ... ~ , ••• -!II " ~ " '0 • III -. \'0 " 0 0 -. '•• " It' -. 42
S.3. Prettyprint ••••••••••••••••••••••• '••••••••••••• 4'4
5.4. ,Saving ,",unctions on a File ., •• ,00 •••••••• ' ••••••• 45

Copyright (c::) 1980. 1984 Walter SUofsky. Sale
of.t.bis software conveys iii. license for its use on
& lIingle computer owned OJ:' operated by the
purchaser. Copying this sofewall:e 0.1'
documentation by any lIIll'UU'lS what.oeve'!: for Any
other pl1rpose i.s prohi.bHflid.

C'fhe SoftliViire c:roolwfir~ e

MANUAL ADDENDUM
for

IBM PC and ZENITH ZlOO

This pxogum w.ill operate on your IBM1?Cor zenit.n ZlOOcomputer.
The manual may refer only to the CP/Moperating system, but it
applies equally to the IBM PC Disk Operating System or Zenith
2ooS, with a few minor differenc;es. This Manual Addendumlists
those differences. It also tells you how to create a bootable
disk containing a working version of the prog.ram.

The operatil'l9 system for your computer is a version of the MSOOS
system. Although your .manual may r:efer to it as OOS or ZOOS, we
will can it MSDO.S in this document.

MAKING A BOOTABLE PROGRAM DISK

'rhe distribution disk which is supplied with this package is not
boo.table. That is, it does not contain a copy of the MSooS
ope&'ating system, and you can't. juet put it in your comput.er and
turn the power on.
Once you have booted with a system disk, you can run this program
by inserting the distribution disk in any drive. However, it is
bet.t.er t.o Ulaite a bootable copy of t.he dist.ribution disk, and save
the original disk as a backup.

'lo do this, first plaoe a write protect label over the
rectangular write protect notch on the distribution diSk.

Take a blank disk, and format it as a bootable disk using the
FORMAT /S command. Refer to your operating system manual for
instructions on how to do this.

Place the bootable disk you have just formatted in your A: drive,
and, if you have a two or more drive system, place the
diatri.bution disk in the 8: drive. Then e.)(ecute the (lolllllland

COpy ElI·.· A:
When the command finishes, the disk in .AI is a bootable disk
containing the pr·ogram. You ean now proceed to run it as
descr lbed in the accompanyinCJmanual.

NOTE: Tne distribut.ion disk provided with this package may not
allow you to place an operating system on it using- the SYS
cOl!1ll\and. This is normal and does not indicate a defective disk.
1!()wever, for this reason, ¥ou should not use DISKCOPY and SYS to
create a bootable system d1Sk. Use the procedure described above
lnstead~

,...
'l'oolWOl'ks LISP/SO is an intet'preter for LUiP, a programming
language wieely used in artificial 1.ntelligence ~l!I.petimel'ltation.
It includes lIlO%'e th.an 7S built-in functions. It. offen the
essential LISP data. st.ructure.s and funotions, 16 bit: integer
lilt :I. tilmet.ic: , liesl: operations, recursion., string operation .. , fUe
I/O, oIlndgarbage collection for automatic: reuse of memory.

It. simple edit.or and fHe package, \fritten in LISP, is included.
It: allowlII editing of Lisp function definitions and saving them on
files~" .

Debugging aids include trace and opUonilll break on el;:l:01:5. on
CP/M and HDOS zyatel1ls, prOVision is miMle for loading user·
SUPPlied machine lang\ul.gfl f·unctions eaUable ·from LISP programs.
'rilLs feature is not available on MSOOS (inclUding IBM PC)
sYlu:elllS. '

Two aimple artifioial intelligence programs, written in LISl\, are
included; a ;g1:lees.ing game Which learns as it. goes aloq, and a
simple \flu'sion 0.1: the famous ELIZA psychiatrist program which
carr :l.es on a eonVetluLt.iof'A.

\t'oolworks LISP/SO was written in order to pxovide computer
entbumil.'u:rts with an opportunit:'(for expanding their proqrall'lllling
sk.ills .and unde rstanding • 'rhu s t '1:001\<101:ks 1.1.S? 180 is intended
primarily to be affordable, and, within that constraint,
relatively feature-rich and easy to use. 'l'oolworks LISP/SIl's
1Il0st "sex:iOlls l,imitation is its relative slownes$J :lIIaehine
laft9uage functions can be used to overcome tl)is, fItldthere aK1l'I

faster microcomputer LISPs available in the $200 price unge.

!1'ooiworks LISP/SO is patterned after the IN'l'ERLISP dialect, which
is wide.ly used on 1'D1'-10 and DECsystem-20 comput.rs in the
artificial intelligence oOl'lll\1unity.

'1'oolworks LISP/SO cOllies in versions for MSOOS,CP/M, and BDOS
()perating liIystemsf and requh:es at least 4Sit of llIemory (USK. on
MSDOS) • On MSOOS. it provides storage eapaeit:'(of abCIut 7o.0{)
l:1..$.t cells and .il,OOO atom nl!lll\li!.characters •. On CP/M and HooS, it
bas a .,toragll! ,capao.!ty of about. 36'00 list cells and 1200 atom
name characters, and more on machines with over 48K of RAM•

.,

LISP/eo 1.0 IN'l'ROOOCT.ION 4

IN'1'ltOPUCTION

This manual contains two major sections: a brief orientation for
the LISP beginner, al'l(l a Toolwor;)(sLISP/tiO Refer·enc.e Manual. The
Refeunea Itanulll contai.ns detailed documentation of !l'oolworns
LISP/BO for reference purposes. 'lhe orientation provides some
motivation for LISP 1 tells what H is good for, and introduces a
few important LISP concepts.

A sample '1'oolworks LISP/80 session (Section 1) allows the
beginner to make LISP -do somethingR before starting to learn the
lang.uage. Also included are an Index to Functions and a
BibliQgrapby.

Although it .i8 hoped that this manual will be informative enough
to provide a start in learning LISP, the b~inner may well find
it inadequate. The primary aim ot; the Toolworks LISP/SO project
with r,gard to the student of LISP was to make the language-
available at 11I0der.ate«)st. The LIS'P Orien.tatiOn IIIll.n.ual section
i.s included 80 as not to leave the beginner oihigh and. dryM.
However. a comprehensive tutorial. introduction to LISP, of which
there are many, would run to hundreds of pages. The Bibliography
section lists .evetal of these books, and -the LISP novice lIIay
fina one of them helpful.

LISP lSI) 1.1) 5

Wl'lethel':you art II beginner or an experienced LISP progratlllTle:r,
before you settle down t.o wade through this _!'Iulll it migh.t be
eomfortil'1g to see !:.he.'1'oolworlts LISP/SO interpreter run and do
somethin9. This section. provides a step by stsp fUf&mple for that
purpose.

Before doing anything else, the prudent computer scientist will
make a backup copy of the L!SP/SO disk and place the original,
with I'l. write protect label, in II safe, cool. dtUI!::-fr.ee, non-
magnetic place. ('the material on the disk is copyrighted, but
you are perm:i.tte4 to ma'ke eopiea as long as they are .oni\;yfor
your own use.)

Nowmount III copy 'Of the LISP/SOdisk in drive B: • n~ote.; liDOS
I.UUU·S should sut:uJtitute S~l: f'Or lh I,:hrou.ghout !:his example.]

r- (NOTEt The LISP/SO distribution disk is not coot.able. If you
have a one disk system, copy the files frQfll the LISP/80 disk o.1'1to
a bootable disk, and omit. the cnaractE!U "at" when typing ill this
example.)

Type the command B:LISP. (All cOl'Mllllndli!
hitt.ifl9 the JtMIT.UtNkey .e) LISP/Se wi.U load;
to compose itself, and type t.he prompt. .. ".
uses upper case characters, you mig.ht. w~nt
key at t.h.iS point if your terminal has one.

First you will evaluate a aimpl.e LISP expression. Type the
e'xpress.ion PLI1S{l 21. The 'l'601works I,ISP/80 int.erpreter will
evaluat.e i.1:. and type the result..

should be. ended by
take ill few seconds
54-nee LISP generally
to use the CAPS LOCK

Next YOI1will define III simple LISP funotion to compute
fac:torials.. factorial n. for positive in·tegeu Itt is the product
of! all the numbera from 1 to n, Type the following definitioru

DEPnm «(
(FACT (N) {CONO

.((!.EQi' N 0) 1)
(1' (TIMES N (FACT (OIFFE~CE N l)

LISP isn't fussy about how many Spaces you use when typing to it~
but be sure to set the parentheses riqbt. It you have. 1..ISP/80
will respond with (.FACT ••

Nowtype FACT(5) • Tbe: answer should be 120. If you try
computing fACT of numbers a l.itUe 1argl!<t than S., you may
discover some limita'tions of 'l'oolworks LISP/SO. '0.1' instanc:et
once the lDaximum LISP/SO number range of -32768 to 32167 is
exceeded., compu.tatiol'l$ will ,come out wtong. Also, the definit.ion
of FAC'!'is rec;ursivcu that ist FACTc.alls itsel.f. U YO\1 try
eOlDputing :rAe':!.' of & s.uffleient.ly large !\Ilmber. you will discover
th.at, due to mEilllClrylimitations. a function can' t ca~l itself
zoteunively indefinitely.

LISP/SO 1.0 6

Next you win load and zun II LIS~ program from t.he disk. Type
the LISP c:ollll!landLOAl).(!hANlMA.L). The program will load and give
you instructions on bow to .play the animal guessinq gamlll.

'1'10 terminate the LISP/SO run and exit to the operatipg system,
hold dQwn the CTRL shift key and type c.

2 •. THE LISP/SO DISTRIBUTION !)I~

The Toolworlts LISP/SO disk contains the follOwing files~

LISP.COM The 'l'oolworks LISP/SO interpreter.
file is LISP .US ..}

[On BDOS. this

EDIT. LSI' The Toolworks LXSP/SO
progum) •

PP.LSP A "prettypl'int" LISP function for typing LISP
expresaion.s, pa.rt.icularly funct.i·on 4ef1n1·t101"l$, in
readable format..

expression editor (LISP

A'NlMAL .•LSP Animal guessing game. To run itl do LOAD (ANIMAL) .•
!l'his is a Simple example of an artificial
intelligence program which learns as it qoes along_

IIOC'l'OR.LSPA s.imple version of tlle ELIZA psychiatr!at program,
This program attempts to carryon a dialogue with Ii!
">patient" • It. .succeeds astonishingly well
considering the entire program hi about 60 lines of
LISP. The original ELIZA program, one of the early
e~amples of a. computer exhibiting seemingly
intelligent beliavior, was written at M.I.T. by Joe
Weizenbaum about twenty yean ago.

BBNCli•.LSP Some of the benchmark routines used to c:ompa're LI.SPs
in a September, 1981 Syte magaz.ine article.

PERFECT.LSPA sample computation p.rogum in LISP. to compute
perfect. numbers.

PATCHES.DOC A lUi!'! giving t.he· addresses which can be patched to
adjust LISP/80's storage al~oeat.:l.on (except on
MSroS) f as des.cribed in Section .4.23.

'I'heU3~ Of EDIT and PP is described in Section 5. The example in
Section. 1 includes simple dh:ections on .how to run LISP and try
the ANIMAL pr.ogr.am.

Users gaining experience with LISP lIIaywant to try to understand
the IllSi' p'l:'Q9>rameon t.hese fil.'es, and ceven to modify and improve
t.hem.

LISP/SO 1.0 LISP ORIENTATION 7

3. AN ORXEN'l'A'l'ION FOR THE IJISP BEG.I.NNER

3.1. WELCOMETO LISP

Welcome to LISP. If you are a newcomer to this unique computer
language, you ·probably purchased LISP/SO because you are
interested in learn1:ng about ·something dif'f.erent- in programming

, languages. LISP lIIay or may not turn out to be a useful
programming tool for you. But since LISP is totally \mlike
BASIC, assembly language, or, probably, any language you now
k.no..,. you ..,ill, learn c::onceptB and te.chniques .that -"'ill eXercise
your mind and improve your ski.lls no matter what language you
wind up programming in.

Be pr\tpued: L1SP is not an easy language to learn. This part
of the manual provides a brief ori$ntation for the b4!9inner, and
att&lI'Iptl!l ee introduce Jaomeo,f the .lIlOre importal'lt:; concepts. It
will probably be helpful. in addition. to read or more of the
introductory books on LISP listed in the Bibliography secUon.

What follow. is ..n introduction only. Someof the explanations
leave out details for the sake of brevtty and clarity. For a
complete description of LISP/SO features, use the Refer.ence
:Manual section •

.3• .2. WHAT GOOD IS LISP?

LISP has a reputation as an "artificial .irrteHlgence" (AI)
experimenters' language. Ttaat is, it is sui.ted to writing-
programs which deal with problems you would ort'iina.dly expect
people to cope with: problems .involving co.nce_pts, situations,
Objects, their properties, and groups of them.

What makeS LISP good for these applications? In any programming
project, the approach yOt,!· take to the problem can be divided into
two parte:

~ ~ representation: how to represent the objects and
struct.u!:f!& the problem deals w1tht and

!h!dgorithmsf how to manipulate the data il) order to solve
the problem.

Most proguJllllling languages have data types like string, number,
and .r1:.•y. This is fine for data processing tasks, like
produciftg a balance sheet or inverting a matrix, but when trying
to use such data types to zoepresent properties and groups of
objects a progummer spends IIIOre effor·t on "fighting the
language" than on dell-Ung wi til the. real problem,

LISP has two data types - atoms, which are numbers or names, and
lists. which are made up of atoms and other liata. Lists provide
a natural represent.ation for most of the things AI progralllll'leu
WA'nt to deal with. In addition" the normal style of progu·mming

LISP/SO 1.0' LISP ORll3NTATION 8

in LISP, called recuuionf. lends itself weU to the a19Qrit~ms
which programmers want to use to manipulate lists.

What does this mean to a LISP programmer starting to think about
how to proq.ram an AI type of pt'oblem? Relativ~ly little thought::
has to go into the design of a data representation. And. if he
starts with the LISP data representation, an experienced LI.SP
programmer finds it easy to express the algorithms that might
provide the desired sol.ution.

So for certain kinds of problems, programmers ueing LISP need to
spend very little time llfighting t-he language- and are able to
concentrate on sol'll'ingthe problem.

Will LISP be any use for the. tasks you want to use your computer;
for? If you're trying to WI:' ite a prog ram to balance your
checkbook, probably not. But for lIIanyinteresting problellls, LISP
may be 'just right. The only way to find out is to learn LISP.
And even it you don't wind up using it a lot, you wil.l have
learned techniques for writing pJ:ograms and structtlcing data that
can be used in BASIC, assembler, and other programming languages.

3.3. ATOMS

The atom is the basic unit of data in LISP. An atom is any
strini'Ol letters, digits, and Ilyphens. (Lower case letteU are
allowed, but ~ISP doesn't generally use them, and if your
terminal has a CAPS LOCI(it is wise to use it when running LISP.)
Some examples of atollls are:

A
GAMMA
AVERYl"ONGA'l'OMWITHZ9CBARACTERS
-327

If an atom can be interpreted as an integer nufllber, it is II
numeric atom (similar to a numeric constant in other languages).
-327 Is theOnly numeric atom in the examples above. All other
atoms are called literal atoms.

3.4. ATOMS, NAMESf ANI> V~UES

liitera! atoms can be used as either v.riables or string
eonstants. .Youprobably know £r.ol'\ other programming languages
that a variable is a name to whieh a value may be aSSigned, and a
string constant. is a string of characters that. you ean print. and
do other things with.

In LISP, atoms are used as vaei.bles, and atom names serve as
string constants. TO see both uses, run the LISP/SO interpreter.
(See Section 1 if you need instruotions on how to do thiS.). When
the prompt· __" appears, type each LISP expreSllion shown in the
following table, and try to underat.nd what each one (ioes. (The
first one will cause an error m~ssage, that's Ott•.) '1'0 provide

LIsP/se 1.0 9LISP ORIENTATION

lome idea of what is going on, the BASIC equivl11i!!lltfor tacll LISf'
expression is also shown here.

~ E:mression

Al
COUOTP; Al)
(SETQ Al (QUO'l'E aI-THEM)}
1.1

Equivalent BASIC command

PRINT 1.1
PRINT "A1"
1.1 II "HI-TB2ltE"
PRINTAl

Whenyou t.ype Al by itself, t.ISP evalu4.tes the atom Al and pr ints
t.he value oCf t·he atom (whic.h can be set by the SE'l'Q function), or
gives &no e.rrOE 1f the atom has not. yet been given a value. When
you typ.e. (QUOtE Al) or (QUOTE HX-TliERB1, the at.om 1s "Uled as II
string constant.

(lUOft 115a fun.ction which prevents evaluation, so
cont.inues to be itself inst.ead standing fot it" value.
an atom actually prints the name of the atom. Printing
of the expression ((100ft Al), for example, pr inted the
so its name, "11.1", oame out on the terminal.

the atom
pzinting
·the value
atom Al,

-
Comparing the LISP cOl!Imanda with the BASIC equivalents maymake
what is going on a little c.learer. The1;'e is one difference,
which is that the BASIC interpreter. execl;ltes cOl!Imani3s, lrIhile
LISP/SO rea.ds expressiona, evaluates them, and prints their
values. we. wi:p. simply mention that difference here, ana talk
more about the interpreter later on.

Notice that you didn't have to say PRINT to the LISP interpJ:eter,
because it prints the Y'allles anyway. Try typin9 (PRINT (QUO'l'E
1.1) and try to figure out why LISP/SO does what it don. Hint;
the value of the PRINTfunctlon is the value of the .expression
which is given to it to print.

3.S. LISTS

A L'lSP nst ean be III a.imple list of atoms, like (A B -27). A
list can also contain other lists: {ALPHA(X Y Z) (BETA GAMMA)) •
1.8 yOu can see, lists are enclosed in parentheses, and atoms in a
l.:l..t are separated by one. or more spaces.

Sollieo~ t.he f/lxpress1ons you typed to LISP in the pr.evious section
wete lists.

LISP/8G 1. I) LISP ORIENTATION 10

3.6. EXPRESSIONS AND LISP FUNCTIONAL NOTATION

An expressJ;on is ElQlIIethin9 that can be evaluated. You have
already seen LISP's two kinds of expressions: atoms lind lil!lts.
You typed expressions to the interpreter, which evaluated them
and printed the values.

oro evaluate an atomB the int.erpreter simply finds the value the
atom was set:. to. EWliluai;il'lga list 1.8.lIIoreeompUeat.ed.. A list
is evaluated. as a function call - that is, the application of a
funet.ion. to zero or mor.!! ar~nts. Hen are several eXilmpl.es·of
statements written in the BASIC Language, and their equivalent
LISP funotion call express.ions. You may try typing: these
expressi'ons to LISP/SO and see what i'u'I'Ppens.

!M!£
PRINT 1 + :;
r.B.'rX"l
IF X ...J. PRINT "YES"
ow "ANIMAL"

g§!

(.JHUN'J! (PLOS 2 3)}.
(SE'rt;;! x l)
(COND (~EO X 1) (PRINT (QUOTEYES)).)} .
(LOAD (QUOTE ANIMAL})

All programs in LISP are expre.s$ions.
evaluating it as an expression.

A program is run by

Notice that LISP keeps lllj1ing one ~ind .0£ data it.em to represent
two different kinds of things. Atoms are used E.er variables and
for. stl' ing consta.nts. Lists are· used both as a kind of LISP data
structure, and also as a way to write LISP functions,
expresaions, and, aa you will see later, LISP programs.

'1'1'11. can be 11.."&'1 con£\ls.1n9 at 'first. However, sinoe loIS!;'
,... programs are written as IJISP lists, this makes it easy to write

programs 1'n LlSP that eOnstr'uet. 'and. even run other LISP programs.
1'b1$ is particularly useful in a.rtificial intelligence
p1'og.r&lIII'I11n9,·where .it. is often necessary for II: program to create
a data s·t:ructure aesc.ri'bing how to do SOllIe task.. :What ;better
description is there than a data lJtructure whioh is a L'IJilP
program to do. or simulate. the task?

At this poi.nt. you should read Section 4.6-, whiqh, describes an
alternat,iYe WaY Of typing exprf!U~stOftSto the interpr.e.ter withoOut
h4V.11'19'to use ·QUOTEas much. FrOlll nOWoOn,we will mostly use the
alternative format,

ItISl? ORIENTATION 11

3.8. FUNCTIONSOF LISTS

Bow can you manipulate LISP lists? Since all LISP prog!:,ammi.f!9 is
Clone with functions, 1.181'/80- cO.ntains built-in functions to
perform l:l.:st operations. The eS$ential funotions for list
manipula,tion are:

(CONSX L)

r-

(CDR L)

i.a an atom whleh is defined, as the empty list., or
the Ii'll!'t withou'!; any elements. NIL lliay also be
wr i tten (). To prove th is,. t.ype (QUOTE 0) to
t.he il'ltetp·r,eter. (NIL always has '" v.l!i.lue: the
v.alue of NIL is NIL.)

CONS is a list CONStruction funeti.on. If. X is
any 'atom or '118't, ana It is IS list, tiler; (CONS X
L) is the];-ist. consisting of X followed. by the.
elements in L. orr:};, the following examples ort the
il'l~t.e!:preter. 1~el!lemberth-tlt: i~ eaen ease. ~he
Qu,ter set of ptu:entheses' is f.or t.he interpreter J
it. encloses the list of two iilll:9ument$ to CONS•.
For example. in CONS < '1 (3)), CONS is 9 ivan two
arguments, 4 and (3).

CONS (3 Nil.)
CONS (4 (3D
CONS (A (8 C Dj)
C~S «(A 11) (C D))

is (3)
.is (4 3)
1.8 1111. 11 C D)
1.. (A B) C DJ

In each case, CONStakes the list whieb is it.s
seconci argument, and. acids on its first argument
at the i.ront. NtL is the list with no elementa,
so. (CONSl NlL) ls a list with one element, t.he
atom 3.

Notice that in the last. example, (It Bl. whieh is
a li'st itself., beoomes the first elemel'it of the
three-membet liBt ({It B) C D). Also not.ice that:
we are llsing t.he EVALOO'O'I'B1'10 t2tti on of SeQUon
4.6, typing CON·S (A (B C .tll) i1S equivalent to
typing (CONS (Quam A) (QUOTE (13 C D»}, but 18 a
lot easier.

CARreturns 'the first element .of a 'list.. For
example. CAR· «A B en is A. (Remember that: the
outer pair of parenthese.a :I..nCAR«A B C») is for
tene interpreterr t1'l1'S means "apply CAR to the
list (A B C)."

CDR returns tIhe list It. minus its first element.
For eXample, CD-R«A B c}) is (B C;.

LISP ORIENTATION

If L is a Hst. then (CONSlCARL) (CDR L» is t.he SAme lis I:: as
L. '.1:'0 see this, type the f.o11owin9 expressions 1::0 the
int.erpret.e:r: =

(SE'l'Q Ii {QUOTE (A B C))
(CAR L)
(CDR LJ
(CONS (CAR Ll (CDR L)

See bow L WillS ulsed as a 'Iari~ble to avoid t'oyping (A iii C) over .and
over. "hy did we type (CARL) inste.a4 of CAR eLl? Because in.
order to get the value of L, wMoh wa.s (A B C}, Is ha.d. to be
eva:luat.ea. So we did nOt: want: to use the EVALQUOTEform CAR (Ll,
e:lnce thl!t ",hel. point of that: form is nss to eval:u·ate the
l!1l:<}UI'Mt'ftt.liI.,of the .function. To see .the dlffe.renoe, t.ype

CONS «CAR L) (CDR L})

and compar.e the result ·t.o the rEsult of the last thing in the
previous, exswpl.e.

3.'9. !!Er:U~ING fUNCTIONS

DUINE is a func·tion which allOWs yOU' to define' your own
functions. 'rype ;the following iI!Il!;pression to the interp.reter:

StlMSQ (3 ott

You can tell by the result that SllMSQ is not a known function.
N'ow t..y;pe t.he .£'011.0\<111'19expres$.ion\

DEFINE.((
{SUMSQ (X Y)

(PLUS {'rIMES X X)· (T.leS Y Y]

Bow y.ou arr·uge this long expression or ''br4l!slt it beotw.een lines
does 1IOt lIIl1tter, but be sure to get the parentheses rigiltJ The
ch.u::llIcter 1 is shorthan<h it tells LISP/eo t.o olQI>e a.ll the open
par<Gntheses to the left.·.

Now try typing STJMSQ (3 41 again. If everything has gone
correctly" you have succeeded in. ciErfining the fUfU:.tiol'1 Sl3MSQ,
which 1::11Iicel!l two ar.guml!nts. and returns the sum of their squares •.

Without going into a full explanation, we will just '1'10'1;;0 iii few
ching$. DUINE takes. one Argument. ItM.ch is a. list. Each
element. in that list. ia a -funct.ion definit.ion. In this eXalIIple,
there is one such (iefinition, for SIMS!). Eaeh function
aefinition is. itself & list. with three elements: the !'lameof a
function to be defined. - i.n t:hi.l!I.case. SUMSQ- an a!:Slument l:1.s:t -n n - and an expressi'On which:l.s the function -:Sody. fii'fi'Ni
aifIiiei the function SUMSQ. Subsequently, when StlMsg appear.s in
~m expr'ession be'ing ·evaluat~d~,the IIlt01'llS .in its argument list. axe
assigned the values of t.he arguments gi'ven to SUMBa in the
expression, ana the function body expression is evalu·ated. 'l'he

LISP/flO 1.0 LISP ORIENTATION 13

vdu@ of that expf@llsion is the value of the function.

When you type SUMSa (3 4), the atom X is set to the value 3, Y is
set to 4, and the function body of S1'JMSQis evaluated. In this
ease, the function body is equivalent eo

(PLU.S(TIMEs 3 3) (TIMES" 4).)

and the interpreter types the value of this expres,ion, or ~5.

3.10. :RECURSION

Wh.en an a'tom is Set to a value by S:eTQ, the atom retains the
value. But when an atOl'll i8 ,an a.cgument in a function defin,ition,
the value it 'gets when the func:ti.on is called is strictly
temporary, and the old value is res.tored after the function body
is evaluat.ed. To prove' 'thiS, type '

DEFINE « (PRINTME(X} (PRINT X) }}

This defines a s.imple function which prints its Cl-rgulllent. Nowdo

(SE!L'QX. (QUOTE(HI THERB»)X .
(PRINTM.S (QUOTE ("LIdO AGAIN)
X

When .PRINTME was eallech X took. on the value (HELLOAGAIN)within
the body of the function. . H014ever" the old value of X was
i2i'itored wnenPRINTME was done.

Sine, function arguments have their p.revlous val~es restored in
this way, it; ilS p!rfectly leqal for a function to call itself in
LISP. In-fact, it is rather ther:Ight way toaotiiIngs. Asan
example, here is a func:t:ion Wh~ch takes a list, and returns a new
list whose elements are the original list., the CDR of the
odginal list., the CDRof thatt and 80 on.

DEFINE «
(LISTS (L) (COND{(NULLL~ NIL)

(T (CONS L {LISTS (CI>R.LJ

The expression which forms the function 00411'of L.IS'1'SQontdns
three thing'1IJ you have not; seen before, 'JI, NULLand COND~

'1' is an atom whoae value :1$ T.
represent '''true'', XlI. is used
or truth-valued function. The
is the empty list NIL, and 'its

or is -used as a truth value to
for "false", NUL~is • predicate,
value of NULL:is T if its argul'llen.t
value is N.n otherwise.

CONDis a conlli tional. It is expla.ined in detail 1n the
refetence manual, but. its effect. in LISTS is to cause LISTS to
return as value either the empty liat, NIL, if the .argument to
LISTS is NIL,.and otherwise to return tbe· CONSof tbe argument L
vit~ the value of (LISTS (CDRL).).

LISP/SO 1.0 LISP ORIEN'l'ATION

Howdoes the function LISTs QP~ratce, the.n? If it.s argument: 1s
NIL then it. just returns NIL. If its argument is a non-empty
Ust, it computes a value with CONS., cAlli.nS! iUelf 1!'!. the
rrocess but with II sborter list fot an Argument. So eVllmtua'!IY
t get.1IlClown to an empty list inst.ead of going on forever.

If you type in the above aefinidon of LISTS and then type

LISTS «(A B C»

LISP/SO will type the value

HA B C} (.AB) iA))

bther than try to figure out, step by step, how LISTS came up
with this v.111ue, let's let LISP/Sa t1!ll us by traCing the
execution of LISTS. Type

'l'RACE((LISTS) 1
LIm'S «(A Ii C»

The 'I'AACE!function tells LISP/SO to print out the arguments each
U.me 1II funetion is called, and the v4.1ueQf the func·tion each
time ~t returns one. 11'1 this ease, the trace printout: looks like
thiSt

1$ Calling LISTS. ugs .. (A B C)
2~ Calling LISTS. a1:98 .. (1:8 ell
3: Calling LISTS, args .. (IC»
4: Calling .ttl.S'1'6, args .. (NIL)
4: :Returns NIL
3: Returns «(en
2: Returns. ({13C) (e»
1: Returns (.(AB C) (il C) (C)
(fA B C) (8 c). (en

Tbe fi'Ut. time LISTS .is called. its argument - {A 8 CJ.. is not
NULL, so 1.t t.ties to ril!t.urn (CONS" (LISTS (CDRLJ)). In order
to do that. it. must call LISTS with (CnR L), which is (8 C).
LISTS (continues down ·t.ne 1.isl:, calling 1I:se.11:over and over,
unti.l eventually it gets called with the empty list, NtL. and
return. NIL. 'l'hen each pt:e",.io~e QaU of .I.tSTS can comput.e t.he
CONSanCi ret'urn the value £1;,omthat ca.ll.

If you want to see even lIlor!! of. what is going on, you. can e~ecu,te

TUCE {(CAR CDR COMS NUIiL. CON!)H

and aee absolutely everythi.n9 as it happens.

A function calling itself# as LISTS aoes. illl 'knownas ucuu:l.on.
In LISP, recursion pl:ov..ide.s the progtallllll.ing facility whicb. many
other ,langua9l!UI accomplish by iterative statementl!l, sueh ae the
FOR in &ASIC and the l')O' in FORTRAN'. Iterative sta.tements are
fine for :!fiteppi.ns down an ".rray of aub~-crlpted variables such as
you .find 11'1these more "normal" progrillllll,lIli,ng languages. But, as

LISP/SO 1.0 LISP ORIENTATIOI,tl 1.5

the above example shows, recursion ia II naturd WilY to operate on
lists.

You may have noticed that LiISP is a lan~I'Uageof parentheses. In
fact, stude,nts sometimes claim LISP stands for "Lots of
Init,aUng Single ParenthesestE ElI:perienced L:tSPers have a method
for chec,king that parentheses are tlillanced in an expression.
WhUe scanning the expressi,on from left to right, count aloud,
-adding one "for each "(- and subtractil'l9 (i,ne for each It) It". If the
Unal number Ls zero, the expJ;'ession is balanceiS. If the count
eVer becomes negative, there is an e1:l=or somewhere ir'! the
expl:ess'iQn.

For examp;'J.;e:

Wh.ile reading: l)l!WXNE (.({PRlNTME (tlIMBDA oc) (PlUNT XH1)

Say out loud: 123 5 4 5

The final count should be zero. Sinee it ,was 1, you know there
is one ")~ missing.

3.12. C()lqCLUSION

IN'lis completes the Orientation to LISP. At this pol:nt you may
continue by reading the Reference Manual sectic,n" 0·£ this
document. If, after this brief introduction, LISP is sti.ll a
complete mystery, you may wish to consult one of t'ne more
complete references listed in the Bibliograpby. Bit.her way, we
wish YOIlg<;>o<1 alleeess,and send you on your way toward new LISP
experienc@s. Have patience, and dwaya count your par.enthesel!!!

r

LISP/SO r.e 16REFERENCE MANUAL

4. LISP/SO REFERENCEMANUAL

4.1. RUNNINGLISP/SO

The LISP/SO interpreter is run by typing the LISJ' collll!iand. WhUe
the interpret.er is running, i·1:. accepts the n.ormal toyp.ing
conventions: .DELETEeraSes the last character typed (BACKSPACEor
ctrl-a on MI)DOS). On CP/M, ctrl-U causes whatever has been typed
on the current input line to be, .ignored. .In addition, ctrl-C
will terminate the LISP/SO program and return to system command
level. (Ctrl-C is typed by holding down C'l'RLand typing c •.)

Ctrl-B will cause an interruptic,ln of LISP/80 function execution.
T.his will usually ca.use a printout of the name of the function
being executed (if any), and retl1rn to the top level of the
interpreter. The user may also select a 1IIOdein which ctrl-B
invokes the int'erpreter a-t a lower level, within the in-terrupted
function, allOWing inspection of current variable valulas,
print.out of the current function call stack, etc (see Section
4.21) •

Onder CP/M. if ctrl-1I fails to. interrupt LISP/SO, the interpreter
is ·probably in an internal loop. The programmer can cause .this,
for e:!Cample,by applying LAST to a list which has been looped
back on .its.lf by RPt.ACD. Under aecs, ctrl-B will always work•.

4.2. ATOMS

The basic unit of LISP data is the atolll. An atom is a string of
cparacte:n which lIIay be at most 127 characters long. Any
character is legal in an atom name, but the ch.aracters space,
tab, end of line, per iod, (,), [,), t and tl must. be quoted by
preceding them wi th a ,.

Lowe:: case characters are legal in Dtoms, and are elistinct from
upper case characters. However, lower case is rarely used in
LISP.

LISP uses atoms to represent both variables anci values.. A string
of onaracter.s b ~epresent.ed as the atom with that string ·as it.a
name. A Setting wbich is written in many languages as "HI THERE"
would be written in LISP as the atom an THlilRE. Every atom can
also ,have .a value assl.9·ned, or bound, to it.

There are. two kinds 0·£ atoms: numeric and literal. A numeric
!.S.2!! is. composeQ of an optional minus si9n~ followed by one or
lIIore digits. Numeric atoms must fall in the rang,e -3276.7 to
32767. If a numeric atom ~xeeeds this range, no err.or will be
given but numeric usults will be incor·rect. The value of a
numer-ie atom is always the number which its name represents.

Any a·tom which is ·not a num·eric atom is a literal a·tom.. Most

LISP/SO 1.0 REFERENCE MANUAL 17

literal atoms do not.have values initially, but may have values
assigned to them in various ways, the two most commo~ being
binding of function arguments, and the SE'l'Q function .•
(Individual functiona, such as SE1'Q, are documented Iatet on in
thia Referenee .Manuu•.,

Two literal atoms have predefined values in LISP: N:tL and T. The
v.alue of NIL i8 NIL and the value of or is '1'. 'rhese ·are used to
represent the logical values true, or '1', and false, or N!L. NIL
is also used to represent the empty list.

The value of an atom
Assigned at any time.
values. of 'l' or NIL.

Some languages require' variables to be declared. '!'h!s is not
true of L:tSP. T,bere are two ways in which an atom makes itself
known to LISP. An atom is created when LISP reads it, either
from the terminal or from a f'11e. An atom may also be created by .
use 'of the' t>ACK or PACRC f\lnc::tions.

is not permanent f a new value may be
However, it 1.8- unwise to try to change the

$-expressions are the general LISp data 8'tructure.
e!$Pression 1111 one of the following:

o ~n atom,. or

e The expr.ession (sl • s2) where 81 and 82 ate s-expressions.

An !::

4.3. S-EXPRESSIONS

The construct (sl • 82) is called II dotted ~.'ir. The siillpl.est
way of creating a dotted pair is the funct.1Ori CONS. Some
examples of a-eXprelJsions are:

A'ra«
A-LONGBR-ATOM-'J!HAN-ONB-MIGBT-USUALLll-J!'l.ND
-37
(A • B)
(A • (9 • C»
({U • V) • (255 • (y • Z»)

4.4. LISTS

Most s-expre.asions encountered in LISP are in the form of lists.
A 1:!!l is on.e of the following:

(I The atom NIL,. wbich represents the empty list, or

o 'I'he a-expression (8 •. 1) where s is any a-expression end 1
is a 11st.

r

r

LISP/SO 1.0 REFERENCE MANUAL 18

A notational eonventi.on is used to simpHfy the representation of
lists.

The H.8t NIL is writt.en ().
The list (A · NILI is written (A) •
The Hst (A · (& . NIL» is written (A II.
The list (A · lB . (C . NIL») is written (A B C).... and so on•

4.5. OTB:!!lRS-EXPRESSXON NOTATION

Extended List Notation

In general, even when an a-expression is not .. list, the
e'xpresaion (s • e). wiler. III 1s any a-expression and e is not .1'1
atom, may be wJ:'itt.en (s e). '1'hu$,for example,

(A • (B • (C • D}») may be written (A IS C • D).

Whenprinting s-expressions; LISP/SO uses this notation.

Superbrac:kets

Since LISP often gives rise. to expressions containing many levels
of .par,entheses, it ia conven i'ant to have II way to .abbreviate
multiple parentheses. The characters [and j are called
superbrackets. 'rbe open superbraeket. (, has the same effec.t as
an open ,parenthesis. When a close superoracket, 1" appears, it
matc::hes the most recent I which has not yet' .been matenad, even if
there are unmatched open parentheses 1n between. If a 1 appears
when there is no mat.ching [, it closes all open parentheses to
its left.

Examples;

(A (B (C (D») B)
{A (11 tc (1))
(U (V (W (X ('.rl) Z») A}

can be written (A [8 {C (D] E)
can be writt.en (A (B (e (D)
can be written (U [V {W [X (Y) Zl Al

QtJO'l'E Abbrev:1aUon

'rhe function QUOTEis u.sed very often in I'ISP .progralllllling. LISP
reeCIgni%es tbe notation Ie, where e is any s-expression., as an
abbreviat.ion for (QVon e).

LISP/80 1.0 REFERENCE MANUAL

<4.6. THE LISP LBO INTl5:RPRETER - EVALQUOTS

LISP/SO .reacls commands from tbe terminal (or from fil-es ... see
LOAD.Section 4.19) tluougb an internal function which. for
historic r,eIUlo,n8, is referr·&d to as EVALQOOTE.This f.uneti·on
prints the "'_" prompt on the t.ermina.l, and the user ml!tY type
1'$00000.et.hingfor EVALQUOn to 'IUI41uate, IlBine; OlMilof two £01:111l1.t.1'$.:

e A LISP expreSSion, which 1.s silllply evaluated,. or

e A function nallle followed by at alit of
parentheses. When this format is used, the
not eva.tuat.ed beforee the function is applied.

'.cypill9 an atom to EVALQUOTE produces its value, or an error U
the atom has no value. Typing an express~on, fiueh as (PLUS 1 2) t
produces :the value of the expression.

Ill'l'gum.ente.
arguments

in

BU't. o.f_~enthe ·exptessio!1s .one want.s to evaluate have literal
arguments whicb lnI.lS.t; all be quoted.. For example, to (lemonstrate
the use of the funotion MEMBEll,one might type

(MEMBER (QUOTEX) (QUOTE(W X 'I Z)1)

This could be abbreviated considerably by using the equiValent
form wbich does: not evaluate arg,u.ment!lI

MEMBER (X (.W X y Z»

Note that this form does not actually quote the arguments, but
merely refrd'ns from eval'Uating tnem. For e~lllllple., typing either
(QUOTE X) or QUOTE (Xl to EVALQUOTE produees X. If BVALQtIOn
were Ee&1ly pre.fixing A QUO~ to each of the arguments, then the
latter vou1d produce (QUOTEXl.

This can leaa to confueing behavior when EVA.t.QUOTE.1.$used with
funetlonill which evaluate thait own argu'!lIenU IFZUitS and rSWM -
see Section 4.•14). One s'uCh function 1.s SETO. Typ.i·ngSEi'.Q(X (A
BJ) to EVALQOOTE\till not work., since SE'l'QeVal.uates Us second
ugumen.t. ana will try to aPl'ly A. to B. What is real1.y wanted .is
(SE1'O X (QUOTE(A B}) l· , but that is not what EVALQUOTE0.oe5. (At
EVALQUOTE 1e.ve1, SET shOUld be used instead of SE'l'Q.)

LISP programming is done by writ1n9 expressionlill' that call
funetions. Tbe user may define functions i·n terms of oth.t user:-
defined functions and A 'I'l\:!mberof bu:i.il.t-.in ftmc:t.ions.

Functions are either LAMBDAor NLAMBOA.and spread or npspread.
A LAMBDA f,unotion 1\l1S its arguments evaluated 'I:Iefore tn'll func·t.:l.on.
i. appJ.;ied, ,wbile an NLAMBDAreeetvits 1t$ 'arguments unevaluate4.,·
and liIay or: lIIay not eVIlI,luate each argument Defore .returning. A
.pread funct.ion expects a 'ftxed .number of Ill'guments, while a

LIsP/eo 1.0 REFERENCEMANUA,L

nospread function may be calle(i with any number of arguments.
Unless otherwise specifieO, all functions are t.AMlitiA aptead.

If a function is called with fewer arguments than it expects, the
Il.tguments ,that do not appear are taken to be NIL. If a function
is called with IIIOre arguments than it ,e~cts, the additional
arguments are evaluated if the function is a LAMBDA, but they are
ignored by the function.

An atom which is a function name has the function definition
placed 0tI its property list (see Section" .11). Functions which
lU'e defined by machine language subroutines have the address of
t.he subroutine stored unaer the property SUBRior, for NLAMl:1l.'>As,
:Il'S'UBR) • Functions defined I;>y expressions h4ve the exptession
under the property 'E~R lor, for NLAMBPAs,FEXPRJ.

Initially, all built-in functions Are SUBRsor FSU.8Rs,and all
·user-defined funotions are EXPRs or FEXPRs. Section 4.24
describes how to add machine-language SUBRsand FSt7BRs(on CP/.,.
and HQOSsystems only).

(CONS. x Yk' The !)asic function for constructing a-expressions.
Cons ructs a list cell whose CARis x cnd whoae CDRis y,
and ret.urns that list oell as the function value.

4.8. FUN<::TIONSOF a-EXPRESSIONS ANDLISTS

ICARit. Lis.a Hst cell (i.e., not an atom)~ CARreturns the
- frat alement of 1. l~ 1 is a list,. CM will retl.lrn the

first "ember of the list. Applyinq CARto an atom produces
an error.

SCDR 1). L 1s a list cell (:l..e., not an atom). CPRretutns the
second element of 1. If 1 18 a list, CORvill return a list
consisting of 1 minus its first: element. Applying CDRto an
atom produoes an error.

Note that if the value of X i8 a list cell and not an atom, the
following equality alway. holds:

X is EQUAL to (CONS (CAR X) (CDR Xl)

LISP/SO recognize .• C:0lIIPoundCAR/CDRfunction names, such as CAD.R
and CDDAJ:)AR.(CAI)R Xl. for example, Is sh?rt for (CAR{CDR Xn.
There is no limit (short of the maximumatom name length~ on the
number of As and Ds that can be used to construct suoh a function

'"'" name.

(Seasoned LI.SP prognmmeca are r.ecognized by their facUlty in
pronouncing the.se fimcti()n names. CAR is pronounced like
automobile, CDRis pronounced "COULD-et·. CADR is pronounced
flCAI)-ur·, CDDADAR·CQULD-ud-.a-DAR",and so ea, The horribly un-
lIInemonic namesCARand CDRare histot'.ica.lrelies of an early LISP
implementation 11'1which two address fields 1n a 32-bit compute.r

LISP/SO 1.0 REFEIU;NCE MANUAL 21

memory word were used as poin,ter,$ in the list cell. The machine
iun"dware gave us the names "Contents of Addtes4ii Register" and
"Contents of Deorement Re9isterR.)

(QUOTE It). NLAMBDAfUnction. QUOTE
returns that argument unevaluated.
FOO. (QUOTEe) may alse be wdtten

takes one argument, and
E.g., (QUOTE POO) is
'e.

\PROGNal .••• an). N~DA nospread functien. EValuates al, a2,
••• , an in sequence, and ret'urns the value of an. PROGNis
used to specify IIIOre than one cemputation within a single
expression.

,t.IST .1 ••• an). Nospread function. Returns the list (al •••
an) .cQne1sting of the values of its arguments.

(APPENDp qt" P and q are assumed to bEl!lists. APPEND returns
the Cst consisting of the elements of p followed b)' the
elements of q. APPENDoalls CONS, and does not alter list
structures. If p Ot q are not lists, the result may not be '
useful, but no error. will eeeur , See also NCONC.

(COpy e). Returns a copy of th.e a-expression e. The value of
COpy is EQUAL'to ita argument, but COpy will wallc over the
entire list structure of e and perform a new CONS.ior every
list cell in e, thus producing an entirely new list
structure. COpy may be used to save a cc.':)pyof " list be'fore
operating on it with functions that act.ually alte.1' list.
structure.

(REVERSE 1) • Returns a list eonsistin9 of the elements of the
l.ist 1, in reverse etcer. For .example, (REVERSE' {A B en
is (,C S A). REVERSEof an atom .is NIL.

{SUBLIS (lul • '1.1) ••• (un • vn» e). Returns the s-expression
e, with substitutions made according to the first argument.
This argument consists of a list of dotted pairs (ui • vi).
Every occurrence of -ui in e is repl.acea by '11. SUBLIS
checks for possible $ubsti.tut.1ons only at atoms in e, so the
ui should be atoms) the vi may be any a-eltpressipn. SUBLIS
c:r.eates new list structure only when nec<l!SsarY1 if there are
no substitutions the value will be EQ. tQ e.

(LAST 1). Retutns the last list sttuc:ture in the list 1. Por
example, (t.AST I (A B ell is (C). If 1 is an atom, returns
NIL.

(LENGTH.1) • Retutns the number of elements in the list 1. If 1
Is an at.om, returns O.

80111e list-like a-expressions end not in NIL, but in a dotted
pair: (A B • C). or, equivalently, (A • (B. CH, for example.
The built-in functions of lists test for the end of the list
using, the predicate AToM, rather thal'l NULL. '1'bus. LAST of the
above .-expression Is (B • C), LENGTHis 2, and 'IUl:VEl\SEis (8 A).

;-
L._

LISP/SO 1.0 22REFERENCE MANUAL

4.9. PREDICATES AND LOGICAL FUNCTIONS

JATOM al. Returns T if a is an atom, o-therwise "NIL.

(LI'l'ATOM il). Returns '1' if is is a literal. atom, and NIt
.ot.her,wIse. A lite-rill atom is an atom ",hich ia not. a number.

(NtlMBERP a). Returns '1' if a is a numeric atom, and NIL
otherwise.

(LISTP e).. Returns '1' if e 1s a list (i.e., not an atom), and NIL
otherwi-se. (LlS'fPe) 1s always the same as {NOT {A~ 8).

It y). Predicate which returns -'l' if x and 'I are the same
pointer or atom. Two numeric atoms with the 'same value are
always EO in LISP/SO (althouqh this is. not necessarily true
in other LISP implementations). A lite,ral atol1l is always EQ
to itself. Two list structures a'u EO only it they aroae
from· the same CONS operation. For example, (EQ (CONS,T 'l'l
(CONS '1' T)) is NIL.

When a variable is given. a value, that 'iTllIlue is ac'tuaUy the
addtess of the list structure which re;pr-esents the value.
ThUs, .if one var iable is SETQ to .'nother I or if a va,r-iable
in II function argument list. 1S' bound to a variable whlch is
the actual argument in a >.function call, the two variables
will be EQ.

EQ should be used in p'reference to EQUAL wherever it will
Serve the desirea purpose, since it is c.onsiderably hster.

(EQUAL x Yl. Predicate which returns ''1 1-f It and yare the same>
atOlll or equivalent list structure. EQUALwill compare list
structures down to the atomic level. Por example, (EQUAL
(CONS '1' '1) (CONS '1' '1'» .is '1'.

!NOT e). >Returna or if the 1I',&ll1eof e .is NIL, othetw:!.se [eturns
NIL. -NOTis lc'lenti-oal to NULL, Ilnd is usually uS.ed when the
argument is a predicate or truth value.

(NOLL el. Returns '1' if the value of e 1s NIL, otherwise lUL.
NULL is identiea-l to NOT, an<1is usually used ' when testing
whet.her the argument is an empty list.

(ANI>al an). NLAMBI>Anoapread function. Evaluates al, a2,
••• until one is encountered which :I..s NIL, .and returns NIL.
Bvaluation stops at the first argument -whose value is NIL.
If none of the ai evaluate to NIL, AND returns the value of
the laS't argument, an.

(OR III an). NLAMBDAnospread function. Evaluates aI, a2,
until. one illl encountered cwh.ich Is not NIL.. and returns

thaf::-value. Evaluat.ion stops at: the first. non-NIL argument.
If all the ai evaluate to NIL, returns lUI..

LISP/80 1.0 23

JMEM&ERs 1.)• If the a-expression II is ll:QUALto any element of
the fist i, returns T. Otherwise, returns NIL. See also:
lilQU~.

AI!! mentioned in is prec.edln9 ;section, eve.ry .atQllI may l'IJ,VEii a "Illu~.
!'he value of. & numeric atom is always the lUu:nberrepr.esented. by
th.\!! atom name. Liter.al atoms do not initially have 'TaluEUI
{ex<:ept for '1' and NIL, whi,cn evaluate to themselves). and
a.ttempti~9' to eva.luate an atom which has no value rellfults in an
en:or.

At.oms may receive values in three ways. The value may be set
using the Sft ox Sm.tt funeUons deseJ:ibed in this secU·ol;\·.. An
atom lIIay bave Ii value bouni ee it tempour.H:y within a function
when it is a formal. at'itll11ent of tbe function (SeeU.on 4.14) or
PROG lSecftiol'l 4.16). A.nd an atom may be giv~n a. value
temporal" fly in the optional se.cond arqument. of the· !:VAL function
(section 4.17).

(SE'!' a v). A is an atom, and v is an £I-expression, Sll:'L' s.el:s the
current val.ue of <II. to v, If IS is bound in a f'unction or
l"ROG., ·SET affects the most re.cent active .biot.Ung; othe.rw.ise
SET will chang-,e the. top level. value of the &.tom. SET
ret\,l.r'I'lS v.

,SE'1'e? a 'It •.. Nr..AMl!1>A func:t!on. A is an atom, and v .is an s-
exp:::f1rs.sion. SE'rQ evaluate. v , but not Ill.. It sets thlill value
of a·tp v. Thuil, (SE'l'Q A ill 1,s the same alii (,SET '1\ E) • If
a is bound in a funet.ion or PROO. SETQ'affects the last such
bind1m.u otherwise SE'l,'Qwill chang.e the to.p ~eve.l value of
t'be •.tOIll. S;!!I.'Qreturns v. .

Note cateful1y the differenee between SET ana SE'1'Q. If the
foll.owlng, two functions are executech

(SETa x ttl
(SET x fA.)

the firs't seta the value of X to Y, since SETOdoes nQt evaluate
its f"rst; ar'g'1.llllent. But ,the seconel e~ts the value of Y to ,A,
since SET .:!oes evaluate both arguments before per.forming the
assignment..

I'or LISP. elr!perts. it should be mentioned that LISP .uses a
mo.:U.fied deep binding aehe)lle~ Variable valu.es are stored on ..
pushdOwn stae'k constctueted. froll! liBt cells. The to.p leVel, or
91obal., value of a var1agle t8 k'ept. on the atofll'S prope'rty list.,
under the proper ty VALUE'CELL.

LISP/SO1.0 REFERENCE MANUAL 24

4.11. P~PERTY LtS~S

Every literal atom has assQciatecl with it a list, call~ a
propert.y list, which may be used to store attributes as'Soeiatea
with that atom. The property list is of the form

(propertyl vaLuel property2 value2 ••• propertyn valuen)

where propertyi is an atom which is the nameof a property, and
valuei is any a-expression. Function clef:initions and global
values assigned to atoms are among the things whi.eh the L1SP/80
interpreter stores on property lists. The programmer is free to
make use of this facility as well.

J.qE'.l'PROPI.IS'l' al,. Re.turns the prOl?erty list of the atolll a. Gives
an error if a is not a 11Utal atom. The property Hst ia a
list of' the forlll (pi vi ••• pn VA), where pi is an atomic
property name and vi is the value of that property.

(GE'rPROPa prop!. Returns the value of the property prop from
the property list of the atom a. Gives an error if a is not
an atom. GETPROPreturns NIL if the p.roperty prop does not
appeal' on the property list of a. The wa.y t.o distinguish
between a ptopoarty ""hich is not there and one ",hieh has the
val.ue NIL is to do

(MEMBBR?ROP (GETPl\OPLIS'l' A'l'M»

(PU'l'PROP
..of
the
the

atlll prop val} • Puts the value val on th.e prOperty list
atolll atm under the pt'op.e.rty p.tOp. .If atm p1:,eviously had
property prop, val replaces the old value. Otherwise,
property is added.

(REMP:ROPatlll pr.op). RelllC)vesthe property prop from the property
list of atm. Returns prop if the property was found,
otherwhe NIL. 'this £\11\=t.10n alters the list: structure of
the prope'rty list.

The prol?er'ty 11st f·unctions use EQ to checlt for the property
nlllllle. 'rhus, althoq.gh it is possible to put a property with A
non-atomic na:meon a property list, it will not subsequently be
found or r~mOvedexcept by a user-Clefi·ned function.

LISP/SO 1.0 25

r:

4.12. ADD1!.ESSES! LIST STl!.tfCTURSS t AND FUNCT10N$ THAT AI.TER TREM

avery a-expression in 1.181' is representeQ by two worc:ls(four
bytes) 1n Mmory>. For numeric at.oms, the first. wO.r!!con't.!i.i.ns an
identifying bit. patter1'l, a.nd the secona "'(lrd contains the value.
Por literal atoms,. the first WOrdholds the addr>eas in the Btr 1ng
s1;'01:'.agel!Irea of the 8'tom nameA and the second word points to the
atom.'s property list· , In at list cell, the first word is. the
address of the CAR and the second word, the CDR.

Wben LISP pasus around s-expressions, what: it actually passes is
the address of the two word repreliu~ntation in memory. u: X
curr:en.tly 'has the. value (A • BJ., the.n the valui'! of X 1,s an
ad<2ress In memory of tWQ words, th-e. firs·t; conta.ining- the {unique}
addre.ss of the atom A, and' the second the (unique) address of t.he
atom B. (L~.gP insures that a literal. atom w.1th l!I given flallle
al.ways refers to the sallie li&t eell.· addresliH in other words, a.
literal fttomis always '&Q to itself.)

If (SE'!Q Y Xl is nowperformed, the value of Y is set to the
value of X. . Y . nQ\i point;s to the same adeh:e_ in memor}' as X
dOes, and typing either :x or Y to EVALQUOTEwouid print tA • B).

If X is $ubsequel'ltly enartged, say by (SETQX 1). 'this changes the
addresB which is the value of X. 'i stlll points to the same list
cell as before, . and typing- Y to SVAL\1lU(lTSwUl print (A· • IH. as
one would expect.

The following functions, however. actually change list structure.
Th.~y .can be ,used to achieve pOwerful eff'ects, but can ..1$0 create
confusing result·s.

litPLACA e vall' Replaces the CARof the s"'elqlression 111 with t.he
a-exp::ess on val. Re.turns the new valUe of e.. Tbi'S
f\l1}ct1.on alters eXis,ting list. structure, ana should be. used
with caution, sinee it can alter the value of objects Which
point to the expression it is changing.

jitPLACI) It val). Replaces the CDRof the s-expJ:'e;ssion e with the
s-expfressicm val. Returns the new lI'alue of e. This
function alters existing list st.ructure. and shou'ld be used
w.ith ·cau'tion, since it can alter tehe value of objects wbich
point t.o the expression it is cllanging.

An example may help to c1a1'11:y~he Use of RPLACAand RPLACD. 'I'he
following .is . an illustration of 41'l~actul1l interchange with the
LISP/SO fnterpret.er, "ith COllllflents added •

....

LISP/SO 1.0 26

(S£TQ Y (S£'rCI X 1 (A.:an)
1'A • B)

X and Yare set to
point to the same :Ust
struc:rtureq (A .• Bl.

'rhe v~lue of X is (A • Bl,

and so is the valUe
of Y•

X
fA . B)
Y

l'A . :8)
(RPLACA. X '{C • Dn
Ttc • Dl • Bl

RPLACA is used to replace the .-d"
dres1iI of A in the CAR-of the val.ue
of X with the address of (C • I).
X still po.in-ts to the sam!!c.ell,
which nowco.ntains He • 0) • 11).

Since Y points to the same cell
as x, its value ·has ~een cba:nge.d
as well!

Funotions which alter list: structure can be ueed to crea.te
reentrant lists - tbS;t iii., lists which point back to themselves.
For instance, performing the fl-IIlctions

x
ltC . 0) . 11)
Y
ttC . D) . '8)

(SETO A • (X y ZU
(RPI.ACn (CDDR A) A),

will rephee the NIL at the end of the list (X Y !Il)
addre.ss of the list itse.lf, crea-ting an eneUess l.C<:\p.
exPressions are typed into l:VALQUOTE.the valtle printed
RPLACtlwill be

with the
If tbese
by the

(Z X y ~ X Y ~ X Y Z X Y Z X Y Z •••

and so on. AS. PRINTchases around the lOoped list. The printi.ng
wlll go on forever (or unt.il cttl-C is typed, or~, under 111)08,
c:trl-S.)

It ~.ho.uld not be assumed tha:·t .reentran·t llsts and other ta.mper11'19
,...,., wH:h lis.1: IlItiuc:turltS- are always evil. Buell operations are

g.eneully more effi-cient than copying lis,t; structures over:, _d
can be l1li4£.11 used when tbe lJ:st being altered is 'l'Iot pct.i,nted to
bY anything. else. It is- often useful to change list structures
that !lire ,pO;inted to from sever.al ,places, and to c.rlla.te reentrant
lillts" but it: is necessary to knowwhat one is doing.

Another function that alters 1.1st strllctu,res is:

fNCONC P 91. P and q au a.sumed to be lists. NCONC creates a
lIst. consisting of the elements of p foUowed by t.he
e.lemerrts .of q, by aet;uaUyal.tering the Ust structure of p.
No new Hst cells are created: in the process,: bllt the Hst 51
lIIay be d:estroyed. NCONC returns a pointer to the· new list.
Note that this pointer i8~p, e.xeept wh.e'np is NIL. NCONCis
equ(valent to:

LISP/SO 1.0 27

{LAMBIU, (P Q) (COND
({A:rOO P) Q)
{',t' (RPLACD (LAST Pi Q)

pj

LI'Sl:'/80 pro'1ic;tes iii number of functio.l'ls which opel:"ate on i.cnteger
numeric atoms. The alloWable rangE! of numerio atoms is ..32768 to
+32767. I.t is the responsibility of the proqrammer to confine
arithmetic re.suits to .that range; the resll1.t 'Of an ope.1'.ation
which excee4s that rang. wUl ~ . SOllIe {not:.specifie4} number in
that range, but no error message 111'11.1be· given.

(PLUS i :n. Returns the arithmetic Bum of i and j. If either of
the ,llrgumen,tB is not a l'I.11meric·atom, an ecroc oe,OUl:iS. Notet
unlH:e some LISP illlpl.eme:H:-atIons, LISP/SO doe.s not allow
more than- two argument!> to PLUS.

(DIFFERENCEi ~)a. Retu.l'ns the· l'Ium.edc (Ufference i mi,l1Us j. If
either iO· the IlrgulIIEm·ts is not a numeric atom,. an error
ocours.

(',t'IMES. i j}. Returns the numeric pr04uet of i and j. If either
of the llcguments is not a numeric atom, an error cx:curs .•
Note: unlike some LISP implementations, LISP/SO does not
allow more than two arqumel'l'ts to 'rIMES.•

.tgUO'.l'IEN'l' .:1. Jl.. -Retu.r.n.a the.. nil.me.riC . integer quotient 0.e icUvlch;a .. j... If j is equal to 0, th!! resu.j;t is undefined.
If the result is no.t " whoJ.e n.umb«u', the fractional part is
discarded. If either of the .argulllents is not a nUlI'un:ie
atom,. an error occur ••

(JU!lM,.l\.INDER1. ;n. Returns the numeric: relllAinc1er from i divided by
j. rhe sign o.f the remainder is the Same as the s-ign of the
.quotient. ill. If' j is equal t.o 0, the reault. 'is unlii-II!:fined.
If e.itner of the arguments is not at. numeric atolll, an error
occurs.

(,ZERO!' I) •.. Numeric predicate. RetUrns T if i is EO to Ot
otherwise lUI.. Gives an error if 1 is, not numeric.

(GREA'1'ERP1 ;H. . Nume:rre predicate. Returns T if i is· greater
than j" otherwise NIt.. If either of the arguments is not a
numer'ic atom. an error oceu'r's •

•(LEgJil i :U Numeric pre4ioate. Returns- '1' if:l. is less than or
equa.l. to j, otherwise Ntr... If ei.ther: of the (trgllments is
not. a numeri-c atom, an error occurs.

LISP/SO 1.0 REFERENCE MANUAL

(LESSP i :H. NUI'I!~r 10 predicate. Return!! '!' if :I. is 1&111111' than j,
othel:vlse NIL. If either of the argl.1l11ents i8 .not a num.lin~.ic:
atom, an error occurs.

(G.E(;lPi l2. 'Numeric predicate. Returns '.[' if i is 9I'e81::er than
or equal to j, otherwise N!L" If either of the. arguments is
not a numeric atom, an error occurs.

4.14. FUNCTION Dl!lFI.NITION AND.EVALUAT.ION

{DUINE II. Used to define luser-provided functions •. DEFINE
takes one arqument, which. is a list of defini.ng e~rfn!l&ions
for functions. E.&ch definin.g expression is eit'ber of the
form (name (LAMBDAargs body)) (or NLAMBDA) or eUa (name
args body).

Por example, the factorial fUnction can be defined as
follows; .

DEFINE ({
(PACT (LAMBDA .{N} (CONI.')

«ZEROP N) 1)
('1' {TIMES N (FACT

(DIFFERENCE'N 11

Alternatively, (lne could write (FACT(N,) (COMD••• l. The
two f:.orms are -e.quivlllent.

DEFINS usually causes the LAMBDA express:l.on to be- stored on the
property list -of the ·funet.i·onname as the \l'alue of t.he EKPR.
propert.y. This define;s a LAMBDA function" i.e., t.he arguments
are evalUated before being passed to the function. If NLAMaDAis
use-d instead of ~DA.t the definit.ion is. stored as an FEXlIR .and
the argum~nts are pasa-ed unel1aluated to the function.

If 'the ~n:~ument :Ust. is an at.om.., rat-hel; than a list, the fUnotion
is nospread - L.e., t:lla. fum::tion lIIay be callec:1 with any i'lI.lXilbero·f
arguments. bl1t. actually receives a single lIu:·gument cOnsisting of
a list of t.he at'l;Juments it was caned with. For example¥ the
Nt.AMI3DAnoapread functi.on OR could be defined by the exp-r:ession:

DEFINE ({
(OR (Nt.AMBDA II {FROG (Xl (RETURN (CONO

((NtJIJ. Ll NIL)
«(SE'l'Q x .(!NAt. (CAR t.») X)
('1' (APPLY 'OR (CDR Ii)

~ DEFINE 'has no lIlagic powerJl as filiI' as fUnction d.efinition is
concerned. The f.unctions. which manipulate prape.rty lists can .be
used to define" functions, ancf to alter and rel'llOl1e funeti.on
defini't::l.o~s. The LISP/BO e6:1.to1' changes funct.ion definitions in
this way.

When II fu·notion. is eValuated, the atoms in the function argument.

LISP/SO 1.0 REFERENCEMANUAL 29

list are temponrily given. the values of the a.rgumen.ts with whieh
the f"lll'lct.ioflwas called. The old values., if any, of t.he at.oms
at:e saved on a pushClownlist. The expression comprising the body
of the function is evaluated. The saved values of the a.i:01ilS in
the a1:gumenl: li.s!: are res'tOJ';'l!d. ana the v.alue of ·the filnctio.1'l
body 18 .ee.turned as the value of the function •.

Although I.AMBDA and NLAMBDA appear to be function's '!:bemseivea,
they are not •. They are ju.et: names which indicate·. to the LISP
interpreter that the expression which follows is a function body •

• • 1S. 1I'tmCT:iONSOF· FtlNCTIONS

{MAPLIS'l' 1 fl. f2} .• 'Applies the function fl to tbe list 1. the
Cl)~ of 1. the CDORcrf 1, and so on, and ret:Utns tnll! list of
'\I'al·ue:l!fretur·ned by fl. If the argument .fa .is i!lpecifi~, it.
11!1IS function which 1s used in pla.ce of CI)R.to step down ·the
Uat 1. For example, tMAPI.J;S'l' • (A B C) • (IJ\.M8cA (Xl (CONS
(CAR X) {CAR Xl eval.uates to (tA • A) (:8 • B) re, C)).

(MAPCAR1 fl f2). Identical. to MAPLIS'1',excep.t: applies £1 t.o the.
OAR of 1, <t·heCAOti of 1., and .se on.

(MAPCONC 1. fl f2:). Ident:!;cal.. to MAPCAR,exe.ept NCONCatog.ether
the val-ues xetl.1rnea by each appU·ca.t.ion of £1 to form III
list, a.na returns that list. MAPCONCis useful when there
are a varia.ble number of elements to be inserted. in the
resul·t list. for ~aeh evall1ation of .fl. For e.xample, i·f X is
a list, then (MAPCONCX '(LAMBDA iY) (Am) Y (LIST Yj will
return. IJ' list of' all. the non-NIL elements in X.

{MAPA'l'QIS fra}. Fn is a .f.unction .. of one arg.l.lment.. HAPA'fOMS
ap1'11.. fn to eacb at.om known to t~ system. Thus,
(MAPAT(lMS 'PRINT) ,.,UI prlnt. the name of every 4tnown atom.
Hote that MAPA-TOMScan not. te;l1 which atoms are riO' longer In
use bUt. have not .been garbage ¢oll.ected. If it is important
to consider only active atoms, .. OOLLECT.should be done
bdor& MAPA'l'OMSis caUed.

Programminq. in, LZSP cons.i.sts of wrlting user-de.fined functions.
MOiSI: programming 1..llnq,uagescont.lfin constructs which provide the
prog'ralllllliu' with condi t:ionllls and branches, and LISP is .DO
exce.ptton. As one would expect, they a1:'.1\1all func·tiona,_

e • NLAMBDA nospread f.unct;ion 6

~==-=~~~~i'+:~--=-=~~~T'=-~:-;c;<o=-' ..n~'struct for LISP progra1llt!ling.
arguments of CORDare an-y numbel' of list.s (p e ••• e),

a pre.dicate and e • H. e are enpressi.ons. COND
'each .p in turn until one of ·the p retwrn$ a 1'Ion-

LISP/SO 1.0 REFERENCE MANUAL 30

,NIL value. Then CONI)evaluates each e following that; p.
The value of CONI)is the last e evaluated. If all of the p
eva.luate to NIL. the value of the CONDis NIL.

(PROG vlist e1 en). NLAMBDAnospreacl fun.cHon. .PROG
prov.iaes the :t.I,SP l.anguage with a conventional sequential
programming contro~ structure. The .first 4rgument is a list
of atoms, whiQh are the local variables of the PROG., El
en are atoms, which are interpx:eted as stat'ement la:b.els, Ot
expressions, which correspond to program statements.

PROG binds the value of each var iable on vlist to NIL" and
then evaluate. el" e.2, and 8.0 on. ,1\1'11' of the ei which are
atoms are considered labels and are not evalua.ted.) The GO
fundtion (q.v.) is a "1301:0. wh.ichmay 'be used to 'transfer
control .within a PROG.. The RE1'ORNfunction £q.•.v.J
terminates fROG execution, restores the previous val.ueS of
the var iables in vlist, and returns a value for the' PROG.
If PROGexecution "falls off the end" by e'valu4'ting en, the
PROGreturns the Value NIL.

DEFINE « (LENGTH (L)
(PROG ('0 V)

(SETQ V 0)
(SETQ U u)

A (COND {CATCH UJ (RETURN V»))
(SETQ u (CD~. U»
(SETQV (PLUSV 1»)
(GO AJ

The following example is a fROGwhich computes the LENGTH
function of a 118tt

(GO 1). NLAMBDAfunction. Transfers control to the label. 1
(which does not need to be quoted) within the curr-ent PRoo.
Since GOnever "returns·, it 'haa no value. 'l'he GO need not
be physioally contained within a PROG, but may be in a
function called from a fROG. The label 1 must be defined in
the most recently entered P~OG which has not yet been
exi.ted, or an error occur ••

(RETURN et' Returns.' from the c\1rrent PROG. The value of th.e
PROG. s the a-e:ql.1:ession e. If execution is not within any
fROG, an euo.r .is given. Note'that the RETURNneed not be
physically within the body of the PROG, but can be in 4
funct.ion which is called ,from the PIWGbody or from 80me
other Lunction. RB'l'tl:RN alwal's returns from the most
recenUy entered PROGwbich bas. not yet been exited.

(SELECTQ e (el sll.... s1n) ... (e2 a21 ... 82ft) ••• deflt}.
SELECTQle: the switch-case construct in-the LISP progralMlinq
1an-guage. It I'll .an NLAMBDA.noapread ·function. SE:t.EC'l'Q
first evaluates the expression e. Next, e is cOlllpated to e1a. follows. e1 is not evaluatedl it is implicitly quoted.
If e1 is an atom, e 1s checked to see if it is EO to el. If
el is a list, e is. checked to see if it is EO to any el.ement

LISP/SO l.a 31

'Of e1. If either of these is true, expreS'siona all ...
are evaluated, and the value of the SI!:LEC'rQis .In. If
not f'Ound in el, SELEC'l'Qgoes On to e2, and 80 forth.
is not found in aney of the et, dent is evalua,ted
SEI.EC'l'Q returns that: value.

The fOllowing expussiol'l will. cheek:.to see i.f the value of
the atOll! LETmERis a vowel, and will return VOWEL.
CONSONANT,or Y.

sln
e is
Ife
and

(SEt.EC'fO LET')!ER
(A it IOU) 'VOWEL)
('I I'll
'CONSONANT)

It is no aecident that LISP expressions are identical in form to
LISP a-expressions. one of the powerful capabilities of :LISP is
tn.e ability to c:onst:.ruc,tan a-expression and· evaluate it as an
expression.

JAPPLY fn ~r!is1•. Returns the result of evaluating' the function
fn w:loth the argume.nt list axg,s. APPLYis a r..AMllI)A., So it.
e:vliliuates the arg.ul!Ient list and the function name before
applying the function.

(EVALe). Evaluates the express-ion e and r~turl'1S it·s value.

t.. 4.18. STRING MAN.IPULATION

String ·manipulaUcl;1 in Lil:SP i$,p!lt1:',formedby operating 'On atom
names, To obtain a striil<1 of cbaucters, an atom is created with
that string as a name.

(UNPACKIoU. A is an atom. UNPACK returns a lis't
character atoms Which make up the name of a.
nll'meri'c atom.

of single
Amaybe&

(PACK .1. ••• 41'1). No.prea"l function. AI ••• an are atoms. PACK
tetuxns the atom whose name is t.be catenation of the names
al ••• an. For examplfil, (PACK 'AIiPaA "l) returns ALPHA-,i•.
PACKwill create a numeric .at.omwhen the name ,i8 suit.able-J
note that crell.'t.ing nUJllerLe atoms outside the 'range -3.2767 to
32767 will ,ive strange results.. .

(PACKC I'll nil. 'Noapre'!ld function. Nl ••• ni are numeric
atoms.. PACRCr.eturfts the atom wbose name consis.ts of the
ABell .. charact.er,s whos]! numeric 'charael:l!lr (l(ides are n1 •• ~
ni. Atom names forllled. with PlteRC can eontain control.
characters",. For exampl.e, to write t.he sequence ESC. p to
tbe termh'lal do (l'RIN;l (PACKC ~7 112)). ('l'his sequel'u:e

'-. LISP/SO 1.0 32

turns on inverse video on th. &19 terminal or a89.)

(NCBARSII £19) • A ill an. atom. NCBARSnturnS the n.umber of
cha:acteu in the printed I'US•• of a. Pot example, (NCBARS
'ALPliA) nt·urns 5, If flg is present: ed non-NIL, NOHARS
return. the number of characters in the PRIN2..name of a.
rcl:' example, (NC:BAU "('» i. 2, but (NCHARS -"Ct, T) is 4.

(CHARAC'l'BR.a). Return. th.e numeric value of the first ASCII
. chancte.t in the name of! the atorA a.

(CBCON a). A is an atom. CHCON returns a list of numeric atoms
which are the valu •• of the ASCII ehru:aeter colie.1Iwh.ich make
up the name ot c. For example, (CaCON 'ABC) r·eturns (.65 66
67') •

4.1', INPtn/Otf'l'PUT

('lUMI e cb). 'rints the expression e. If ch is Clltitted, or
NIL, .. il& pr:1nted on the terlllinal. If ch is pre8ent., it is
a numeric channel number obtained from Ol"ENW,and the
expression i8 printed on the aevice or fUe which is open on
that. channel. S-expre4sona written to a file by PlUNl 1Il1l)'
not read back in correctly; see PRltf2.

(PUltZ. ch). PlUN2 ia silllilar to PlUNl, with one exception. :If
IJD atom contains a special character (i.e •., one which Rluat
be preceded by a , to be inserted 1n the atom name), PlUN2
.priftta the atom. as it WOUld.be typed, with , inserted as
necessary. POl' esup!.., the atom' (\1 would be printed as
() by PlUlU, but .PRIN2 wlll .print it '<Il). P.RIN2is used to
outP\1't .-exprosaio.ns in a f.orlll sultabl. for r:ead:!.ngback: in.

The name of an atom, including the' characters, is referred
to .1& the PlUN2-name·.of the atom.

,(!'RlN'l'e en) •. Ident.t.cal to PlUN2, except that: PlUN~ terminates
the output line with Ii newline after printing e. (paINT e)
1. the same .s (PROGN(PRINl e) (URPlU)).

(DRPM ch). Print·s an end o~ line character on channel eh , Ch
1. usually NIL~ (or om:l.t:ted), "hich Benas. output to the.
terminal. Ch lI&y also be· a channel for a file or device
Which haa ·been c>pened for wr:it1ng; see OPENW.

(POSITION ch). aeturns the colwm number in which the next
chancter will be printed on channel cn. 'Following Ii
('l'ERPlU), for example, POSITION'returns il. If ch is NIL tor
omitted), refera to the' ter .• inal..

LISP/SO 1.0 REFERENCE MANUAL 33

(TAB n tntn ch). Prints Ii sufficient number of spaces on channel
ch so t.hat tne next cnaraeter will be ps:i'ntfld in column n.
At l:east min spaces are printed •. (If min is Nr.Lor mi.ssing,
min is. taken to be 1.) Tnus, if the current Roaition is to
the right of column n - min, II 'rERPRI is perf.ormed before
spacing over. Setting lIIin to Ii large negative ·nuuer (-100,
say) , removes all possibility of a TERPRIeeeuer ing. If eh
is NlL (or omitted) I refe·rs to the terminal. TAB will use
tabs instead of spaces wherever possible.

(OPENWfname). ¥name is an atom which is the .name of a fil·e or
device.. OPENWa.t:tempts to open that fil·e er device for
writing, and returns a channel nuuer if suecessfu.l. S-
8xpre.ssions may be written to the .£Ue or device'l:Iy passing
the channel number to PRINT, PRIMl or fRIN2. If no
extension is .apecified for the filenallle. tha extens.i.on .L$P
is assulllftd. ~n specifying an extension. remember th:at the
character w... in an a.tom name· must usually be. quoted by
p.l:eceding 1t with a -,". If the file or device can not be
opened, an error occurs. A maximum of three flies or
devices may be open for reading and/or writing at anyone
time; to use mote see CLOSE.

A file or device which hil;a 'been written to muat be c:lo.sed
before exiting ft'OBI the LISP/SO interpreter, or the
information written wnl be lost. See CLOSE. It is not
necessary to close .channel.s which have only been opened for
reading. but at most thr.ee channels can be open at:. anyone
time.

{CLOSE .ch). cn 1& a channel obtained from a previous call to
OPiNW or OPBNR. If eh is a number, CLOSE rflt.urns l' and

r: closes the file or devi.ce which is open on that channel. If
eh is not a number:, CLOSEreturns NIL and does 'nothing.

(OPENR fname). Pname is an atom which is the name of a flle or
device. OPENRatte1llpts to open that Ule or device for
reading,. and returns a channel number if successful. s-
expressions may be ned from the file or clevice by passing
the channel number to READ;q.v. If the open can not be
perfO:rmed, an error occurs. Xf no ext.ension is specified
for the filename, the extension .LaP is assumed. A maximum
of three Ules or devices .may be open for .caaCling and/or
\rIxi t.in9. A.t anyone time 1 to use more ea.e CLOSE.

(REAl) ch). Reads an s-expres8.ion. If eh is 111188.ln9or NU.,
reads from the terminal. If dh is 4 channel. number Obtained
from OPENR,reads from the file or device which is open on
t'hat channel. See also: READe,OPENR. Whenthe last s-
expressi.on on the file has been read, READretU·zms the' atom
... Attempting to read anything else after that causes an
error.

LISP/SO 1.0 REFERENCE MANUAL 34

(READe chI. Similar to READ, but returns the atom who.e name i.
the next character read frca the terminal (ch missing or
HIL) or the file open on channel ch.

(LOAD fname). Fname is an atom which is the name of a file.
LOAD opens the file, and evaluates the a-expressions on the
file aa if they had been typed to the interpreter. LOAD is
useful for loading program. that bave been typed onto a
file. LOAD returns fname.

4.20. COMMENTS

It i. good programming practice to include comments in every
program. LISP does not have any special way to do this, but
there is a trick which can accomplish the same thing using the
QDOTE function, a. in the following function definition examplet

(PACT (H) (CORD «ZBBOP HI
(QUOTE Return 1 for (PACT 0) 1)

(T (QUOTE Otherwise, recurse)
(TIMBS H (FACT (DIfFERENCE H 1]

There are two things to remember about this way of commenting a
program. Firat, the comment will take up list apace, and
especially character storage apace, that could otherwise be used
for program and data. Thi. i8 wby the LISP prograll file. on the
LISP/80 distribution disk do not contain comment ••.

Second, the goOTS function i8 evaluated during program executton,
just 11ke any other function. Thus, it must be used only in
place. where it doe8 not affect the value of the expression 1n
which it is inserted. This is the case in the exalllpleabove.

4.21. TRACE, BREAK, ERRORS, AND PROGRAM 1'EIIMINATIOH

LISP/SO provid ••. several facilitie8 to help with.debu9ging and
examining the operation of user programs. TRACB displays call
and return valu•• of designated functions while the interpreter
is running. BREAK allow. examination of variable values from
inside a function whioh is being executed. This ..y also be done
when an error occurs.

I

(TRACB lie L is. a list of function names. TRACE turns on
trec ng for eacb of the .. functions. Wben a traced function
i8 called, its name and argument value. are printed, a1on9
with the function call depth (counting only traced
functions). Wben a traced function returns, the call depth
and function value are printed. Both user-defined and
built-in functions may be traced. TRACZ returns its
argument list as value.

TRACB operates by placing the property TRACE on the property

LISP/SO 1.0 REFERENCEiMANUAL 35

list of each traced function, with property value T. In
order to speed function execution, the i-nterpret~r does not
test for this property unless 'rRACE has been called at least
once. Thus, it 1s posdble for a user funotion to turn
tracing of. individual functions on and o.f£ dynamically, but
if this is done the interpreter must be signalled to look.
for the 'tRACEproperty by fint calling (TRACENIL) •

(UN'l'RACE 1). I. is a list of funct·ion names.. Turns off tracing
of each named function in 1 I·whether or not it was on) • See
TRACE.

(1nlEAK)~ ·This function, when executed, calls EVALiQUOTE,which
prompts the user for input exactly as at the top level of
the inteJ:pre ter '. except tlnl·t the charact.er ":" is used ·as
the prompt.. The Ilser may type expreSSions to be evaluated.
Any variables which are bound at the time BREAKis called
are atill -de.fined, and -maybe examined.. and their values
changed, by the U8&r. The user lIIayalso type the following
special commands:

BT Backtraoe. Types a list Of all functiont! which
are .currently called, starting with the func·tion
containing the BREAKand proceeding up to the
function Originally called from EVALQOO'1'!J.

CONTINUE Continue with program execution. Retl.u:n f'rom the
BREAKwith the value NIL.

Pop up to the top level (or to the next level of
EVALQUOTE,if the current ElREAXwas caused by
.omething typed at a previous BRE:I\Kl.

Ordinar ily, the effect of an er ror i8 to print the er ror message,
abort progralll execution., and return to EVALQUOTEle9.1. .ltowever,
1f the value of the atoll BREAKis other than .NIL, after an error
message is printed "BREARocc·urs. If the user CONTINUBafrom
the break, the function which caused the error returns the va.lue
NIL, and execution (:Ont1nue8 from that point.

At any time during interpreter execution. typing ctr1-B on t,he
terlllinal causes functi.on evaluation to be interrupted. (Under
CP/M, if the, interpreter is locked in a tight. internal loop it
can not. be interrupted.) This .interruption is bandled pr.eclsely
like an enot. That is,. if BREAK1s set to NIL, ctrlooS will
cause IS return to t.op EVALQUOftlevel. If BREAKl'uul been set t.o
other than NlLi, 'cul-a will cause a BREAKand .drop into
EVALQUO'1'&.·Prom this point, CONTINUEwill teSllme function
execution fr.OlII the point of tnteeruption .•

(LOGOUT). 'ferminates LISP/SO interpreter execution and retu.rna
to ilion1tor cOJlllllandlevel. All 4ata 1n memory 1"8loat.

LISP/80 1.0 REFERENCEMANUAL 36

4.22. GARBAGECOLLECTION

As the interpreter runs, neW'11.sts are created. Eventually all
the available apaee is used up. At this point, the interp.reter
looks around for IIny list cells JoO'hichwere once uSed but are no
longer needed. (This clln nappen, for examplet i.f a cell was. the
va.lue of an atom whicn ,was then l$et to .a different value .•) The,se
cells are reclaim.ed and ma.de I.Ivail.able for reuse. This process
is called warbage collection. (LISP was invented before the term
-recYQli!ng came into general use.}

LISP/SO divides ita data~ I'ltora.g.e into two. areas: list cells and
a,1;,olllcha'raQ.ter ,name space. When.the garbage coll,ector runs, it:
prints out the amount of each kind of space it was. able to mak.•
available.. If a program is large, or creates a lot: of data, all,
of one ~kind of space can be used, and the garbage collecto.r can
not free up any at all.

It 1s poss.ible to re:adju,st· 'the allocation between 1i'5t and'
cha.racter spa'Ce (SGe Section 4·•.23). But if both kindS of spaCe
run 111'10'1:1:,the proSnlm is really too big for the. machine. At
that point you should consider' swapping function ,definitions er
list structures out to the disk USing READand WRITE, or buying
11I0r'ememory or a PDP-iO computer.

Garbage collect is invokea a.utomatic.ally whenever more space is
needed. It .may also be run explicitly. One use of this is to
print out the amount 0.£ space availabl.e.

(CO.LLECT).• Causes a gar.bage COllect to take place I reclaiming
.ny atom and list cell IiIpace no longer in use. Causelil the
amount of space available to be printed on the terminal, see
alao GCGAG.

(GCGAG f191. Controls pdnting ~f gar bage coll.eetion messages.
Normally. a ;messa·ge,i8 .prlnted on the terminal during each
garbage collection. Calling. GCGAGwith fl9 • '1' will
suppress printing of mess'Age.s. Calling' GCGAGwith flg • NIL
will resume printing. GCGAGreturns the previous value of
its flag, so that a function may control the message audng
execution of the function and then restore the previous
st.atus on ex! ting •

4.23. STORAGB A.w:.OCA'l'ION

When the LISP interpreter is .run, it divides av,a1'lable stor~ge
into three ilreas: lists., characters" and stack. The list area
holds atoms and list cell.s; using four. bytes per item. The
chara.cter area contains atom name.s, with an atom ta'ki,ng 'the space
for its name plus three and a half bytes. The stack area is the
hardware program stack, and is u....d only for internal subroutine
U.nkage and stonge; the LISP st.ack is kept in the list area. On
CP/ManCiBDOS, the character space and the stack space grow

LISP/SO 1.0 REFERENCE MANUAL 37

toward a ClOllllllonboundary, 80 that the maximum recursion Qapth ill
increaae<1 when character &torage is relatively uncluttered, and
may oocasionally be r~duced before a garbage collect.

When the interpreter exhausts l1at or
garbage collec:t.or will. .shO!it this bY first.
zero Ilmounta of free or c:haractel:' cellS,
error message. When the program stack is
Overflow· .message appears.

You can display the amount of space AYailable by executing the
COLLECTfunction. Typically, LISP/SO running on III 48K CP/M or
lIDOS syst.em w.ill have av.a.Uable about. 3600 li.st cells., 1200
character byte., and a minimum of ~500 bytes for tbe internal
st.ack. On MSroS, LISP/SO will have about 7000 list ceUs., 11,000
character ·bytes. and 2000 stack. bytes. Since a partiCUlar
application may require a different allocation of available
memory, these par.ameters may be adjusted by the user.

character space, the
displaying small or
ana tben by 9 tv 11'19 an
e·xhausted, a ·Stack

'rbere are two values which can be cbanged. One holds the number.
of list cells to be allocated. If this number is I) (the
default) , the list apace will be allocated arbitrarily ,between
list and ebar.aeter storage. If tbis number is se.t to a nonzero
value, .that l'Iumber of Hst cells is allocated. Because of the
initializcation p;ocess, the actual numbe·rof list cells available
(as shown by a COLLECTO upon starting LISP) will diff·er slightly
from the number reql1ested. .

The other value 1s the number of bytes assigned to the pro.gram
stack. All ft.ee memort not used f·or st·ack or lists is used f.or
character storage.

These values may be set at the time LISP is run.aoos, if LISP is invoked by the command
On CP/M or

where nnnn and. 1\1l1UiII'A are decimal numbera, then nnnn list cells and
mmmm bytes of ·stack space are reserved. If the default value is
acceptable, either or both of the L"'nnnn and the S"1IIIIUIUIlmay be
omitted.

On MSDOS (including zoos and IBM PC-nOS), the command is almost
the same, bu.t the S is omitted. The command is

LISP '"1IIIIIIIU1I L.nnrin

On CP/M and HOOS systems. a permanent change cart be effected by
p.atching the file LISP.COM [under BDOS, LISP.ABS). Type file
PATCHES.DOC on the LISP/SO distribution disk to see th.e addresses
to pateb in your ver.sion end the default v.alu.ea., and f.ol:
instrUctions on how to patch program ,files on you.r operaU.·ng
system.

LISP/SO 1.0 38

NO'l'E:'rhe material in this section does not apply to MSOOS
vet.ions of LISP/BO.

User-coded machine language rOlltines maybe
IilSPl80 is run, and o.a11ed as SUBRs or
f·unct.!otls. This section describes how to
assuming, tbe reader is an accomplished
prograllll1ler ..

To write such rOIlt::i.nes, it is necessary to understand Ii little.
about. the inter,na.l:s ·of LISP/SO. A list cell is t.wo consecll'tive
words, alt4'ays lJ.tarting on an address whose two lOWbits are O.
The fir.st word holda tbe address of the CARof the cell, and' the
second bolas the CDa.

lOaded at the time
FSUllRs from LISP
accomplish this,
machine, language

An at.om is a list cell with the low bit of the. first word set to
1.. ~h,i.fldistinguishe$ it from a normal list cell. tn a numeric
atolll, the first. word cont.ains 1. and the second word holds the
value. In a Uterd atom, the first vor.d (with the low bi.t
1IIlu!lited out) points· to the. atom name. ;and the meoO'm:iwo:rlt to the
property list. The atOm name begins em an even address, ani! is
stored as the address of the atolll cell. fol1owe't'l by the name
itself .• te'rminated :by one or ,two 7:ero bytes.

toISl'/80 hi Wt itten in cIaO, and usee that. language's subroutine
calling . con¥entiona.. The cal·ling· sequence is; PUSHa1'911 ••• i
PUSHargn; CAL!. -sUb::, POP1 ••• ; POP. Subroutines l1f!turn their
value in BL., NO' registers lI.r.e preae.rved, through aubroutine
calls. The arguments ·to and valiles returned by ·LISP machine
1an9Lt.!lJe func·tions should. be the addresses of list: cells.

'1'0 write ma¢hlne .. language f.unc:tioos it j.s neeessllu:y to know
eertaiJt internal addresS.e$. RUt'll'liJtg LI.SP using the cOlllllland."LISP
P" w11:1pUnt these a.ddresses. ORG is the origin for USln:
functiCns1 'MIL i·e t.he add'r,ess of a word of memory .co.ntaining ,t.he
address of the atom NIL. ('rhe address of the atom it.self may
ehalvie frOll run to .run.)

The other addresses are interna1 routines wh~ch may be UBe.ful.
'tbeir. ar'glJlmentsmay be list cells or notA as noted.

ROUTINE fMGS
get-a.1:.ol11-y--

geteaU 0
box 3.

!'11NC'l'ION
Arg,\ullent 1.s .address of O-te.r'minated at.om nalllej

returns pointer to. the atom in fiL.
aeturns address of a fr~ulh l.ist cell in BL.
At·gumeat is numbiu:, ret'ur·ns numeri.c .at.omwi'th

that. value.
Argument is II list cell; pU'shes it on list. stack"
pops top item of list stack into m..

'pUSh 1
pop 0

Push and pop are' usefloil in protecting tl!lIIpor.uy list s.tructures
from ,a ;,arbage eollect,_ A ,CQllect oa~ happen anY time rH~oragei$
us.cla in .. a. call tc getcatom, geteell, box. or any LoUP'function
that calls these routines. CClllect does not move. list cd.ls, but

LISP/SO 1.0 REFERENCE MANU.II1. 39

it lIlay "sweep .up· and clobber the c:onttl'lU of anything it can't,
identify as being in use. The arguments to your machine language
function ar~ protected, and so is anything placed on the Ust
stack by ca11.1n9 the in·ternal rouUne push" Everything that is
pushed must eventually be popped or LISP/SO will become muddled.

Any LISP built-in function can be called frolll yOUl' fUnction. TO
discover the addresses of built-in functions, do a GE'l'PROPLIS'l'on
the funct..ion name and look at the SOBR. or J!'SUBR value.

If you are running CP/M, to load a set of lIIachine languI1ge
f·unction·s into 1.1-51'/80, assemble them with the CP/K assemblet ASK
onto a file called, say, MYFNS.HEX 'and run LISP with tne ;command
"LISP P-M.YFNS.BBX·.

Under DOS, uae ASM to assemble YOI11: funoti'ons, creating a file
MYFNS.IoSS. 'l'hen run LISP with the command.•LISP P"MY~S .ABS'" •

'1'0 make YOU'l' rouUnes available to L!Sp/aO functions, ,fir,st
compute the entry address of each routine in decimal. Then
eneese a name for each routine, and use PU'l'PROP to place on the
prope.rty list of the routine two properties: N' ARGS, wi'th the
number of arguments the rou,tine expect$, and SUB!h with the
dec.imal value of .the subroutine entry addt.ess. 'l'he toutine lila'll
:now be called from LISP.

The number of arguments to a machine language. function may not
exceed 3.. If N' ARGSis -1, the routine will :be nO.spl.',ead(see
Section 4.•14). If the subto.utine addre.ss is placed unde.r the
pJ:operty FSmm instead of SUBR, it ",ill receive its ar,gulllenta
unevaluated. '

Pollowing is a Simple machine language function impl.ementing
(A1)l)l n) I which returns n+1. This routine does not check its
argument and will J;eturn a ranCiomvalue if called with ,ot.he.r th4n
a nUmeric atom. NOTE: the addresses assumed here for ORG and box
may differ from the actual val.ues, run -LXSP 1''' 'to fin4 out the
right ones.

ORG27329
POP 0
POP B
POSH H
PUSS D
INX H
INX B
MOV B,M
INX B
MOV D,M
INX D
POSH D
CALL 19636
POP B
RET
END ADDl

If this is assembled onto file ADD1.BEXit can be loaded into
LISP/SO by the command ·LISP P"ADD1.1lEX· [Ilnder BOOS, use ASS
instead of BEX] and linked in by typing to EVALQUOTE

LISP/SO 1.0 REFERENCE MANUAL

ADDl

PUTPROP(ADol SODR273291
PUTPRlJP (ADDl Hi Ai\GS .1)

40

Use the ORGfrOll! "LISI? pOI
pop return addr.
Get at gument
Restore stack

Move to second
wo.rd (value)
and get it in
DE.

Add one to value.
push argument to box.
Call. box to make atom.
pop argument o·£f stack.
Return the ·&tom in BL.

LISP/SO 1.0 EDITOR AND FILE PACKAGE 41

S. EDITOR AND FILE PACKAGE

5.1. IN'l'RO!)UC'l'lON

To make LISP/80 program development easler,' a simple program
editor and function save routine, writ'ten in LISP, are provided.
The edito.r permits ediUnC] of function definitions and. other s~
expressions. The IUlve routine writ.es ttll~ current d.efinitions o·f
a list of functions onto a file, from whiCh they may be creloaded.
The system remembers what functions, have be.en loaded. frCMll a file,
.$0 that the user need not list all the flu\ction nAmeswhen Baving
them .again.

Also provided is PP, a ·pr.ettyprint· routine which prints a LISP
expression, .and in particula~ a function definition. in a mor..
readable format than is afforded. by PRINT.

These {;unct.ions au written in LISP. They 'are suppli·ed as fUes
StlIT.LSP and PII.LSP on the LISP/SO distribution. disk, and may be
loaded by the commandsLOAD (SOlT) (or LOAD {B:SOIT} if the file
is on BI; under HOOS,'LOAD (SYl:BOXT» and LOAI)'{PI?).

These functions are not particularly sophisticated, fast" or
complete. 'They are provided not only ee be uSled, but also to
serve as examples of hall LISP can be used to manipUlate other
LISP programs. and to WI:it.e. in LISP. programs that ~rform .•yost.e.
utility func:t!on$. The user may well wish to e;fl:tenc;J the 'I'II<Utor
and to polish PI? b.eyond their c.urrent state. Or the user lIIay
find it .easier to make program change. by ·exiting f·r·om .LISP/SO,
editing the program 'f:11e using PIE or another text ecUtor, and
reload.ing the program.

WARNINGI These funcUons should be loaded earl.y in the LISP
sessIon. If memory' is almost full loading them may exhaust
available storage and the contents of memory mAY be lost. The
amount 'Of notage required by a file may 'be determined by doing a
(COLLECT)', 1080in9 the file t dOing an.other (COLLECT), and
.subtracting the new f·ree space coilnt.s fr,om t.he. p1:eviol1s ones.
Then (COLLECT)uy be utled to see if tbe required amount £If space
i. aVAilable. before 10a4ing the file chiring subsequent. LISP runs.

42

s..,,~ EDl'.TO~

The fun.c.tion.s described in this section must be loaded by LOAD
(EDIT) before they can be called.

(EDIT fname). Edits the function de·f1·n.iticm of fn4mE!, using the
editing commands shown below.. When editb.lJI is completed,
t.he f.unction defi.n:l.tion is tlpdated to the edited one, and
EDt'%' returns the value fname.

{EDITEXP1!!!iPt]. SilllUar to 81)1'1', but eclil.ts the actual 'expre'ssion
expr. EDI'l'EXP is called b~ EDI'%'.

EDIT is an exp;ression edit.or. I.t allows iMuti1fl9, changing and
deleting' elem.ehts Of. II list. There is dways a eurrent
ex£resslon, wh±.eh. initiaJ;ly is the entire function defirdtlon.
AI editing proceeds, vadous c.ommands can be u$ed so th.t one of
the subUst,s of. tbe currEnt expreSSion, or the l.iat. containin9
the eur.rcant expreSSion, beeollle·s -the new cl.1rreM: eltpres.ion .•
Othet 'C:OlllllUll'ii5Sallow editing the ·current; enpression, and it ,iar
displayed after every step.

Wl'l~UI.BPI'!' is run, it· finds the definit:i:on of t.he ·func;tion fname.
If there is no existing definition., EDITstar.ts off wit;b. the
expte&sion +l.MotBDANU NILh .ED1'1':prlnts the cutr·ent e~ression,
which is the entire funotion definiticn, pr;ompts with the
charaeter *, and waits· for a command.

'When t,be current 'expression is printed, any .list ne;Sted at or
deeper than the madmum. print depth is. represented by the
ehllll.'&oter ? . The print depth is initially set to 3 but may be
changed by the (P nJ command. Examp-le: .the expression

{LAMBDA (Xl (COMD (1 X) ('1" ?)))

'this 'allows complex expressions to be summarized in a reasonable
amount of space.

LISP/SO 1.0 EDITOR AND PILE PACKAGE

The EDIT commands are:

PP p.ret.t,:ifprints the cut.unt. expl'.'es$1on. Tb.i$ perlllits 'lViewing
the entire expre$sii:on in III readable. format, but: is liable to
be quite slow. This cOllllllandrequires PI' to have been
e~pJ.1c1t.ly koaClelll(see Bect.1on 5.4) •

[n is a poaitive. number other than 0). Tbe nth element of
the current IIMltpre8csion ,becomes ·tbe new cUI'.'.r.ent'exp.ressiOl'l.•
Example: if t.he current. expression is t.he one Shownin the
previous paragraph r tnen the com·anda

:3
:3

wou1.4print

(COND (:NQIitt l() :11\). ('1' (CDR:I(H)
iT (CDR XU

I) Sets the current. expression to the. list containiM the
c.~rrllH').t expfession. Continuing ·t.he example of the prctavi01U!\
paragraph. typing

o
would print

(CONIlI tlNUIJ. X) X) ('1' (CDR XH)

J}' MOves forward, i.e., B.ets the new current. expressi.on to be
t.ne cnex't 1.iBt element afl:.~tt the pres.ent eur·rent. .xpression.
If the curun.t expression :l.sC in th.e Hst. (,A. B Ii: D t:J, then
t.he l!' commandD)ves the current expression to .be D. If the
Cl.u:rlmt .Jq)i:ession is the last element. in II list, F prints II
? and do.u nothing else,.

MoveIII bac;kward, i •••, 'uts 'the new cUrtent exprel!tsion to be
t.he Halt elelllent preceding. the current expre.ss:l.on. Xl the
current expression:l.. D in the list tAi BCD 10. then the B
,co_and lIIOves the current :expression to be C. If ·the
current expresaiol'l is the first element i.n II list, It prints
a '1 and doea nothing a18e.

Move to the toP. expression; i.e., sets the new cUl'.1'.ent
e.xp.teasion to be the enti,re e~l:'ession being edtted~

LISP/SO 1.0 EDITOR AND FILE PACKAGE 44

(1 {(.ZER01' X) Y) «NULL .Xl Z]

prints the edited expr.ession

(CONO {(ZEROP X) Y) . ((NULL X) Z) ('1' (CDR X) H

tn &1 e2 ••• en). The nth element of the current expres.sion is
deleted and teplaeec1 .by the expressions el en.. The
replacement is performed using NCONC. Continuing the
example, typing

If there are no expressions in the cOlllllland,the nth element:
of the c\lr·rent expressj,on is siitl\ply deleted. For example,
(3) deletes the third elemen:t of thlJt ¢I.u:rent_expresdon.

(-1'1 el e2 ••• en). 'I'he expressions •.1 ••• -en are l·nsarted before
th.e nth element of the current expression, but nothlng is
deleted. The repli!tcement is performed using NeONC.

(N el e2 ••• en). 'I'he exp,ressions el_ ••• en are inaect.ed at the
eM of the eun:ent expression. 'Nothi·ngis deleted.

(1' n) Sets the maximumprint depth to n. Expressions nested n
levels deep or moroear·e pr_:l.ntedas 1.

E Exit frolll the editor. Note that EDIT alters the list
structure of the funcUon defin:ition, 80 even if EDIT is
a;botted by typing ctr1-.B, any change is. likely to be made
and irreversible (unless the definition was pr.elliously saved
on ·a fUe or COPYed to another expre,ssion.)

(1'1' axer file). Pre,ttyprinta the expression expr on file. File
is NIL (Ot omitted) to pr.int on the te.rminal, er a channel
number (see OPENW,Section 4.19) for output to a fUe or
other device.

A pre-ttyptinted expression is consi-der&bly 'IIIOr'ereadable
than- an. expression printed by PRI.NT. However, .ince it does;
;a -Ct'naiderable -amount of character countin91 PP is quite
slow.

5.3. PRE'l"l'Yl'RIN'l'

The functions described in this section must be loaded by LOAD
(1'1') (or 8:1'1' if the file 115On 81) bef-ore they can be called .•

(1'1'1' fnallle file). PcrettYI'r.ints the defi'Dition -of the function
fname.

LISP/SO 1.0 EDITOR AND rILE PACKAGE 45

5.4. SAVING FUNCTIONS ON A.P'ILE

The func::t.io.n·s deser 1J:)ed in t.his seetion lIU.lst be loaded by UlAD
(J!:PI'!') {or lh£DI'!' if the fUe is on S:} before t.h.ey can be
eal.led.

(SAVEFILE fnalllt!: progs ~pflllq). SAve's function def'ini'tions on
file fname. 'ihiid:1efin,1.tJ;ons ean be read back in by (LOAD
fnllllleJ. The functions Which are saved, are (l.) any funct.ions
in the Hat. progs of funClt:.icm !'lames, and, Ul any fUnCltlons
which were previol.1s1y.loa6ed frolll. file fname if fname was
previol,u,l.v writ,ten.2l .SAIlEFlLE. The fi:).e ",i:U contain onl!{
those .functions and no otlle.r:SJ anyth.in9 previously on the
file· is lost. If no extension ia given for fname, .LSI? is
assumed.

If ppflag appear. ana is not NIL, the functions. are
prett.~,rinted, . using. n. '!'hiswill be e.x·t.reme.ll,y$10\'1'but
the resalting fn~will ·be more readabl.e. If -1'1' . bas not
explicit.ly been loadedt PRIM'!' will be u'seel in any even.t.

When <It fne created by $AVEFI1'...E i8 react back in by WA1>, tbe list:
of £·unctions defined on the file :1.1$. remembered (by st.oring it as
the ;propetty PRoGRAMSon the property list ·of tile tile name
at01ll) • Tht. all.oW8 SAVEFI!£ to write t.he functions back. out.
lat.er.

ThUSt Ii function ,. may be defined. originally by t:ypi.ng in a
DZFINE. .. :tt . can be saved !:.he first time by. SAVEl':lI.E(M'!tPl:\®'S
(I'D, w1l4eh wUl crut.e MYPltOGS.I.SPand write t.he defin.ition of l'
to it. Subsequently, the saved d.efi·nition of F may be testored
by LOAD{F} t 1BditeO, and :Saved .gain tly SAVEF.lLE (:MtP.RO.GS).

LISP/80 1.0 BIBLIOGRAPHY 46

BIBLIOGRAPHY

Laurtmt Siklossy., Lel;',s Talk LIS]? prentice Hall, En~lwooCl
Cliffs, NJ, 197r:--i :riEOnimendedin.troduction to LISP.

DanleI Fr iedman, The 1.1ttle LISPer. se iel\ce lteseareh Associal:es I
1974. A. IIIOf'E<$ver Intiliiduction to LISP using the question
and answer method.

Winston, Artificial Intelligence. Addison-Wesley, Reading, MA.
1977. A good 6ardcover text which deser ices a number of
artificial inte1'ligence applications, with manyexamples 0.£
how to p.roqram them in LISP. few of the progralllll\!ng
examples are complete, .however., 80 there are ,not lots of
things for the novice to type in and try to run. 'l'he last
third of the book contdns a good introduction to the LISP
language. This 'is the one book to buy for :those lear.n:ing
LISP in order to program AI applications.

Clark Weissman, LISP 1.5 Primer. Dick·enaon Publishing Co,.,
Belmont., CA, 1.907. 'An old introQuction. to LISP. It ia well
written, proceeds slowly. end Ciontains many examples and
exe·rc:ises. All this tends to compensate for i;ts being
obsolete in a few places.

John Allen, Anatomy2! LISP, McGrawBill., 1978.

!!m Maga.zine, August. 19.79. Byt.e.Publications, PeterbOrough.,.NB•
.1'his issue contains a short. article intr·oduc1ngLISP, and a
number of applications. 'l'he introduct.ion is worth r.ead.ing
if the magazine is easily available, but note that it uses
FIRST £01' CAR and REST for CDR. !rhe appli.cations articles
may be of interest (:Incethe reader has a bit lIIore LISP
knowledge.

Warren 'leil:ellllan et aI, IN'l'ERLISP Reference Manual•. Xerox PAR.C~
.Palo Alto, CA, 1975. Thicker £han the Boston telephone
book, this manual describes. one of the largest. LISP systems
in existence. It is mainly of academic interesl: to LISP/tO
owners, al.t1\ough if it is available it may be worth looking
at, since explanations it provides of the functions LISP/SO
40e. contain are usually applicable to LISP/SOand CM be
l:nstructive.

I

LISP/SO 1.0 INDEX OF FUNCTIONS 47

INDEX OF FUNCT10NS

This is can alphabetical index to the b1.lilt· in
functions described in the LISP/SO Refe·rence Manual.
include references to tbe.se functions in the
,sections of the ·manual.

and library
It does not

intro<luctor:r
j

I
I

I

I

I

I
I

I

AND ••••• 41 41"41 .'.' ••••• 0 _- ~

Af:PBNll .. '••• - _•• '. _.• 21
APPLY ••••••••••••••••• ~ 31
ATOtl •• ,. ... -. -II _. - •• '. -••• :. • .. • • 2.2

8R.EAK -It- • 3.5

CAR. '•••.••••• 41 • '. 41 • III iii .. '... 2'0
CDR 41. If • e' _.'.' - 2-0
CBA~a _ 41 • * -... 32
CBCON .. " III ' " .. • .. •• 3:2
CLOSE 41 , ~ • 3'3
COLLEC'T - •• -. ;-'1 -.. 36
COHD • .e II , • • ••• 29
CONS 41 e ,.- 41 • 20
COpy - - ".• • 21

DUINlt 41. ..• . .. 2-8
DIFl1'ElUlNCE ••••••••••••• 27

EDIT (library fn) 42
EOlTEXl' (library fn} ••• 42
Etl •• II (10 dIo II • II .- ••• - II It, II oil • ,,_O' 2'2-
EQU;i\L '11.- ••••••• ,•• 22-
EV~ ..II •••• -II •• '. II II oil • II • • •• 31

QCGAQ ... 11.11'" ._ •••••• ".11 _II ••.. ., 36
GSQP •• 0 ••••• ·••••••••• ·•• 28
GETPROP • I: ._., •.•••••• ' ... -.. •• 24
GETPROPLI·ST •••••••••••• 24
GO" -. - -. -. : II .. II II •• 30
GREAT-ERP' - ' ..' II • • • 27

LAST ... -. .. II II .- •••••••••• _.,. 21
LEN.GT!! •.-. II- 11- .- II •• 11- ... 21
'I.1tQP - 'II 'II .. -•. 11 II • - -.-. 17
Ll-SSP • 'II _..... II • II .. 'II -II •• II • -, 28
LIS'!' ••.• -••••.• _••••• " .-.,11"11. 21
LIS'!'P II. II.'. II." II" 22
LITATOM II. -•• -. II II. 22
LOAl)· II ' II II ••• ' 0, II II •• 34
LOOOUT :. -II -.• _. _ 0' '11 3:5

MAPATOMS- .. II " ._ II - II II 11_II II 2'9
MAPC.AR -II -II .. _. _. '$.. II II - '. ... 29
MAPCONC- • III •• -.' •••• III ••• III ._. 29
MAPLIST •••••••••••••••• ·29
'MEM.BE:R ,... III • ' 'tI -. •• 23

NCliARS

scosc e '•••••• ,••• 0 • ,e. 26
',NOT -•••• '. '. _••• Co ••• ,It It III • '. 'III. 22
NU'LL- II., e •••••.• - e' ••••• -" e·.. 22
NUMBEU _III ••• e • -iHt III •• 22

OPENR ... ' '* .'. • • • • • • • • • •• 33-op~ co. ' ,•• -. --e -... 33
OR -II." •• ' 'ill," • II iii • III 22

~PACK ,,- III e •.••• -41 • '0 •••• " ... -al
PACXC_ III ••• :, '., 41 ._ • III,. 31
PLUS 'It,. III III •• " ••• III • • • •• 27
POS ITION •• • • • • • • • • • •.• •• 32
PP (library in) •••••••• 44
PPF (library fn) ••••••• 44
:P~RIN-l '•• -. III -. _ -.. 32
PRI,N-2- e- •• ,. 11 <I." .-fl •• _." 3,2
PR'INT ••••• -•••• " ••••• 'I) III. 32
PROG -••••• -•• III. 30
'-ROON'," II • &- •. l1li &. -. •• 2-1
POTPROP .••• -0 ' -'II ••• " -. -'II ... 24

QUOTE' • ., <Ie .' ., .-. " .' •• 'II III .'.. 21
QUOTIENT' ••••••••••••••• 2"1

R-EA.D:- c:b ••• 111.,." ._ •••• ·a •••

-l\EA_DC:- fl. '.... III '•.•• _. -lil •• ' ••• 'III ,f! III

llBMAINDBR ..-••• - -••
REMP'ROP fI: ". III •

-RET"URN • III • « •••• _II III _. ,III .. '" .

DVE-a·52 41 ••••• B • III •••••••

33
34
27
24
30
21
25
25

RPLACA
RPIrA:CD III • _8 •• -. -•••• -

SAVEFILE (Ubrary fnJ ••
-S8LSCTQ- •• ,. ,III •••• _•• 'III 'III tI •••

SET .0 •••• (1 •••••••••••••

SETQ- " •••• III , •• III •.• '.

-SUBLI:S '. II ,f. ' ,«< .. '. III • ., - .

45
30
23
23
21

TAB .. to· •••• iii ••••• - ••• e

-DRP-Rl • '•• -<II 'II __ • III it • '••

-TIMES •••••••• " ••••• -••••
TRACEr •••••••••••••• .- •••

33
3.2
27
34

UNPACK- •• III • -. -fl- .

UNTRAC-E III III .

31
3S

ZEROP- • III ••••••• III • .. • • • • •• 2:7'
32

CHANGES FOR ALL PROGRAMSI

The MSDOSprinter device is cal.led lptl: (lpt-one) I.ather than
1I3t:. WheJ:ever lst~ is referred to (or Ip: for MOOS.),you should
use Iptl:. (.If you have a ser ial PI inter configured as coml:,
you may ref·er to it by that name instead.)

The option of pa.tching d.efaul·ts in 'so.me.progr.ams .(Tli!XT.,SPELL,
ELIZA, LISP and ADVENTURE) is not avai.lable under MSOOS. The
option of loading assembly language routines is not ava ilable in
LISP u·nder -MSOOS.

CHANG.ES FOIl WORD WIGGLE:

Some of the 0ontrol keys differ on the IBM. p·C from the
description in the manual.. For example, Fl i·s used i·ns:tead ·of 1,
F2 instead ·of 2, and so on. PgUp and pqDn are used to scroll the
answe.rs when a game. is completed.

The WORDWIGGLEdisplay will always tell you which keys you can
use to do things., so when the manual and the screen display
dlfie·r I follow the screen display.

The configuration file WIGGLE.CONdiffe.rs from the' de.scription in
the manual, but. you will probably not .need to ooncern YQurself
with it. If you are using a non-color monitor on 11 computer wi.th
a eolot. adaptor catd, you IIhudd Ul:l~ EDLXN.U1; ilUUUII!' ~t:I:ltt u.l.e
editor ,to change the first character in ·the conflgu.J;-atlon ·file
from 0 to 1. If Y,ou are u.sing a oolor monitor, or if your
computelt i.s not. equi.pped with a color adaptor card. you do not
need to change the eon'i.iguration file.

The eonfiguration file on the IBM.PC omits many paral'lle.ter.s . which
are described in the manual but which are not relevant on the IBM
PC. It does contain specifications for the colors used in t'he
display, and you can change ·these .if you like.

CHANGES FOR PIE 1.5 (d) :

The distribution disk contains only the two f·iles PIE.COM and
PCON.FIG~COM. PIE.COM is the proper version of PIE for the non
under MS!X)S.

CHANGES FORSPELL:

The distribution disk contains two dietiona-ries: DICTNARY.128 and
DIC'l'NARy ..64K. Ttle proper one to use 1'13DIC'l'NARY.l.28; copy it to
your working disk and rename it to be DIC'l'NARY .•SPL. The 641'C
dictionary is physically smaller and s.li9htly leSS accurate; you
1I\aywish to 'use it if disk space .is at a .premium.

