The Software Toolwbrks*

PREFACB 280958 €C e R 00800¢0060000000E0R000READTENsOAIRCBAENSSO

INTRODUCTION cecceccccceccecceccesocsssncnoscocnsassanses

1.
2.
3.

TOOLWORKS LISP/80
by Walt Bilofaky
Release 1.0
April 1984

CONTENTS

RUNNING LISP/80 - AN ngHPLE 2989 2Q00208 6680 ¢000CTIOES
THE LISP/80 DISTRIBUTION DISK sovececccscsvocosscnsnan

AN ORIENTATION FOR THE LISP BEGINNER ccecssescascesne
3-1. we1¢°me to LISp Bsocesecstsoecencocentsosoceabesns e
3-2‘ “hlt Good IB LISP? P00 QIT V0O OIDTDGOEONORETOIOORS
3!3. Atoms .'Q.‘..Q".'...."I‘ll..lI'.l.l..."l.-l..l‘
3.4, Atoms, NamesS, and ValueS .c.cccsvesccncacscsscscas
3-5. Lists £ 200U 0a04000R0RRI LR RIUIESBEI SRRSOV OGRGADS
3.6. Expressions and LISP Functional Notation .scce... 10
30T MG OO sndsnuivsviisissecnene sasvssnsiariesnes 10
3.8. Punctions of Lists €9 E 0P 0E0BER0000000000800000c08 AL
3.9. Defining Function8 ssesccocsssessccccccrsennnens 12
3410, ReCUrSion ccesescocrssesscncersansnnsonssnacces L3
3.11. Counting ParenthesSes ...cccecsscvoscssccccosses 15
312 CONCIUBION «vvovinimassstsnmesaise vaieassaaae s L3

OO~y O W & w

LIsP/BO REPERENCE muu ® 0P N DNOB SO DS SHSOOSORIBSEOLERSED 16
4.1. Runniﬁg Lst/Bo I N R T PR YRR 16
42, RLOMB . sonosatrsataasnnssvswsssssssernneeiseesses L6
4-30 S’ExpressiOhs IS PSP RO DB T EDLIENLINOORDEIROOPOVTCOO 17
Bl BRBEE vais 0an aeeais oais Lt alr sl e e NS SR BT
4.5. Other S5-Expression Notation ceccsesccossssssssee 18
4,3, The LISP/80 Interpreter = EVALQUOTE »s0s00000000 19
4.7. FUNCLIONS ceccevevocscrvacsssnsrocscccscacosases 19
4.8. Functions of S-Expressiong and List8 scesesceses 20
4.9. Predicates and Logical Punctiong cccccscsssscece 22
4.10- Atoms and Values €02 R0Q00¢EB IR0 E0OORROEBOETRAS 23
4‘11' P!O?etty Lists 298 8900909035000 000BBPORRORROS 2‘
4,12, Addresses, List Structures, and Altering Them . 25
4,13, Arithmetic Functions. and PredicateB .cccseesass 27
4.14. FPunction Definition and Evaluation ..cecesecces 28

4,15, Punctions of Punctions .cevesescsscccssssscnsae
4.16. LISP Programming COonsbtructs .cscecccscecsosnsssee
4,17, Functions that Evaluate EXpressions .ceecsscces
T 4418, Strinq Manipulaticﬂ 590000800000 868000908308000b08

4.20. COMMEBNES ciciisncssasridssasnassnsavsndantsasass
4,21, TRACE, BREAR, Errors and Program Termination ..
- §.22. Garbage Collection ccocccccccsosscsonsecssncscas
4.23. Storage ALIOCALION .sccesssscesnsssancenasncnse
4.24. Writing Assembly Language SUBRS .cccocccaceossss

50 EDINR AND FII‘E PACKAGE TreGERIDOLEOPEFRORIOISRIOCRECTDIBDBETY
5.1, INETCBUCTAON scsvesnesvssssansesnsnssscansansonse
S5.2: EQiCOr cevecssosssssoovovssnsstrascessosanosssos
5.3. Pr&ttyp:int @28 0082008600 Vs0008TE 45609000000 0Q8S
5.4, SBaving Functions on &8 Pile .cececossocsescssacse

BxBLIOGRAPH! P AP TS ASOIADIOIGAIVSIINICNAGEROOTRITHESIEOD B

INDEX 8289300005000 8083820 RTLACERIBGYRVTABROISEEBRTRIEOD A0S

Copyright (e} 1980, 1984 wWalter Bilofsky. Sale
of this software conveys a license for its use on
& s8ingle computer owned or operated by the
purchaser. Copying this softwace or
documentation by any means whatsoever £or any
other purpose is prohibited.

29
29
31

31
4 19‘ Inpﬂt/output 2P 6 0GOS IREAOeOREOAQdSTQAISETPROAOPTCTSS 3

34
34
38

38
4l
41
42
44
45
46

47

The Software Toolwérks®

MANUAL ADDENDUM
or
IBM PC and ZENITH z100

This program will operate on your IBM PC or Zenith 2100 computer.
The manual may refer only to the CP/M operating system, but it
applies equally to the IBM PC Disk Operating System or Zenith
ZD08, with a few minor differences. This Manual Addendum lists
those differences. It also tells you how to create a bootable
disk containing a working version of the program.

The operating system for your computer is a version of the MSDOS

system. Although your manual may refer to it as DOS or ZDQOS, we .
will call it MSDOS in this document.

MAKING A BOOTABLE PROGRAM DISK

The distribution disk which is supplied with this package is nét
bootable. That is, it does not contain a copy o©of the MSDOS
operating system, and you can't just put it in your computer and
turn the power on.

Once you have booted with a system disk, you can run this program
by inserting the distribution disk in any drive, However, it is
better to make a bootable copy of the distribution disk, and save
the original disk as a backup.

To do this, £irst place a write protect label over the
rectangular write protect notch on the distribution disk.

Take a blank disk, and format it as a bootable disk using the
PORMAT /8 command. Refer to your operating system manual for
instructions on how to do this.

Place the bootable disk you have just formatted in your A: drive,
and, if you have a two or more drive system, place the
distribution disk in the B: drive. Then execute the command

COPY B:*,* As

When the command £inishes, ¢the disk in A: is a bootable disk
containing the program. You can now proceed to run it as
described in the accompanying manual,

NOTE: The distribution disk provided with this package may not
allow you to place an operating system on it using the SYS

command . This is normal apd does not indicate a defective disk.
However, for this reason, you should not use DISKCOPY and SYS to

gteaeeda bootable system disk. Use the procedure described above
nstead.

e

PREFACE

Toclworks LISP/80 is an interpreter for LISP, a programming
language widely used in artificial intelligence @Xperimentation.
It idncludes more than 75 built~in functions. It offers the
essential LISP data structures and functions, 16 bit integer
arithmetic, list opetations, recursion, string operations, file
1/0, and garbage collection for automatic reuse of memory.

A simple editor and file package, written in LISP, is included.
:: allows editing of LJSP function definitions and saving them on
les,

Debugging aids include trace and optional break on errors. On
CP/M and HDOS -systems, provision 18 made ¢€or loading usexr-
supplied machine language functions callable from LISP programs.
This feature is not available on MSDOS (including IBM PC)
Bystems *

Two simple artificial intelligence programs, written in LISR, are :

included: a _.guessing game which learns as it goes along, and a
simple version of the famous ELIZA psychiatrist program which
carries on a conversation.

Toolworks LISP/80 was written in order &o provide computer
enthusiasts with an opportunity for expanding their programming
skills and understanding. Thus, Toolworks LISP/80 is intended
primarily to be affordable, and, within that constraint,
relatively feature~-rich and easy to use. Toolworks LISP/80°'s
most ‘serious limitation 48 its relative slowness; machine
language functions can be used to overcome this, and there are
faster microcomputer LISPs available in the $200 price range.

moolwo:ks LISP/80 is patterned after the INTERLISP dialect, which
i widely vsed on PDP-10 and DECeystem=—20 ccmputers in the
artificial intelligence community.

Toolworks LISP/60 comes in versions for MSDOS, CP/M, and HDOS
operating systemz, and requires at least 48K of memory (128K on

DOS}. On MSDOS, it provides storage capacity of about 7000
1ist cells and 11,000 atom name characters. On CP/M and HDOS, it
hag a storage capacity of about 3600 list cells and 1200 atom
name characters, and more on machines with over 48K of RAM.

LIsp/80 1.0 INTRODUCTION 4

INTRODUCTION

This manual contains two major sections: a brief orientation for
the LISP beginner, and a Toolworks LISP/80 Reference Manual. The
Reference Manual contains detailed documentation of Toolworks
LISP/BO for reference purposes. The orientation provides some
motivation for LISP, tells what it is good for, and introduces a
few important LISP concepts.

A sample Toolworks LISP/80 session (Section 1) allows the
beginner to make LISP "do scmething® before starting to learn the
language. Also included are an 1Index ¢to Functions and a
Bibliography.

Although it is hoped that this manual will be informative enough
to provide a start in learning LISP, the beginner may well find
it inadeguate. The primary aim of the Toolworks LISP/80 project
with regard to the student of LISP was to make the language’
available at moderate cost. The LISP Orientation manual sectien
is included 80 as not to leave the beginner "high and dry®.
However, a comprehensive tutorial introduction to LISP, of which
there are many, would run to hundreds of pages. The Bibliography
section 1lists seeveral of these books, and the LISP novice may
£ind one of them helpful.

.

-

LISP/80 1.0 "AN EXAMPLE | 5

1, RUNNING LISE/80 - AN EXAMPLE

Whether you are a beginner or an experienced LISP programmer,
before you settle down to wade through this manual it might be
comforting to see the Toolworks LISP/80 interpreter run and do
something. This section provides a step by step example for that

purpose,

Before doing anything else, the prudent computer scientist will
make a backup copy of the LISP/80 disk and place the original,
with a write protect label, in a safe, cool, dust-~free, non-
magnetic place. (The material on the disk is copyrighted, but
you are permitted to make copies as long as they are only for
your own use,) -

Now mount & copy of the LISP/80 disk in drive B:. [Note: HDOS
ugsers should substitute 8¥l: for B: throughout this example.]
(NOTE: The LISP/B0 distribution disk is not bootable. If you

have a one disk system, copy the files from the LISP/80 disk onto .

a bootable disk, and omit the characters "B:" when typing in this
example.)

Type the command B:LISP. {All commands should be ended by
hitting the RETURN key.) LISP/80 will load, take a few seconds
to compose itself, and type the prompt "_". B8ince LISP generally
uses upper case characters, you might want to use the CAPS LOCK
key at this point if your terminal has one.

Pirst you will evaluate a simple LISBP expression. Type the
expression PLUS{1 2). The Toolworks LISP/80 interpreter will
evaluate it and type the result.

Next you will define a simple LISP function to compute
factorials, Pactorial n, for positive integers n, is the product
of all the numbers from 1 to n. Type the following definition:

DEFINE “{(
(FACT (M) (COND
{(LEQF N 0) 1)
(T (TIMES N (FACT (DIFFERENCE N 1)

LISP isn't fussy about how many spaces you use when typing to it,
but be sure to get the parentheses right. If you have, LISP/80
will respond with (FACT}. 3

Now type FACT(S). The answer should be 120, If you ¢ry
computing FPFACT of numbers a 1little 1larger than 5, you may
discover some limitations of Toolworks LISP/80. Por instance,
once the maximum LISP/80 number range of =32768 to 32767 is
exceeded, computations will come out wrong. Also, the definition
of FACT is recursive: that is, FACT calls itself. If you try
computing FACT of a sufficiently large number, you will discover
that, due to memory limitations, a function can't call itself
recursively indefinitely.

LISP/80 1.0 ' AN EXAMPLE 6

Next you will load and run & LISP program from the disk. Type
the LIBP command LOAD({B:ANIMAL}. The program will load and giwve
you instructions on how to play the animal guessing game.

To terminate the LISP/80 run and exit to the operating system,
hold down the CTRL shift key and type C.

2. THE LISP/80 DISTRIBUTION DISK

The Toolworks LISP/80 disk contains the following filess

LISP.COM The Toolworks LISP/80 interpreter. [on BDOS, this
file is LISP.ABS.]

EDIT.LSP The Toolworks LIsP/B0 expregsion editor (LISP
program) .

PP.LEP A Pprettyprint® LISP function for typing LISP
expressions, particularly f£function definitions; in
readable format,

ANIMAL.LSP Animal guessing game. To run it, do LOAD (ANIMAL).
This is a simple example of an artificial
intelligence program which learns as it goes along.

DOCTOR.LSP A simple version of the ELIZA psychiatrist program.
This program attempts to carry on a dialogue with a
fpatient®. it succeeds- astonishingly well
considering the entire program is about 60 lines of
LISP. The original ELIZA program, one of the early
exampies of a computer exhibiting seemingly
intelligent behavior, was written at M.I.T. by Joe
Weizenbaum about twenty years ago. 2

BENCH.LSP Some of the benchmark routines used to compare LIBPs
in a September, 1981 Byte magazine article.

PERPECT.LSP A sample computation program in LISP, to compute
perfect numbers.

PATCHES.DOC A file giving the addresses which can be patched to
adjust ©LISP/80's storage asllocation {except on
MSDOS) , as described in Section 4.23.

The use of EDIT and PP is described in Section S. The example in
Section 1 includes simple directions on how to run LISP and try
the ANIMAL program.

Users gaining experience with LISP may want to try to understand

the LISP programs on these £iles, and even to modify and improve

them.

~

LISP/80 1.0 LISP ORIENTATION 7

3. AN ORIENTATION FOR THE LISP BEGINNER

3.1. WELCOME TO LISP

Welcome to LISP. If you are a newcomer to this unigue c¢omputer
language, you probably purchased LISP/80 because you are
interested in learning about "something different" in programming
languages. LISP may or may not turn out to be a useful
programming tool for you. But since LISP is totally unlike
BASIC, assembly language, or, probably, any language you now
know, you will learn concepts and technigues that will exercise
your mind and improve your s8kills no matter what language you
wind up programming in.

Be prepared: LISP is not an easy language to learn. This part
of the manual provides a brief orientation for the beginner, and
attenpts to introduce some of the more important concepts. It
will probably be helpful, in addition, to read or more of the
introductory books on LISP listed in the Bibliography section.

what follows is an introduction only. Some of the explanations
leave out details for the sake of brevity and clarity. For a
complete description of LISP/80 <features, use the Reference
Manual section.

3.2. WHAT GOOD IS LISP?

LISP has a reputation as an “artificial intelligence® (AI)
experimenters' language. That 18, it is suited to writing
programs which deal with problems you would ordinarily expect
people to cope with: problems involving concepts, situations,
ebjects, their properties, and groups of them. i

What makes LISP good for these applications? 1In any programming
project, the approach you take to the problem can be divided into
two parts:

The data representation: how to represent the objects and
structures the problem deals with; and

The algorithms: how to manipulate the data in order to solve
tie problem. ;

. Most programming languages have data types like string, number,

and array. This is fine for data processing tasks, 1like
produecing a balance sheet or inverting a matrix, but when ¢trying
te use sueh data types to represent properties and groups of
objects a programmer spends more effort on “fighting the
language® than on dealing with the real problen.

LISP has two data types - atoms, which are numbers or names, and

iigts, which are made up of atoms and other lists. Lists provide
a natural representation for most of the things AI programmers
want to deal with. In addition, the normal style of programming

LISP/80 1.0 ' LISP ORIENTATION 8

in 1LISP, called recursion, lends itself well to the algorithms
which programmers want to use to manipulate lists.

What does this mean to a LISP programmer starting to think about
how to program an AI type of problem? Relatively little thought
has to go into the design of a data representation. And, if he
starts with the LISP data representation, an experienced LISP
programmer finds it easy to express the algorithms that might
provide the desired solution. .

8o for certain kinds of problems, programmers using LISP need to
spend very little time "fighting the language® and are able to
concentrate on solving the problem.

Will LISP be any use for the tasks you want to use your computer
for? 1If you're ¢trying to write a program to balance your
checkbook, probably not. But for many interesting problems, LISP
may be Jjust right. The only way to £find out is to learn LISP.
And even if you don't wind up using it a 1lot, you will have
learned technigues for writing programs and structuring data that
can be used in BASIC, assembler, and other programming languages.

3.3. ATWS

The atom is the basie unit of data in LISP. An atom is any
string of letters, digits, and hyphens. (Lower case letters are
allowed, but LISP doesn't generally use them, and if your
terminal has a CAPS LOCK it is wise to use it when running LISP.)
Some examples of atoms are:

A
< GAMMA
Aggg!LONGAEOMWITBZSCBARACTERS

If an atom can be interpreted as an integer number, it is a
numeric atom {(similar to a numeric constant in other languages).
- 8 the only numeric atom in the examples above. All other
atong are called literal atoms.

3.4, ATOMS, NAMBES, AND VALUES

Literal atems can be used as eilther variables or string
constants. You probably know from other programming languages
that a variable is 2 name to which a value may be assigned, and a
atring constant is a string of characters that you can print and

do other things with.

In LISP, atoms are used as variables, and atom names serve as
string constants. To see both uses, run the LISP/B0 interpreter.
{See Section 1 if you need instructions on how to do this.} When
the prompt ®_® appears, type each LISP expression shown in the
following table, and try to understand what each one does. {The
first one will cause an error message; that's OR.) To provide

LISP/80 1.0 LISP ORIENTATION 9

gome ides of what is going on, the BASIC equivalent for each LISP
expression is also shown here.

LISP Expression Equivalent BASIC command
Al PRINT Al

(QUCTE Al) PRINT "al®

{SETQ Al (QUOTE HI-THERE)) Al = *"HI-THERE"

Al PRINT Al

When you type Al by itself, LISP evaluates the atom Al and prints
the value of the atom (which can be set by the SETQ functionj), or
gives an error if the atom has not yet been given a value. When
you type (QUOTE Al) or (QUOTE HI-THERE), the atom is used as a
string constant.

QUOTE ies a function which prevents evaluation, so the atom
continues +to be itself instead standing for its value. Printing
an atom actually prints the name of the atom. Printing the value
of the expression (QUOTE Al), for example, printed the atom Aal,

B0 its name, ®"Al", came out on the terminal.

Comparing the LISP commands with the BASIC egquivalents may make
what is going on a little eclearer. There is one difference,
which is that the BASIC interpreter executes commands, while
LISP/80 reads expressions, evaluates them, and prints their
values. We will simply mention that difference here, and talk
more about the interpreter later on.

Notice that you didn't have to say PRINT to the LISP interpreter,
because it prints the values anyway. Try typing (PRINT (QUOTE
al)) and try to figure out why LISP/80 does what it does. Hint:
the value of the PRINT function is the value of the expression
which is given to it to print. §

3.5. LISTS

A LISP list can be a simple list of atems, like (A B =-27). A
list can also contain other lists: (ALPHA (X ¥ 2) (BETA GAMMA)}).
As you can see, lists are enclosed in parentheses, and atoms in a
list are separated by one or more spaces.

Some of the exp:easions you typed to LISP in the previous section
weze iists.

o

LISP/BO 1.0 LISP ORIENTATION 10

3.6, EXPRESSIONS AND LISP FUNCTIONAL NOTATION

An expression 1s gsomething that can be evaluated. %You have
already seen LISP's two kinds of expressions: atoms and lists.
You typed expressions to the interpreter, which evaluated them
and printed the values,

To evaluate an atom, the interpreter simply finde the wvalue the
atom was set to. Evaluating a list is more complicated. & list
is evaluated as a function call - that is, the application of a
function to zero or mwore arguments. Here are several examples of
statements writtem in the BASIC languade, and their egquivalent
LISP function call expressions. You may try typing these
expressions to LISP/80 and see what happens,

BASIC LISP
PRINT 2 + 3 (pam'r (PLUS 2 3})
LET X = 1 (SETQ X 1)
IF £ = 1 PRINT "YES®" (COND ({(EQ X 1) {PRINT (QUOTE msn))
OLD “ANIMAL® {LOAD (QUOTE ANIMAL}))

All programs in LISP are expressions, A program is run by
evaluating it as an expressicn.

3.7. TIME OUT

Notice that LISP keeps using one kind of data item ¢to represent
two different kinds of things. Atoms are used for variables and
for string constants. Lists are used both as a kind of LISP data
structure, and also as a way to write LISP functions,
expressions, and, a&s you will see later, LISP programs.

This can be very confusing at f£icst. However, s8ince LISP
programs are written as LISP lists, this makes it easy to write
programs in LISP that construct and even run other LISP programs.
This is particularly useful in artificial intelligence
programming, where it is often necessary for a program to create
a data structure describing how to do some task. What better
description is there than & data structure which is a Lisp
program to do, or simulate, the task?

At this point, you should read Section 4.6, which describes an
alternative vay of typing expressions to the interpreter without
having to use QUOTE as much. From now on, we will mostly use the
alternative format,

LIsp/80 1.0 LISP QRIENTATION 11

3,8. FUNCTIONS OF LIBTS

How can you manipulate LISP lists? Since all LISP programming is
done with functions, LISP/80 contains built-in functions ko
perform list operations. The essential functions f£or 1list
manipulation are:

NIiL is an atom which is defined as the empty list, or
the 1list without any elements. HNIL may also be
written (). To prove this, type (QUOTE ()} ¢€o
the interpreter. (MIL always has a value: the
value of NIL is HIL.) 3

{(CONS X L) CONS is a list CONStruction function. If X is
any atom or list, and L is a list, then (CONS X
L} is the list consisting of ¥ followed by the
elements in L. Try the following examples on the
interpreter. Remember that in each case, the
outer set of parentheses is for the interpreter;

it encloses the list of two arguments to CORS. .

For example, in CONS (4 (3)). CONS is given two
a:guments, 4 and (3).

CONS (3 NIL) is (3)

CONs (4 (3)) is. (4 3)

cons (A (B C D)) is (A B C D)
CONS ((A B) (C D)) is {((AB) CD)

In each case, CONS takes the list which is its
second argument, and adds on its first argument
at the f£front. NIL is the list with no elements,
80 (CONS 3 NIL) is a2 list with one element, the
atom 3.

Notice that in the last example, (A B), which is
- a list itself, becomes the first element of the
three-member list ({A B) C D), Also notice that

we are using the EVALQUOTE notation of 8ection

4.6; ¢typing CONS (A (B C D)) is equivalent to
typing (CONS (QUOTE A) (QUOTE (B C D))}, but is a
lot easier.

{CAR I.) CAR returns the first element of a 1list. For
example, CAR ({(A B C}) is A. (Remember that the
outer pair of parentheses in CAR ({A B C}) is for
the interpreter; this means ®apply CAR to the
list (A B C)."

{COR L) =~ CDR returns the list L, minus its firat element,
Por example, COR ((A B C)) 18 (B C}.

e

LISP/80 1.0 LISPF ORIENTATION iz

If L is a list, then (CONS (CAR L) (CDR L)) is the same 1list as
L. To see this, type the following expressions to the
interpreter:

(SETQ L (QUOTE (A B C)}}
(CAR L)

{COR L)

{CONS (CAR L) (CDR L))

See how L was uSed as a variable to avoid typing (A B C) over and
over. Why did we type (CAR L) instead of CAR (L)? Because in
order to get the value of L, which was (A B C}, L had to be
evaluated., 8o we did not want to use the EVALQUOTE form CAR (L),
since the whole point of that form is not to evaluate the
aggunents of the function. To see the difference, type

CONS (({CAR L) (CDR L)}
and compare the result to the result of the last thing in the
previous example.

3.9. DEFINING FUNCTIONS

DEFINE is a function which allews you to define your own
functions. Type the following expression to the interpreter:

suMsQ (3 4)

You c¢an tell by the result that SUMSQ is not a known function.
Now type the following expression:

DEFINE .((
{SUMBQ (X ¥}
(PLUS (TIMES X X) (TIMES ¥ Y]

How you arrange this long expression or break it between lines
does not matter, but be sure to get the parentheses right! The
character] is shorthand; it tells LISP/80 to close all the open
parentheses to the left.

Now ¢€ry typing SUMSQ (3 4) again. If everything has’gone
correctly, you have succeeded in defining the function S8UMEQ,
which takes two arguments and returns the sum of their squares.

Without going into a £ull explanation, we will just note a few
chings. DEFINE takes one argument, which is a list. Bach
element in that list is a function definition. In this example,
there is one such definition, for SUMSQ. Each function
definition is itself a list, with three elements: the name of a
function to be defined - in this case, SUMSQ -~ an argument list -
éﬁ ¥) = and an expression which is the function body., DEFINE
efines the function BUMSQ. Subseguently, when SUMSQ appears in
an expression being evaluated, the atoms in its azgument list are
assigned the values of the arguments given o SUMSQ in the
expression, and the function body expression is evaluated. The

LISP/BO 1.0 - LISP ORIENTATION 13

value of that expression is the value of the function.

When you ktype SUMSQ (3 4), the atom X is set to the value 3, Y is
set to 4, and the function bedy of SUMSQ is evaluated. In this
cage, the function body is eguivalent to

{PLUS (TIMES 3 3} (TIMES 4 4))
&nd the interpreter types the value of this expression, or 25.

3.10. RECURSION

When an atom i3 set to & value by SETQ, the atom retains the
value. But when an atom is an argument in a function definition,
the value it gets when the function is called is strictly
temporary, and the old value is restored after the function body
is evaluated. To prove this, type :

DEFINE (((PRINTME (X) (PRINT X)) })

This defines a simple functicn which prints its argument. Now do
(SETQ X (QUOTE (HI THERE)))
:(:PRINTME (QUOTE (HELLO -AGAIN))

When PRINTME was called, X took on the value (HELLO AGAIN] within
the body of the function. However, the old wvalue of X was
restore§ when PRINTME was done.

Since function arguments have their previous values restored in
this way, it is perfectly legal for & function to call itself in
LISP. In fact, it is rather the right way to do things. As an
example, here is a function which takes a list, and returns a new
list whose elements are the original 1list, the CDR of the
original list, the CDR of that, and so on.

DEFINE ({
(LISTS (L) (COND ((NULL L) NIL)
{T (CONS L (LISTS (CDR L)

The expression which £forms the function body of LISTS contains
- three things you have not seen before: T, NULL and COND.

T is an atom whose value is T. T is used as a truth value to
tepresent ‘“"true™; NIL is used for "false". NULL is a predicate,
or truth-valued function. The value of NULL is T if its argument
is the empty list NIL, and its value is NIL otherwise.

COND is a conditional. It is explained in detail in the
reference manual, but its effect in LISTS is to cause LISTS to
return as value either the empty list, NIL, if the argument to
LISTS is NIL, and otherwise to return the CONS of the argument L
with the value of (LISTS (CDR L)). ;

: LISP/80 1.0 LISP ORIENTATION 14

How does the function LISTS operate, then? If its argument is

NIL then it Jjust returns NIL. If its argument is a non-enpty
list, it computes a wvalue with CONS, calling dtself in the
grocess but with a sherter list for an argument. 50 eventually
t gets down to an empty list instead of going on forever.

If you type in the above definition of LISTS and then type

LISTS ((a B C))
LISP/80 will type the value

{{a B C} (A B) (A))
Rather than try to figure out, step by astep, how LISTS came up
with +this wvalue, 1let's let LISP/80 tell us by tracing the
execution of LISTS. Type

TRACE ({LISTS))
L1sT8 ({A B C))

The TRACE function tells LISP/80 to print out the arguments each
time a function is called, and the value ¢f the function each
time it returns one. In this case, the trace printout looks like
thiss :

1: Calling LISTS, args = ((A B C))
2¢ Calling LISTS, args = {(B C})
3: Calling LISTS, arge = ({C)}

4; Calling LISTS, args = (NIL)

4: Returns NIL

3: Returns ((C})

23 Returns ((B C) (C))

1: Returns ({(A B C) (B C) (C))
((aBc) (BC) (€&))

The first time LISTS is called, its argument = (A B C) = is not
NULL, 8o it tries to return (CONS L (LISTS (CDR L}}). In order
to do that, it must call LISTS with (CDR L), which is (B ¢C}.
LISTS continues down the list, calling iteelf over and over,
until eventually it gets called with the empty 1list, NIL, and
returns MNIL.. Then each previous call of LISTS can compute the
CORS and return the value from that call.

- If you want to see even more of what is going on, you can execute .

TRACE ({CAR CDR CONS NOULu COND}))
and see absolutely everything as it happens.

& function calling itself, as LISTS does, is known as recursion.
In LISP, recursion provides the programming facility which many
other languages accomplish by iterative statements, such ag the
FOR in BASIC and the DO in PORTRAN. Iterative statements are
fine for stepping down an array of subac:iited variables such as
you £ind in these more "normal®™ programming languages. But, as

LISP/80 1.0 LIBP ORIENTATION 15

the above example shows, recursion is a natural way to operate oh
lists.

3.11. COUNTING PARENTHESES

You may have noticed that LISP is & language of parentheses. in
fact, students sometimes claim LISP stands for “Lots of
Irritating Single Parentheses!® Experienced LISPers have a method
for checking that parentheses are balanced in an expression.
While scanning the expression from left to right, count aloud,
adding one for each (" and subtracting one for each ")®. I£ the
final number is zero, the expression is balanced. If the count
ever becomes negative, there is an error somewhere in the
expression.

Por example:
While reading: DEFINE (((PRINTME (LAMBDA (X) (PRINT X))}))
Say out loud: 123 4 545 4321

The final count should be zero., Since it was 1, you know there
iz one ")® missing.

3.12, CONCLUSION

This completes the Orientation ¢o LISP. At this point you may
continue by reading the Reference Manual section of this
document. ' If, after this brief introduction, LISP is still a
complete mystery, vyou may wish ¢o c¢onsult one of the more
complete references listed in the Bibliography. Either way, we
wish you good success, and send vou on your way toward new LISP
experiences., Have patience, and always count your parentheses!|

LISP/80 1.0 REFERENCE MANUAL 16

4. LISP/80 REFERENCE MANUAL i

4.1. RUNNING LISP/80

The LISP/80 interpreter is run by typing the LISP command. While
the interpreter is running, it accepts the normal typing
conventions: DELETE erases the last character typed (BACKSPACE ox
ctrl-H on MSDOS). On CP/M, ctrl-U causes whatever has bheen typed
on the current input line to be . ignored. In addition, ctrl=C
will terminate the LISP/B0 program and return to system command
level. (Ctrl-C is typed by holding down CTRL and typing C.)

Ctrl-B will cause an interruption of LISP/80 function execution.
This will usuvally cause a printout of the name of the function
being executed (if any), and return to the top level of the
interpreter. The user may also select a mode in which ctrl-B
invokes the interpreter at a lower level, within the dinterrupted
functien, allowing inspection of current variable values,
g:gntout of the current function call stack, etc (see Section
21) . .

Under CP/M, if ctrl-B fails to interrupt LISP/80, the interpreter
is probably in an internal loop. The programmer can cause this,
for example, by applying LAST to a list which bhas been looped
back on itself by RPLACD. Under HDOS, ctrl-B will always work.

4.2. ATOMS

The basic unit of LISP data is the atom., &n atom is a string of
characters which may be at most 127 characters long. Any
character is8 legal in an atom name, but the characters space,
tab, end of line, period, (,), [,], * and % must be guoted by
preceding them with a %. - :

Lower case characters are legal in atoms, and are distinct from
upper case characters. However, lower case is rarely -used in
LISP.

LISP uses atoms to represent both variables and values. A string
of characters is represented as the atom with that string as its
name, A string which is written in many languages as "HI THERE"
would be written in LISP as the atom HI% THERE. Every atom can
also have a value assigned, or bound, to it.

There are two kinds of atoms: numeric and literal. A numeric
atom is composed of an optional minus sign, followed by one or
more digits. Numeric atoms must fall in the range ~32767 to
32767. If a numeric atom exceeds this range, no error will be
given but numeric results will be incorrect. The value of a
numeric atom is always the number which its name represents.

Any atom which is not a numeric atom is a literal atom. Most

-

o

LIsp/80 1.0 REFERENCE MANUAL . 17

1iteral atoms do not have values initially, but may have values
agsigned to them in various ways, the tws most common being
binding of function arguments, and the SETQ function.
{(Individual functions, such as SETQ, are documented later on in
this Reference Manual.} :

Two literal atoms have predefined values in LISP: NIL and T. The
value of NIL is NIL and the value of T is T, These are used to
represent the logical values true, or T, and false, or NIL. NIL
is also used to represent the empty list.

The value of an atom is not permanent; & new value may be
assigned at any time, However, it is unwise to try to change the
values of T or NIL.

Some languages require variables to be declared. This is not
true of LISP. There are two ways in which an atom makes {tself
known to LISP. An atom is created when LISP reads it, either
from the terminal or from a file. An atom may also be created by
use of the PACK or PACKC functions.

S-expressions are the general LISP data structure. An B=
expression is one of the following:

© An atom, or

© The expression {8l . 82) where sl and s2 are s-expressions.
The construct (sl . 82) is called a dotted pair. The simplest
way of creating a dotted pair is the £function CONS. Some
exanples of s-expressions are:

ATOM
A;gONGBRrAEOH—!EAN—ONE—MIGH&-USUALL!-!IND

(a . B)

B« (B . C))
({0 . V) . (255 . (¥ » 2)))

4.4, LIBTS

Host s-expressions encountered in LISP are in the form of lists.
A list is one of the following:

© The atoem NIL, which represents the empty list, or

© The s-expression (s ..l) where s is any s-expression and 1
{s a list.

7

LISP/80 1.0 . REFERENCE MANUAL 18

A notational convention is used to simplify the representation of
lists.

The list NIL is written ().
The list (A . NIL) is written (&).
The list (A . (B . NIL}) is written (A B).

The list (A . (B . (C « NIL))) is written (& B C).
LA N] md ”Onc

4,5. OTHER S-EXPRESSION NOTATION

Extended List Notation

In general, even when an s-expression is not a 1ist} the
expression (s . e), where 8 is any s-expression and e is not an

‘atom, may be written (s e). Thus, for example,

(A . (B. (C. D)}) may be written (A BC . D).
when printing s-expressions, LISP/80 uses this notation.

Superbrackets

Since LISP often gives rise to expressions containing many levels
of parentheses, it is convenient +to have a way to abbreviate
nultiple parentheses. The characters [and] are called
superbrackets. The open superbracket, [, has the same effect as
an open parenthesis. When a close superbracket,], appears, it
matches the most recent [which has not yet been matched, even if
there are unmatched open parentheses in between. If a] appears
:henltge:e is no matching {, it closes all open parentheses to
ts left. -

Examples:
(A (B (C (D))) E) can be written (A [B {C (D] E)
(& {B (C (D))) can be written (A (B (C (D}

(U (V (W (X (¥)) 2)) A) can be written (U [V (W [X (¥] Z] A)

QUOTE Abbreviation

The function QUOTE is used very often in LISP progkamming. LISP
recugnizes the notation 'e, where e is any s-expression, as an
abbreviation for (QUOTE e},

-

LISP/B0 1.0 REFERENCE MANUAL 18

‘4,6, THE LISP/80 INTERPRETER = EVALQUOTE

LISP/80 reads commands from the terminal (or from fileg - see
LOAD, Section 4.19) through an internal function which, for
historiec reasons, 18 referred to as EVALQUOTE. This function
prints the " _® prompt on the terminal, and the user may type
something for EVALQUOTE to evaluate, using one of two formats:

© A LISP expression, which is simply evaluated, or

© A function name followed by a 1list of arguments, in

parentheses. When this format is used, the arguments are
not evaluated before the function is applied,

Typing an atom ¢o EVALQUOTE produces its value, or an error if
the atom has no value. Typing an expression, such as (PLUS 1 2},
produces the value of the expression,

But often the expressions one wants to evaluate have literal

arguments which must all be qguoted. For example, to demonstrate -

the use of the function MEMBER, one might type
{MEMBER (QUOTE X} (QUOTE (W X ¥ 2})}

This could be abbreviated considerably by using the equivalent
form which does not evaluate arguments:

MEMBER (X (W X ¥ 2}

Note that this form does not actually guote the arguments, but
merely refrains from evaluating them. For example, typing either
(QUOTE X) or QUOTE (X} to EVALQUOTE produces X. If EVALQUOTE
were really prefixing a QUOTE to each of the arguments, then the
latter would produce {QUOTE X).

Thia can lead to confusing behavior when EVALQUOTE is used with
functions which evaluate their own arguments {FEXPRS and FPSUBRS -
see Section 4.14). One such function is SETQ. Typing SETQ (X (A
B)) to EVALQUOTE will not work, since SETQ evaluates itz second
argument, and will try to apply A to B. What is really wanted is
{BETQ X (QUOTE (A B})}, but that is not what BEVALQUOTE does. (AL
EVALQUOTE level, SET should be used instead of SETQ.)

§.7. PUNCTIONS

LISP programming is done by writing expressions that ecall
functions. 7The user may define functions in terms of other user=-
defined functions and a number of built-in functions.

Functions are elther LAMBDA or NLAMBDA, and spread or nospread.
A LAMBDA function has its arguments evaluated before the function
is spplied, while an NLAMBDA receives its arguments unevaluated,
and may or may not evaluate each argument before returning. A
spread function expects a fixed number of arguments, while a

LISP/80 1.0 REFERENCE MANUAL 20

nospread function may be called with any number of arguments.
Unless otherwise specified, all functions are LAMBDA spread.

If a function is called with fewer arguments than it expects, the
arguments that do not appear are taken to be NIL. If a function
is called with more arguments than it expects, the additional
arguments are evaluated if the function is a LAMBDA, but they are
ignored by the function.

An atom which is a function name has the function definition
placed on its property list (see Section 4.11). Functions which
are defined by machine landuage subroutines have the address of
the subroutine stored under the property SUBR (or, for NLAMEDASs,
FBUBR) . Functions defined by expressions have the expression
under the property EXPR (or, for NLAMBDAB, FEXPR).

Initially, all built-in functions are SUBRs or FSUBRs, and all

‘user~defined functions are EXPRs or FEXPRs. Section 4.24

describes how to add machine-language SUBRs and FSUBRs {(on CP/M
and HDOS systems only).

4.8, FUNCTIONS OF S-EXPRESSIONS AND LISTS

(CONS x x%. The basic function for constructing s-expressions.
onstructs a list cell whose CAR is x and whose CDR is y,
and returns that list cell as the function value.

{CAR 15. L is a list cell (i.e., not an atom)., CAR returns the
st element of 1. If 1 is a list, CAR will return the
firat member of the list. Applying CAR to an atom produces

an error. ;

(COR__1). L is a list cell (i.e., not an atom). CDR returns the
second element of 1. If 1 is a list, CDR will return a list
conaisting of 1 minus its first element. Applying CDR to an
atom produces an error.

Note that if the value of X is a list cell and nct an atom, the
following equality always holds: y

X is BQUAL to {CONS (CAR X) (CDR X))}

LISP/80 recognizes compound CAR/CDR function names, such as CADR
and CDDADAR. (CADR X}, for example, is short for (CAR (CDR X)).
There iz no limit (short of the maximum atom name length) on the
number of As and Ds that can be used to construct such a function
name.

(Seasoned LISP programmers are recognized by their facility in
pronouncing these function names. CAR is pronounced like
automabile; CDR is pronounced “COULD-er®. CADR is pronounced-
*CAD-ur®, CDDADAR *COULD-ud-a=DAR", and 86 on. The horribly un-
mnemonic names CAR and CDR are historical relics of an early LISP
implementation in which two address fields in a 32-bit computer

LISP/80 1.0 REFERENCE MANUAL . a

memory word were used as pointers in the list cell. The machine
hardware gave us the names "Contents of Address Register” and
*Contents of Decrement Register®,)

(QUOTE e}. NLAMBDA function. QUOTE takes one argument, and
zeturns that argument unevaluated. B.g., {(QUOTE FOO) is
FOO. (QUOTE e) may also be written ‘e.

(PROGN al ... an). NLAMBDA nospread function. Evaluates al, a2,
ooz an 1N seguence, and returns the value of an., PROGN is
used to specify more than one computation within a single
expression.

LIST al ... 8n), Nospread function. Returns the list (al ...
an) consisting of the values of its arguments.

APPEND » P and g are assumed to be lists. APPEND returns
the st conaisting of the elements of p followed by the
elements of g. APPEND calls CONS, and does not alter list
structures. If p or g are not lists, the result may not be .
useful, but no errer will occur. See also NCONC.

(COPY e). Returns a copy of the s-expression e. The value of
COPY is EQUAL to its argument, but COPY will walk over the
entire list structure of e and perform a new CONS for every
list cell in e, thus producing amn entirely new list
structure. COPY may be used to save a copy of a list before
operating on it with <functions that actually alter list
structure,

(REVERSE 1), Returns a list consisting of the elements of the
ist 1, in reverse order. For example, (REVERSE "(A B C})
is (C B A)., REVERBE of an atom is NiL.

(SUBLIBS {{ul . vl) ... (un . vn}) e). Returns the s-expression
e, with substitutions made according to the first argument.
This argument consists of a list of dotted pairs (ui . vi).
Every occurrence of ul in e is replaced by vi. SUBLIS
checks for possible substitutions only at atoms in e, so the
ui should be atoms; the vi may be any s-expression. BSUBLIS
creates new list structure only when necessary; if there are
no substitutions the value will be EQ to e.

{ZLAST 1). Returns the last list structure in the 1list 1. For
ex;mple, (LAST '(ABC)) is (C})y If 1 is an atom, returns
NiL.

(LENGTH 1). Returns the number of elements in the list 1. If 1
s an atom, returns 0.

fome list-like s-expressions end not in NIL, but in a dotted
pairs (A B . C), or, equivalently, (A . (B . C}), £for example.
The builtein functions of 1lists test for the end of the list
using the predicate ATOM, rather than NULL. Thus, LAST of the
above s-expression is (B . C), LENGTH is 2, and REVERSE is (B A).

S

1

LISP/80G 1.0 REFERENCE MANUAL 22

4.9,

PREDICATES AND LOGICAL PUNCTIONS

{(ATOM a). Returns T if a is an atom, otherwise NIL.
(LITATOM as. Returng T if a is a 1literal atom, and NIL
.otherwise, A literal atom is an atom which is not a numbex.

{NUMBERP a). Returns T if a is a numeric atom, and NIL

otherwise.

(LISTP e). Returns T if e is a list (i.e., not an atom}, and NIL

otherwise. (LISTP e} is always the same as (NOT (ATOM e)).

x .. Predicate which returns T if x and y are the same
pointer or atom. Two numeric atoms with the same wvalue are
always BEQ in LISP/80 (although this is not necessarily true
in other LISP implementations). A literal atom is always EQ
to itself. Two list structures are EQ only if they arose
from the same CONS operation. For example, (EQ (CONS T 7T)
{CONS T T)) is NIL. ‘ -

When a variable is given a value, that value is actually the
address of the list structure which represents the value.
Thug, if one variable is SETQ to another, or if a varilable
in a function argument list is bound to a variable which is
the actual argument in a function call, the two variables
will be EQ.

EQ should be used in preference to EQUAL wherever it will
serve the desired purpose, since it is considerably faster.

(EQUAL x vy). Predicate which returns T if x and y are the same

atom or equivalent list structure. EQUAL will compare list
structures down to the atomic level. For example, (EQUAL
{CONS T T) (CONS T T)) is T. : :

(NOT e). Returns T if the value of e is NIL, otherwise returns

NIL. NOT is identical to NULL, and is usually used when the
argument is a predicate or truth value.

(NULL e). Returns T if the value of e iz NIL, otherwise NIL.

NULL is identical to NOT, and is usually used when testing
whether the argument is an empty list.

AND a8l .., an). NLAMBDA nospread function. Evaluates al, a2,

«se uUNt one is encountered which is NIL, and returns WIL,
Evaluation stops at the first argument whose value is NIL.
If none of the al evaluate to NIL, AND returns the value of
the last argument, an.

(OR_al ... an). NLAMBDA nospread function. Bvaluates ai. az,
seo uUntil one is encountered which is not WIL, and returns

that value. Evaluation stops at the first non-NIL argument.
If all the ai evaluate to NIL, returns NIL.

-

LISP/80 1.0 REFERENCE MANUAL 23

(MEMBER s 1). If the s-expression s is EQUAL to any element of
the list 1, returns T, Otherwise, returns NIL. See also:
EQUAL .

4,10, ATOMS AND VALUES

As mentioned in a preceding section, every atom may have a value,
T*he value of a numeric atom is always the number represented by
the atom name. Literal atoms do not initially have values
{except for T and NIL, which evaluate to themselves), and
attempting to evaluate an atom which has no value results in an
BELOL »

Atoms may receive values in three ways. The value may be set
using the SET or SETQ functions described in this section. An
atom may have a value bound to it temporarily within a funetion

when it is a formal argument of the function (Section 4.14) or |

PROG (Section 4.16). And an atom may be given a value

cempo:arily in the optional second argument of the EVAL function -

(Bection 4.17).

(SET a v)j. A is an atom, and v is an s-expression. B8SET sets the
ceurrent value of a to v. If a is bound in a function or
PROG, SET affects the most recent active binding; otherwise
SET will change the top level value of the atom. SET
reLurns v.

(SETQ a v). MNLAMBDA function. A is an atom, and v is an 8-
expression. SETQ evaluates v, but not a, It sets the value
ef a to v. Thus, (SETQ A E) is the same as (SET 'A E). If
a is bound in a function or PROG, SETQ affects the last such
binding; otherwise SETQ will change the top level value of
the atom. S8ETQ returns v.

Note ecarefully the dJdifference between SET and S8ETQ. If the
following two functions are executed:

{BETQ X"Y)
(BET X ‘&)

the first sets the value of X te ¥, since SETQ does not evaluate
ite first acgument, But the second sets the value of ¥ to A,
since SET does evaluate both arguments before performing the
assignment.

For LISP experts, it should be mentioned that LISP uses a
nodified deep binding scheme. Variable values are stored on &
pushdown stack constructed f£from list cells. The top level, or
global, value of a variable is kept on the atom's p:opetty list,
under the property VALuEt CELL.

LISP/80 1.0 REFERENCE MANUAL 24

4,11, PROPERTY LISTS

Every literal atom has associated with it b: liet, called a
roperty list, which may be used to store attributes associated
wiiﬁ that atom. The property list is of the form

{propertyl valuel property2 value2 ... propertyn valuen)

where propertyli is an atom which is the name of a property, and
valuei is any s-expression, Function definitions and global
values assigned to atoms are among the things which the LISP/80
interpreter stores on property lists. The programmer is free to
make use of this facility as well. :

(CGETPROPLIST a}. Returns the property list of the atom a. Gives
an error 8 iz not a literal atom. The property list is a .~
list of ¢the form (pl vl ... pn vn), wvhere pi is an atomic
property name and vi is the value of that property.

(GETPROP & prop). Returns the value of the property prop from
the property list of the atom a. Gives an error if a is not
an atom. GETPROP returns NIL if the property prop does not
appear on the property list of a. The way to distinguish
between a property which is not there and one which hag the
value NIL is to do

{MEMBER PROP (GETPROPLIST ATH))

{PUTPROP atm prop val)}. Puts the value val on the property 1list
- of atom atm under the property prop. If atm previously had
the property prop, val replaces the old value. Otherwise,

the property is added.

(REMPROP atm prop). Removes the property prop from the property
list of atm. Returns prop if the property was found,
otherwise WNIL. This function alters the list structure of
the property list.

The property list functions use EQ %o check for the property
name. Thus, although it is possible to put a property with a
non-atomic name on a property list, it will not subsequently be
found or removed except by a user-defined function.

LIspP/80 1.0 REFERENCE MANUAL : 25

4.12. ADDRESSES, LIST STRUCTURES, AND FUNCTIONS THAT ALTER THEM

Every s-expression in LISP is represented by two words (four
bytes) in memory. For numeric atoms, the first word contains an
identifying bit pattern, and the second word contains the value.
For literal atoms, the first word holds the address in the string
storage area of the atom name, and the second word points to the
atom's property list. In a list cell, the first word is the
address of the CAR and the second word, the CDR.

When LISP passes around s-expressions, what it actually passes is
the address of the two word representation in memory. I£ X
currently has the wvslue (A . B), then the value of X is an
address in memory of two words, the first containing the (unique}
address of the atom A, and the second the {unique) address of the
atom B. (LIBP insures that a literal atom with a given nane
always refers t0 the same list cell address; in other words, a
literal atom ie always BQ to itself.)

If (SETQ Y X) is now performed, the value of ¥ is set to the .

value of X. ¥ now points ko the same address in memory as X
does, and typing either X or Y to EVALQUOTE would print (A . B).

I£ X is subseqguently changed, say by (SETQ X 1), this changes the
address which is the value of X. V¥ still points to the same list
cell as before, and typing ¥ to EVALQUOTE will print (A . B), as
one would expect, 3

The following functions, however, actually change list structure.
They can be used to achieve powerful effects, but can also create
confusing results.

{RPLACA e val}. Replaces the CAR of the s—-expression e with the
s~-expression val. Returns the new wvalue of e, This
function alters existing list structure, and should be used

with caution, since it can alter the value of objects which
point to the expression it is changing.

(RPLACD e val). Replaces the CDR of the s-expression e with the
g-expression val. Returns the new value of e. This
function alters existing list structure, and should be used
with caution, since it can alter the wvalue of objects which
point to the expression it is changing.

An exanple may help to clarify the use of RPLACA and RPLACD. The
following is an illustration of an actual interchange with the
LISP/80 interpreter, with comments added.

LISP/80 1.0 REFERENCE MANUAL 26

_{sBrqg ¥ (SETQ X ‘{(A.B}))) X and Y are set to
(& . B) point to the same list
structure, (A . B).

b3
T . B) The value of X is (A ., B},
¥ and @0 is the value
T . B) of ¥.
(RPLACA X *(C . D)) RPLACA is used to replace the ad- :
T(C . D) . B dress of A in the CAR of the value
of X with the address of {C . D).
% X still points to the same cell,
e . D) . B) which now contains {{C . D) . B).
¥ Since Y points to the same cell
TC - D) « B) as X, its value has been changed

as well}

Funetions which alter 1list structure can be used to create
reentrant lists - that is, lists which point back to themselves.
For instance, performing the functions

(SETQO A ‘(X ¥ %)}
(RPLACD (CDDR A) A)

will replace the NIL at the end of the list (X ¥ %) with the
address of the list itself, creating an endless loop. If these
expressions are typed into EVALQUOTE, the value printed by the
RPLACD will be

(2 X ¥ 2 XY2Z2XY2ZXYZRYZ. ..

and 8o on, as PRINT chases around the looped list. The printing
will go on forever (or until cotrl-C is typed, or, under HDOS,
ctrl=B.) :

It should not be assumed that reentrant lists and other tampering
with 1list structures are always evil. Such operationa are
generally more efficient than copying list structures over, and
can be safely used when the list being altered is not pointed to
by anything else. It is often useful to change list structures
that are pointed to from several places, and to create reentrant
lists, but it is necessary to know what one is doing.

Another function that alters list structures is:

(NCONC p g}. P and g are assumed to be lists, NCONC creates a
list consisting of the elements of p €£ollowed by the
elements of g, by actually altering the list structure of p.
No new list cells are created in the process, but the list p
may be destroyed. NCONC returns a pointer to the new 1list.
Note that this pointer is p, except when p is NIL. NCONC is
equivalent to:

LISP/80 1.0 REFERENCE MANUAL a7

(LAMBDA (P Q) (COND

{{aTOM P) Q)
(T (?PLACD (LAST P) Q)
P

4.13. ARITHMETIC FUNCTIONS AND PREDICATES

LIBP/80 provides a number of functions which operate on integer
numeric atoms., The allowable range of numeric atoms is -32768 to
+32767. It is the responsibility of the programmer to confine
arithmetic vresults to that range; the result of an operation
which exceeds that range will be some (not specified} number in
that range., but no error message will be given.

(PLUS i j). Returns the arithmetic sum of i and j. 1If either of
the arguments is not a numeric atom, an egror occurs. Note:

unlike some LISP implementations, LISP/80 does not allow :

more than two arguments to PLUS.

(DIFFERENCE i 21. Returns the numeric difference i minus j. 1f
either o the arguments is not & numeric atom, an error
occurs.

(TIMES i 4). Returns the numeric product of i and j. If elither
©of the arguments i€ not a numeric atom; an @CLOr OCCUIS.
Note: unlike some LISP implementations, LIBP/B0 does not
allow more than two arguments to TIMES.

UOTIENT i s Returns the numeric integer quotient of i

iv » If j is egual to 0, the result is undefined.

If the result is not a whole number, the fractional part is

discarded. If either of the arguments 18 not a numeric
atom, an error occurs.

REMAINDER 4 s« Returns the numeric remainder from i divided by

« The sign of the remainder is the same as the sign of the

guotient 1i/3j. If j is equal to 0, the result 'is undefined.

If either of the arguments is not a numeric atom, an error
occurs.

{2EROP 1), Numeric predicate. Returns T if 1 is EQ to 0,
otherwise NIL. Gives an error if 1 12 not numeric.

(GREATERP i). Numeric predicate. Returns T if 1 is° greater
than ¢+ Otherwise NIL. If either of the arguments is not a
numeric atom, an error occurs.

(LEQP 1 4} Numeric predicate. Returns T if i is less than or

equal to J, otherwise NIL. If either of the arguments is
not a numeric atom, an error occurs.

LISP/8B0 1.0 REFERENCE MANUAL 28

(LESSP i 4). Numeric predicate., Returns T if i is less than j,
otherwise WIL. I1f either of the arguments is not & numeric
atom, &n erfor OCCurs.

(GEQP i 4)., MNumeric predicate. Returns T if i is greater than

or equal to j, otherwise NIL. If either of the arguments is
not a numeric atom, an error occurs,

4,14, FUNCTION DEFINITION AND EVALUATION

{DEFINE 1}. Used to define user-provided functions. DEFIRE
takes one argument, which is a list of defining expressions
for functions. Bach defining expression is either of the
form (name (LAMBDA args body)) (or NLAMBDA} or else (name

args body) .

FPor example, the factorial function can be defined as

follows: - i
DEFINE ({

{FACT (LAMBDA (N} (COND
({2EROP N) 1)
(T (TIMES N (FACT
{(DIFFERENCE ¥ 1]

Alternatively, one could write (FACT (N} (COND ...l. The
two forms are eguivalent.

DEFINE usually causes the LAMBDA expression to be stored on the
property list of the function name as the wvalue of <the EXPR
propertys This defines a LAMBDA function - i.e., the arguments
are evaluated before being passed to the function. If NLAMBDA is
used instead of LAMBDA, the definition is stored as an FEXPR and
the arguments are passed unevaluated to the function.

If the argument list is an atom, rather than a list, the function
is nospread - i.e., the function may be called with any number of
arguments, but actually receives a single argument consisting of
a list of the arguments it was called with. Por exanmple, the
NLAMBDA nospread function OR could be defined by the expression:

DEFINE ({
{OR (NLAMBDA L (PROG (X) (RETURN (COND .
{{NULL L) NIL)
{{SETQ X (EVAL (CAR L})) X)
{T (APPLY 'OR (CDR L}

DEFINE has no magic powers as £ar as function definition is
concerned. The functions which manipulate property lists can be
used to define functions, and to alter and remove function
definitions. The LIBP/B0 editor changes function definitions in
this way.

When a function. is evaluated, the atoms in the function argument

o

LISP/80 1.0 REFERENCE MANUAL 29

list are temporarily given the values of the arguments with which

the function was called. The old values, if any, of the atoms
are saved on a pushdown list. The expression comprising the body
of the function is evaluated. The gaved values of the atoms in
the argument list are restored, and the value of the funection
body is returned as the walue of the function.

Although ILAMBDA and NLAMBDA appear to be functions themselves,
they are not. They are just names which indlcate to the LISP
interpreter that the expression which follows is a function body.

4.15., FUNCTIONS OF FUNCTIONS

(MAPLIST 1 £1 £2)}. Bapplies the function f£1 to the list 1, the
CDR of 1, the CDDR of 1, and so on, and returns the list of
values returned by £1. I€ the argument £2 is specified, it
is a function which is used in place of CDR to step down the

list 1. For example, (MAPLIST "(A B C) " (LAMBDA (X]) (CONS .

{CAR X) (CAR X] evaluates to ({(A . &) (B . B) I[C - €))o&

(MAPCAR 1 £1 £2). Identical to MAPLIST, except applies f£1 to the
CAR of 1, the CADR of 1, and .80 on.

{MaPcONC 1 £1 £2). Identical to MAPCAR, except NCONCs together
the values returned by each application of £1 ¢to form a
list, and returns that list., MAPCONC is useful when there
are & variable number of elements to be inserted in the
result list for each evaluation of £l. For example, if X is
& list, then (MAPCONC X ®(ZLAMBDA (Y} (AND Y (LIST Y] will
return a list of all the non~-NIL elements in X.

MAPATOMS f£n). Pn is a function of one argument. MAPATOMS

applies fn to each atom Kknown ¢o the system. Thus,’

{MAPATOMS 'PRINT) will print the name of every known atom,
Note that MAPATOMS can not tell which atoms are no longer in
use but have not been garbage collected. If it is important
to consider only active atoms, a COLLECT should be done
before MAPATOMS i3 called.

4.16. LISP PROGRAMMING CONSTRUCTS

Programming in LISP consists of writing user-defined functions.
Most programming languages contain constructs which provide the
programmer with conditionals and branches, and LISP is no
exception. As one would expect, they are all functions.

{COND (P © ... &} <.. (Pe ... @}). NLAMBDA nospread function.
COND provides a conditional construct for LISP programming.
The arguments of COND are any number of lists (p e ... @),
where p is a predicate and e ... @ are expressions. COND
evaluates each p in turn until one of the p returns a non-

LISP/80 1.0 REFERENCE MANUAL 30

NIL value. Then COND evaluates each e following that p.
The value of COND is the last e evaluated. If all of the p
evaluate to NIL, the value of the COND is NIL.

(PROG _vlist el ... en). NLAMBDA nospread function. PROG
provides the LISP language with a conventional sequential
programming control structure, The f£irst argument is a list
of atoms, which are the local variables of the PROG. El ...
en are atoms, which are interpreted as statement labels, or
expressions, which correspond to program statements.

PROG binds the value of each variable on vlist to NIL, and
then evaluates el, e2, and so on. (Any of the el which are
atoms are considered labels and are not evaluated.)} The GO
function {(g.v.) is a "goto® which may be used to tzanafe:
control - within & PROG. The RETURN funetion (g.v

terminates PROG execution, restores the previous values of
the variables in vlist, and returns a value for the PROG.
If PROG execution "falls off the end® by evaluating en, the
PROG returns the value NIL. .

The following example is a PROG which computes the LENGTH
function of a list:

DEFINE (((LENGTH (L)
{PROG (U V)
{SETQ V 0)
(BETQ U L)
A (COND ((ATOM U) (RETURN i
{SETQ U (CDR U})
(SETQ V (PLUS V 1)}
(GO A]

(GO 1). NLAMBDA function. Transfers control to the label 1
{which does not need to be gquoted) within the current PROG.
8ince GO never “returns®, it has no value. The GO need not
be physically contained within a PROG, but may be in a
function called from a PROG. The label 1 must be defined in
the most recently entered PROG which has not yet been
exited, or an error occcurs.

RETURN e). Returns - from the current PROG. The value of the
PROG 18 the s-expression e. If execution is not within any
PROG, an error is given. Note that the RETURN need not be
physically within the body of the PROG, but can be in a
function which is called €£rom the PROG body or from some
other runction. RETURN- always returns £rom the most
recently entered PROG which has not yet been exited.

s CTQ !el 811 s e ll.n) ..._(92 82] o 829) cos Geflt).
SELSCTQ is the switch-case construct in the LISP programming
language. It iz -an WNLAMBDA nospread function. SELECTQ
first evaluates the expression e. Next, e is compared to el
as follows, el is not evaluated; it is implicitly quoted.
If el is an atom, e is checked to see if it is EQ to el. 1If
el is a list, e is checked to see if it is EQ to any element

LISP/80 1.0 REFERENCE MANUAL 31

of el. 1If either of these is true, expressions sll ... sin
are evaluated, and the value of the SELECTQ is sln. If e is
not found in el, SELECTQ goes on to e2, and so forth. 1If e
is not found in any of the ei, deflt is evaluated and
SELECTQ returns that value.

The following expression will check to see 1f the value of
the atom LETTER is a wvowel, and will return VOWEL,
CONSONANT, or Y.

(BELECTQ LETTER
((A'E I 0 U) "VOWEL)

(Y 'y)
' CONSONANT)

*

4,17, FUNCTIONS THAT EVALUATE EXPRESSIONS

It is no accident that LISP expressions are identical in form to .

LISP g~expressions., One of the powerful capabilities of LISP is
the ability to const:uct an s-expression and evaluate it as an
expression. ,

(APPLY £n a:ga]. Returns the result of evaluating the Zfunction
n wit the argument list args. APPLY is a LAMBDA, so it
evaluates the argument list and the function name before
applying the function.

(EVAL e). BEvaluates the expression e and returns its value.

4.18. STRING MANIPULATION

String manipulation in LISP is performed by operating on atom
names. 7o obtain & string of characters, an atom is created with
that string a8 a name.

{UNPACK a}, A is an atom. UNPACK returns a 1list of single
character atoms which make up the name of a. A may be a
numer ic atom. :

{PACK al ... an}. Nospread function. Al ... an are atoms. PACK
returns the atom whose name is the catenation of the names
al ... an, For example, (PACK 'ALPHA -1) returns ALPHA~1.
PACK will create a numeric atom when the name ig guitabley

note that creating numeric atoms outside the range -32767 to

32767 will give strange regults.

{PACKRC nl ... mi). Nospread function. N1 ... ni are numeric
atoms. PACKC returns the atom whose name consists of the
ASCII characters whose numeric character codes are nl ...
ni. Atom names formed with PACKC can contain control
characters. For example, to write the sequence BSC, p to
the terminal do (PRIN1 (PACKC 27 112}). (This sequence

]

LISP/80 1.0 REFERENCE MANUAL 32

turns on inverse video on the Bl§ terminal or H89.)

(NCEARS a flg). A is an atom. NCHARS returns the number of
characters in the printed name of a. For example, (NCHARS
‘ALPEA} returns 5. I £lg is present and non=-NIL, NCHARS
returns the number of characters in the PRIN2-name of a.

For example, (NCHARS '?(i)) is 2, but (NCHARS '%(%) T) is 4.

{CHARACTER _aj}., Returns the numeric value of the first ASCII
character in the name of the atom a.

(CHCON a). A is an atom. CHCON returns & list of numeric atoms
which are the values of the ASCII character codes which make
:g the name of a. Por example, (CHCON 'ABC) returns (65 66

Ye 3

4.19. INPUT/CUTPUT

(PRTN1 e ch)., Prints the expression e. If c¢ch is omitted, or
NIL, e is printed on the terminal. 1£ ch is present, it is
& numeric channel number obtained £rom OPENW, and the
expression is printed on the device or file which is open on
that channel. S-expressons written to a file by PRIN] may
not read back in correctly:; see PRIN2. -

(PRIN2 e ch)., PRINZ is similar to PRIN1l, with one exception. 1If
an atom contains a special character (i.e., one which wmust
be preceded by a ¥ to be inserted in the atom name), PRIN2
prints the atom as it would be typed, with % inserted as
necessary. Por example, the atom 3(%) would be printed as
{) by PRIN1, but PRIN2 will print it $(%). PRINZ2 is used to
cutput s-expressions in a form suitable for reading back in.

The name of an atom, including the § characters, is referred
to as the PRIN2-name of the atom.

(PRINT e ch), Identical to PRIN2, except that PRINT terminates
the output line with a newline after printing e. (PRINT e)
is the same as (PROGN (PRIN]1 e) (TERPRI)}.

(TERPRI ch). Prints an end of line character on channel ch. Ch

8 usually NIL® (or omitted), which sends output to the

terminal. Ch may alsc be & channel for a £ile or device
which has been opened for writing; see OPENW,

(POSITION ch). Returns the c¢olumn number in which the next
character will be printed on channel c¢ch., Following a
(TERPRI), for example, POSITION returns 0. If ch is NIL (or
omitted), refers to the terminal.

LISP/80 1.0 REFERENCE MANUAL 33

(TAB n min ch). Prints a sufficient number of spaces on channel
ch so that the next character will be printed in ecolumn n.
At least min spaces are printed. (If min is NIL or missing,
min is taken to be 1l.) Thus, if the current position is to
the right of column n - min, a TERPRI is performed before
spacing over. Setting min to a large negative number (-100,
say), removes all possibility of a TERPRI occurring. IE ch
is NIL (or omitted), refers to the terminal. TAB will use
tabs instead of spaces wherever possible.

(OPENW __£fname) . Fname is an atom which is the name of a file or
device. OQOPENW attempts to open that file or device . for
writing, and returns a channel number if successful., 8-
expressions may be written to the file or device by passing
the channel number to PRINT, PRIN1I or PRINZ, If no
extension is specified for the filename, the extension .LSP
is assumed. In specifying an extension, remember that the
character "." in an atom name must usually be quoted by
preceding it with a *$". 1If the file or device can not be
opened, an error occurs. A maximum of three files or
devices may be open for reading and/or writing at any one
time; to use more see CLOSE.

A file or device which has been written to must be closed
before exiting from the LISP/80 interpreter, or the
information written will be lost. See CLOSE. It is not
necessary to close channelg which have only been opened for
tiading, but at most three channels can be open at any one
time,

CLOSE ch). Ch is a channel obtained from a previous call to
or OPENR. If ch is a number, CLOSE returns T and
closes the file or device which is open on that channel. If

ch is not a number, CLOSE returns NIL and does nothing.

(OPENR __fname}. Fname is an atom which is the name of a file or

: device. OPENR attempts to open that file or device for
reading, and returns a channel number if successful. &~
expressions may be read from the file or device by passing
the channel number to READ, g.v. If the open can not be.
performed, an error occurs. If no extension is specified
for the filename, the extension .LSP is assumed. A maximum ~
of three files or devices may be open for reading and/or
wvriting at any one time; to use more see CLOSE.

{(READ ¢h). Reads an s-expression. If ch is missing or NII.,
reads from the terminal. If ch is a channel number obtained
from OPENR, reads from the file or device which is open on
that channel. See alsoc: READC, OPENR. When the last s-
expression on the file has been read, READ returns the atom
“« Attempting to read anything else after that causes an
8rror. %

LISP/80 1.0 REFERENCE MANUAL 34

(READC ch). Similar to READ, but returns the atom whose name {8
the next character read from the terminal (ch missing or
NIL) or the file open on channel ch.

LOAD fname). Fname is an atom which is the name of a file.

opens the file, and evaluates the s-expressions on the

file as if they had been typed to the interpreter. LOAD is

useful for loading programs that have been typed onto a
file. LOAD returns fname.

4.20. COMMENTS

It is good programming practice to include comments in every
program. LISP does not have any special way to do this, but
there is a trick which can accomplish the same thing using the
QUOTE function, as in the following function definition example:

{FPACT (N) (COND ((ZEROP N)
(QUOTE Return 1 for (FACT 0)) 1)
(T (QUOTE Otherwise, recurse)
(TIMES N (FACT (DIFFERENCE N 1]

There are two things to remember about this way of commenting a
program. First, the comment will take up list space, and
especially character storage space, that could otherwise be used
for program and data. This is why the LISP program files on the
LISP/80 distribution disk do not contain comments.

Second, the QUOTE function is evaluated during program execution,
just like any other function. Thus, it must be used only in
places where it does not affect the value of the expression in
which it is inserted. This is the case in the example above.

4.21. TRACE, BREAK, ERRORS, AND PROGRAM TERMINATION

LISP/80 provides. several facilities to help with debugging and
examining the operation of user programs. TRACE displays call
and return values of designated functions while the interpreter
is running. BREAK allows examination of variable values from
inside a function which is being executed. This may also be done
when an error occurs., :

(TRACE 1;. L is. a 1list of function names. TRACE turns on
tracing for each of these functions. When a traced function
is called, its name and argument values are printed, along
with the function <call depth (counting only traced
functions). When a traced function returns, the call depth
and function value are printed. Both user-defined and
built-in functions may be traced. TRACE returns its
argument list as value.

TRACE operates by placing the property TRACE oh the property

-

LISP/80 1.0 REFERENCE MANUAL 35

list of each traced function, with property value T. In
crder to speed function execution, the interpreter does not
test for this property unless TRACE has been called at least
once., Thus, it is possible for a user function to turn
tracing of individual functions on and off dynamically, but
if ¢his is done the interpreter must be signalled to look
for the TRACE property by first calling (TRACE NIL).

{UNTRACE 1), L is a list of function names. Turns off tracing
of each named function in 1 (whether or not it was on)., See
TRACE. -

BREAR) This function, when executed, calls EVALQUOTE, which
prompts the user for input exactly as at the top level of
the interpreter, except that the character *:® is used as
the prompt. The user may type expressions to be evaluated.
Any variables which are bound at the time BREAK is called
are still defined, and may be examined, and their wvalues
changed, by the user. The user may also type the following
special commands:

BT Backtrace. Types a list of all <functions which
are currently called, starting with the function
containing the BREAK and proceeding up ©o the
function originally called from EVALQUOTE.

CONTINUE Continue with program execution. Return from the
BREAK with the value NIL.

Pop up to the top level {or to the next level of
EVALQUOTE, if the current BRBEAK was caused by
something typed at a previous BREAK).

Ordinarily, the effect of an error is to print the error message,
abort program execution, and return to EVALQUOTE level. Bowever,
if the value of the atom BREAK is other than NIL, after an erro:
message is printed a BREAR occurs. If the user CONTINUEs from
the break, the function which caused the error returns the value
NIL, and execution continues from that point.

At any ¢time during interpreter execution, typing ctrl-B on the
terminal causes function evaluation to be intercupted. {Under
CP/M, 1if ¢the interpreter is locked in a tight internal loop it
can not be interrupted.) This interruption is handled precisely
like an erzror. That 1is, if BREAK is set to NIL, ctrl-B will
cause a return to top EVALQUOTE level., If BREAR has been set ¢o
other than NIL, octrl-B will cause a BREAK and drop into
EVALQUOTE. From this point, CONTINUE will resume £unction
execution from the point of interruption.

{LOGOUT) . Terminates LISP/B0 interpreter execution and returns
to monitor commanéd level. All data in memory is lost.

o

LISP/80 1.0 REFERENCE MANUAL 36
4.22. GARBAGE COLLECTION

As the interpreter runs, new lists are created. Eventually all
the available space is used up. At this point, the interpreter
looks around for any list cells which were once used but are no
longer needed. (This can happen, for example, if a cell was the
value of an atom which was then set to a different value.] These
cells are reclaimed and made available for reuse, This process
is called garbage collection. (LISP was invented before the term
"recyeling® came intoc general use.)

LISP/80 divides its data storage into two areas: list cells and
atom character name space. When the garbage collector runs, it
prints out the amount of each kind of space it was able to make
available. If a program is large or creates a lot of data, all
of one kind of space can be used, and the garbage collector can
not free up any at all. :

It is possible to readjust the allocation between 1list and
character space (see Section 4.23). But if both kinds of space
run short, the program is really too big £for the machine, At
that point you should consider swapping function definitions or
list structures out to the disk using READ and WRITE, or buying
more memory or a PDP-10 computer.

Garbage collect is invoked automatically whenever more space is
needed. It may alsoc be run explicitly. One use of this is ¢to
print out the amount of space available.

(COLLECT} » Causes a garbage collect to take place, reclaiming
any atom and list cell space no longer in use, Causes the
amount of space available to be printed on the terminal; see
also GCGAG.

(6CGAG _£lgj. Controls printing of garbage collection messages.
Normally, a message is printed on the terminal during each
garbage c¢ollection. Calling GCGAG with flg = T will
suppress printing of messages. Calling GCGAG with flg = NIL
will resume printing. GCGAG returns the previous value of
its £lag, so that a function may control the message during
execution of the function and then restore the previous
status on exiting.

4.23. STORAGE ALLOCATION

Wwhen the LISP interpreter is run, it divides available storage
intoc three areas: lists, characters, and stack. The 1list area
holds atoms and list cells, using four bytes per item. The
character area contains atom names, with an atom taking the space
for its name plus three and a half bytes. The stack area is the
hardware program stack, and is usged only for internal subroutine
linkage and storage; the LISP stack is kept in the list area. On
CP/M and BDOS, the character space and the stack space grow

-

LISP/80 1.0 : REFERENCE MANUAL : 37

toward a common boundary, 80 that the maximum recursion depth is
increased when character storage is relatively uncluttered, and
may occasionally be reduced before a garbage collect.

When the interpreter exhausts 1list or character space, the
garbage collector will show this by £irst displaying small eor
zero amounts of free or character cells, and then by giving an
error message. When the program stack is exhausted, a "Stack
Overflow®™ message appears. .

You can display the amount of space available by executing the
COLLECT function. Typically, LISP/80 running on a 48K CP/M or
HDOS system will have available about 3600 list cells, 1200
character bytes, and a minimum of 1500 bytes £or the internal
stack. On MSDOS, LISP/80 will have about 7000 list cells, 11,000
character bytes, and 2000 stack bytes. Since a particular
application may require a different allocation of available
memory, these parameters may be adjusted by the user.)

There are two values which can be changed. One holds the number .
of list cells to be allocated. If this number is O (the
default), the 1list space will be allocated arbitrarily between
list and character storage. If this number is set t© a nonzero
value, that number of ligt cells is allocated. Because of the
initialization process, the actual number of list cells available
{(as shown by a COLLECT() upon starting LISP) will differ slightly
from the number requested. °

The other value is the number of bytes assigned to the program
stack. All free memory not used for stack or lists is used for
character storage.

These values may be set at the time LISP is run. On CP/M or
HDOS, if LISP is invoked by the command

LISP S=mmmm Le=nnnn
where nnnn and mmmm are decimal numbers, then nnnn list cells and

mmmm bytes of stack space are reserved. If the default value is
acceptable, either or both of the L=nnnn and the S=mumm may be

" omitted.

On MSDOS (including 2ZDOS and IBM PC-DOS), the command is almost
the same, but the 8 is omitted. The command is

LISP =mmmm Lennnn

On CP/M and HDOS systems, a permanent change can be effected by
patching the file LISP.COM ([under HDOS, LISP.ABS]. Type file
PATCHES.DOC on the LISP/80 distribution disk to see the addresses
to patch in your version and the default wvalues, and for
ins:zuetions on how to patch program files on your operating
system.

LISP/80 1.0 REFERENCE MANUAL 38

4.24. WRITING ASSBEMBLY LANGUAGE BUBRS

NOTE: The material in this section does not apply to MSDOS
versions of LISP/BO.

User~-coded machine language routines may be loaded at the time
L.18P/80 is run, and called as SUBRs or ¥SUBRs <£rom LIBP
funections. This section describes how to accomplish this,
assuming the reader is an accomplished machine language
Progranmmer .

To write such routines, it is necessary to understand a little
about the internals of LISP/80. A 1list cell is two consecutive
words, alwsye starting on an address whose two low bits are 0.
The f£irst word holds the address of the CAR of the cell, and the
second holds the CDR.

An atom is & list cell with the low bit of the first word set to
1. This distinguishes it from a normal list cell. In a numeric
atom, the first word contains 1 and the second word holds the
value, In a literal atom, the first word (with the low bit
masked out) points to the atom name, and the second word to the
property list. The atom name begins on an even address, and I8
stored as the address of the atom cell, followed by the name
itself, terminated by one or two zero bytes.

LISP/80 is wxitten in C/80, and uses that language's subroutine
galling conventions. The c¢alling sequence is: PUSE argl; s..3
PUSH argn; CALL subrj; POP; ...3 POP. Subroutines ceturn their
value in BHL. No registers are preserved through subroutine
calls. The atguments to and values returned by LISP machine
language functions should be the addresses of list cells.

To write machine 1language functions it is necessary to know
certain internal addresses. Running LISP using the command *LISP
P® will print these addresses. ORG is the origin for user
functions; NIL is the address of a word of memory containing the
addresa of the atom NIL. (The address of the atom itself may
change from zun to run.} -

The other addresses are internal routines which may be useful.
Their arguments may be list cells or not, as noted.

ROUTINE $ARGS FUNCTION
getatom 1 Argument is address of O-terminated atom name;

returns pointer to the atom in HL.

gatecell 0 Returns address of a fresh list cell in HL.

box i Argument is number; returns numeric atom with
that value.

push 1 Argument is a list cell; pushes it on list stack.

pop 0 Pope top item of list stack into HL.

Push and pop are useful in protecting temporary list structures
from a garbage collect. A collect can happen any time storage is
used: in a ecall tp getatom, getcell, box, or any LISP function
that calls these routines. Collect does not move list cells, but

—

-

o~

LISF/80 1.0 REFERENCE MANUAL a9

it may "sweep up® and clobber the contents of anything it can’t
identify as being in use. The arguments to your machine language
function are protected, and 8o is anything placed on the list
stack by calling the internal routine push, BEverything that is
pushed must eventually be popped or LISP/80 will become muddled.

Any LISP built-in function can be called from your function. To
discover the addresses of built-in functions, do a GETPROPLIST on
the function name and look at the BSUBR or FSUBR value.

If you are running CP/M, to load a set of machine Jlanguage
functions into LISP/B0, assemble them with the CP/M assemblexr ASM
onto & file called, say, MYFNS.HEX and run LISP with the command
"LISP P=MYFNS.HEX",

Under BDOS, use ASM to assemble your functions, creating a £ile
MYFNS.ABS., Then run LISP with the command "LISP P=MYFNS.ABS".

To make your routines available to LISP/80 functions, first
compute the entry address of each routine in decimal. Then
choose a name for each routine, and use PUTPROP to place on the
property list of the routine two properties: M% ARGS, with the
number of arguments the routine expects, and SUBR, with the
decimal value of the subroutine entry address. The routine wmay
now be called from LISP.

The number of arguments to a machine language function may not
exceed 3. 1If N% ARGS is -1, the routine will be nospread (see
Section 4.14). If the subroutine address is placed under the
property FSUBR instead of SUBR, it will receive its arguments
unevaluated. =

Following is a simple machine language function implementing
{(ADDL n), which returns n+l. This routine does not check its
argument and will return a random value if called with other than
a numeric atom. NOTE: the addresses assumed here for ORG and box
may differ Zfrom the actual values; run "LISP P® to f£ind out the
right ones.

-

LISP/80 1.0 REFERENCE MANUAL

ORG 27329
ADD1 POP D

POP H
PUSH B
PUSH D
INX H

INX E
MOV E.M
INX 8
MOV D,M
INX D
PUSH D
CALL 19636
POP B

RET
END ADD1

40

Use the ORG from “"LISP P"
Pop return addr.,

Get argument

Restore stack

Move to second
word {value)
and get it in
DE.

Add one to value.

Push argument to box.
Call box to make atom.
Pop argument off stack.
Return the atom in HL.

If this is assembled onto file ADD1.HEX it can be 1loaded {into
LISP/8Q0 by the command "LISP P=ADD1.HEX" [under EDOS, use ABS
instead of HEX] and linked in by typing to EVALQUOTE .

PUTPROP (ADD1 SUBR 27329)
PUTPROP (ADD1 M% ARGS 1)

LISP/80 1.0 ; EDITOR AND FILE PACKAGE 41

5. EDITOR AND FILE PACKAGE

5.1, INTRODUCTION

To make LISP/80 program develcpment easier, a simple program
editor and function save routine, written in LISP, are provided.
The editor permits editing of function definitions and other 8-
expressions. The save routine writes the current definitions of
a list of functions onto a file, from which they may be reloaded.
The system remembers what functions have been loaded from a file,
80 that the user need not list all the function names when saving
them again.

Also provided is PP, a “"prettyprint® routine which prints a LISP
expression, and in particular a function detinition, in a more
readable format than is afforded by PRINT.

These functions are written in LISP. They are supplied as files
EDIT.LSP and PP.LSP on the LISP/80 distribution disk, and may be
loaded by the commands LOAD (EDIT) (or LOAD (B:EDIT) if the file
is on B:; under HDOS, LOAD (SY1:EDIT)) and LOAD{PP). -

These - functions are not particularly sophisticated, fast, or
complete, They are provided not only to be used, but also to
serve as examples of how LISP can be used to manipulate other
L18P programs and to write, in LISP, programs that pecrform system
utility functions. The user may well wish to extend the editor
and to polish PP beyond their current state. Or the user may
£ind it easier to make program changes by exiting €from LISP/80,
editing the program ¢£ile using PIE or another text edito:, and
reloading the program.

WARNING: These functions should be loaded early in the LISP
session. If memory is almost full loading them may exhaust
available storage and the contents of memory may be lost. The
amount of storage required by a file may be determined by doing a
{COLLECT) , loading the £ile;, doing another (COLLECT), and
subtracting the new free space counts f£from the previous ones.
Then (COLLECT) may be used to see if the required amount of space
is available before loading the file during subseguent LISP runs.

S

-

LISP/BO 1.0 EDITOR AND FILE PACKAGE 42

5.2, EDITOR

The functions described in this section must be loaded by LOAD
{EDIT} before they can be called.

(EDIT fname). Edits the function definition of fname, using the
editing commands shown below. When editing iz completed,
the function definition is updated to the edited one, and
EDIT returns the value £name.

(EDITEXP expr}. ©8&imilar to BDIT, but edits the actual expression
expr. EDITEXP is called by EDIT.

EDIT 4is an expression editor. It allows inserting, changing and
deleting elements of a list. There is always a current
expression, which initially {s the entire function definition.
A8 editing proceeds, various commands can be used so that one of
the subliste of the current expression, or the list containing
the current expression, becomes the new current expreszion,
Other commands allow editing the current expression, and it isg
displayed after every step.

When EDIT is run, it finds the definition of the function £fname,

“If there is no existing definition, EDIT starts off with the

expression (LAMBDA NIL NIL). EDI? prints the current expression,
which is the entire function definition, prompts with the
character %, and waits for a command.

When ¢the current expression is printed, any list nested at ot
deeper than the maximum print depth i1s represented by the
character ?. The print depth is initially set to 3 but may be
changed by the (P n) command. Example: the expression

{LAMBDA (X} (COND ((NULL X} %) (T {(CDR X}))}}
would print as

(LAMBDA (X) (COMD (? X) (T 7))}

This allows complex expressions to be summarized in a reasonable

apount of space.

P

LISP/80 1.0 EDITOR AND FILE PACKAGE : 43

The EDIT commands are:

PP

Prettyvprints the current expression. This permits viewing
the entire expression in a readable format, but is liable to
be gquite slow. This command requires PP to have been
expliclitly loaded (see Section 5.4).

{(n is & positive number other than 0). The nth element of

the current expression becomes the new current expression.

Exanmple: 1if the current expression is the one shown in the
previous paragraph, then the commands

3
3

would print

(COND ((NULL X) X) (T (CDR X))}
{T (CDR X))

Sets the current expression to the 1list containing the
eurzent expression. Continuing the example of the previous
paragraph, typing

]
would print
(COND ((NULL X) X) (T (CDR X)))

Moves forward; i.e., sets the new current expression to be
the next list element after the present current expression.
If the current expression is C in the list (A B C D E}, then
the F command moves the current expression to be D. If the
current expression is the last element in a list, P prints a
? and does nothing else.

Moves backward; i.e., sets the new current expression to be
the list element preceding the current expression. If the
current expression is D in the list (A BC D B), then the B
command moves the current expression to be €. If ¢the
current expression is the first element in a list, B prints
a®? and does nothing else.

Move to the top expression; i.e., sets the new cht:ent
expression to be the entire expression being edited.

LISP/80 1.0 EDITOR AND FILE PACKAGE 44

{n el e2 ... en). The nth element of the current expression is
deleted and replaced by the expressions el ... en. The
teplacement is performed using NCONC. Centinuing the
exanple, typing

(1 ((2EROP X) ¥) ((NULL X) 2]
prints the edited expression
(COND {((ZEROP X) ¥) '{(NULL X) &) (T (CDR X)))

If there are no expressions in the command, the nth element
of the current expression is simply deleted. For example,
(3) deletes the third element of the current expression.

{-n el 2 ... en)., The expressions el ... en are inserted before
the nth element of the ¢urrent expression, but nothing is
deleted. The replacement is performed using NCONC.

(N el e2 ... en}. The expressions el ... en are inserted at the
end of the current expression. MNothing is deleted.

{P n) Sets the maximum print depth to n. Expressions nested n
levels deep or more are printed as ?.

B Exit from the editor. Note that EDIT alters the list
structure of the function definition, sc even if EDIT is
aborted by typing ctrl-B, any change is likely to be made
and irreversible (unless the definition was previously saved
on a £ile or COPYed to another expression.)

5.3, PRETTYPRINT

The functions described in this section must be loaded by LOAD
{PP) (or B:PP if the file is on B:) before they can be called.

{(PP__expr file}. Prettyprints the expression expr on file. File

8. NIL (or omitted) to print on the terminal, or a channel

number (see OPENW, Section 4.19) for output to a file or
other device.

A prettyprinted expxessidn is considerably more readable
than an expression printed by PRINT. However, since it does
‘1 considerable amount of character counting, PP is quite
slow. : :

(PPF fname file). Prettyprints the definition of the function
name.

LISp/80 1.0 EDITOR AND FILE PACKAGE 45

5.4, SAVING FUNCTIONS ON A PILE

s

The functions described in this section must be loaded by LOAD
{Eg{?é {or B:EDI? if the file is on B:) before they can be
called.

{SAVEFILE fname progs ggflagz. Saves function definitions on
e fname., The definitions can be read back in by (LOAD
fname). The functions which are saved. are (1) any funetions
in the 1list progs of function names, and (2) any functions
which were previously loaded from file fname if £fname wag
previously written by SAVEFILE. The file will contain only
those functions and no others; anything previously on the
file is lost. If no extension is given for fname, .LSP is
assuned . 3

12 ppflag appears and is not NIL, the £unctions are
prettyprinted, using PP, This will be extremely siow but

the resulting file will be more readable. If PP has not

explicitly been loaded, PRINT will be used in any event.

When a file ecreated by SAVEFILE is read back in by LOAD, the list
of £functions defined on the f£ile is remembered (by storing it as
the property PROGRAMS on the property 1list of the £ile name
atom) . This allows SAVEFILE to write the functions back out
1&tet s h i g

Thue, a function P may be defined originally by typing in a
DEFINE. It can be saved the first time by SAVEPILE (MYPROGE
{F)), which will create MYPROGS.LSP and write the definition of F
to it. BSubseguently, the saved definition of F may be restored
by LOAD (F), edited, and saved again by SAVEFILE (MYPROGS).

proy

-

-

LIS®/80 1.0 BIBLIOGRAPHY 46

BIBLIOGRAPHY

Laurent Siklossy, Let's Talk LIBP, Prentice Hall, Engelwood
Cliffs, NJ, 1976. A recommended introduction to LISP.

Daniel Friedman, The Little LISPer. Science Research Associates,
1974. A softcover introduction to LISP using the question
and answer method.

Winston, Artificial Intelligence. Addison-Wesley, Reading, MA,
1977.” A good hardcover text which describes a number of
artificial intelligence applications, with many examples of
how to¢ program them in LISP., Few of the programming
examples are complete, however, so there are not lots of
things for the novice to type in and try to rum. The last
third of the book contains a good introduction te the LISP
language., This is the one book to buy for those liearning
LISP in order to program Al applications. o 5

Clark Weiseman, LISP 1.5 Primer. Dickenson Publishing Co.,
Belmont, CA, 1967. An old introduction to LISP. It is well
written, proceeds slowly, and contains many examples and
exercises, All this tends to compensate for its being
obsolete in a few places.

John Allen, Anatomy of LISP, McGraw Hill, 1978.

BYTE Magazine, August 1979. Byte Publications, Peterborough, WH.
This issue contains a short article inmtroducing LISP, and a
number of applications. The introduction is worth reading
if the magazine is easily available; but note that it uses
FIRST for CAR and REST for CDR. The applications articles
may be of interest once the reader has a bit more LISP
knowledge.

Warren Teitelman et al, INTERLISP Reference Manual., Xerox PARC,

Palo Alto, CA, 1978, Thicker than the Boston telephone
book, this manual describes one of the largest LISP systems
in existence. It is mainly of academic interest to LISP/80
owners, although if it is available it may be worth looking
at, since explanations it provides of the functions LISP/80
does contain are usually applicable to LISP/8C and can be
instructive.

LISP/B0 1.0 INDEX OF FUNCTIONS 47

INDEX OF FUNCTIONS

This is an alphabetical index to the built-in and 1libracy
functions described in the LISP/80 Reference Manual. It does not
include references to these functions in the introductory
sections of the manual.

AND sccavccssccsscsiscas 22 MCONC cosscccconsovscaca 268
APPEND ccccescescsnnscne 21 NOT covcesscovsovosssens 22
APPL! e e003s00aas0000220 31 NULL IR NS NN RN SN EEE SR 22
Am AR R R R EE R EEEEE R RN N 22 mBER‘P AR EREE R AR ERERERES] 22

BmK [EE R EEEERE R R ENES N 35 OPENR IR RS R RN ENERNEE NN 33
oPm 008 S00Os0eREOTOOORS 33
m oV POOCTSIOIGEREDRITOODECEEDD 20 OR DOROOOSOEPOIOCOEeDPROSONOSN 22
CDR o600 e0esosDac0 eessae 20 ;
CBARACTER cevcveseccccse 32 PACK csesevosassnesessss Al
CBCON IEEE R ENNEEENENEREENYE] 32 PACKC Peoceeno0eesc0CeEse 0N 31
CLOSE cesccasssisvsseese 33 PLUS (esovscccscnscccens &7
comw IR R EE R E R ER EREERER] 36 PoszT:m IEENNEEERERNERERERER] 32
ca"n eouoPerPOBRCSdAsede 29 PP (libla!y tn) avoos e 44
co“s Ce250000600d020vaecean 20 PPF (11bt.r¥ !n) o000 ‘4
COPY I EE R ERERFENEEERERENREERE] 21 PRINl I EEEE SR REE SR EE R R = RN] 32
PRINZ acvsoepeIoNOORHON 32
DEFINE ..ccocescccavenes 28 PRINT coccssocccacscoase 32
DIFFERENCE cccoscssevsse 27 PROG covsccevessssensoas 30
Pmn deveesosoandLEDBSES 21
EDIT (library ffR)ecccecsa 42 PUTPROP cvecscczcssnsses &4
EDITEXP (library £n} ... 42
BQ cosvanvsccvocvscsnese 22 QUOTE csccccsnnncnssesse 21
BOQUAL ccccevssssancsnses 22 QUOTIENT . .ccnncnsnonsane 27
BVAD sescsccsscsvennssas 31
READ CI coscnesnnovesses 39
GCGAG LA R E R EERERE R EERERERE] 36 mx 90892800008 esdorve 3‘
GEQP I AR R EEEEEREEREENEERENRRR] 28 WINDER (AR EEREEEEEERRE R] 27
GETPROP IEE RS R RN ERRESNENEENZ 24 mmp ensoQOEOITOOECEETS B 2‘
GBT?RO?L:ST I EEREERERNENFE] 2‘ mm I EEE RN REESEEEEREER R} 30
Go I AR E R E R E R R R R EE SRR E RN R] 30 REVERSE 209220 ecCOoBOOOSO 0B zl

GREATERP ccecoscoscocose 27 RPLACA ccosccoconcacssos 25
RPLACD scovocsccsnconsan &5
LAST cccscsscccacsssasss 2l

LENGTH cecscvocccsccsvee 2L SAVEFILE (ltb:aty tn) «e 45
LEQP scecccsaccasncscvane 27 SBLECTQ cesccacossscsssa 30
LESSP cescscssescsssscos &8 BET sensosacnsasassscese 23
LIST cssocucesscscssonas &L SETQ cocsccsesccssscacoa 23
LISTP cscscscscscscannns 28 BUBLIS sesssesssaccccser 21
LITATOM ccescccasssessss 22

LOAD scssccsccsssocsccee 34 TAB seecceconncscsscsnns 33
LOGOUT sevcnssovosvsovese 35 TERPRI scosecoctavcuncece 3&
. TIMES cuvscccsacscccones &7
MAPATOMS cccvocvcsscasae 29 TRACE csccosccnsaansescse 34
MAPCAR ccosscosvascecassa 29

MAPCONC cceooescscscesecs 29 UNPACK socscccossccssces 31
MAPLIST ccceessnsasccsee 29 UNTRACE ..ccsssssnnnsses 35
MEMBER sseceencessacesce 23

HCHARS .cccvcosvcccnconcs 32

ZEROP .osvcconcconenscne 27

CHANGES FOR ALL PROGRAMS:

‘The MSDOS printer device is called lptl: {lpt-one) rather than

lst:. Wherever 1lst: is referred to {or lp: for HDOS), you should
use lptl:, (If you have a serial printer configured as coml:,
you may refer to it by that name instead.)

The option of patching defaults in some programs (TEXT, SPELL,
ELIZA, LISP and ADVENTURE)} is not available under MSDOS, The
option of loading assembly language routines is not available in
LISP under MSDOS.

CHANGES FOR WORD WIGGLE:

Some of the control keys differ on the IBM PC £from the
description in the manuval. For example, Fl is used instead of 1,
F2 instead of 2, and so on. PgUp and PgDn are used to secroll the
answers when a game is completed.

The WORD WIGGLE display will always tell you which keys you can
use to do things, so when the manual and the screen display
differ, follow the screen display.

The configuration file WIGGLE.CON differs from the description in
the manual, but you will probably not need to concern yourself
with it. If you are using a non-coclor monitor on a computer with
a color adaptor card, you shouuld use EDLIN or another text ifile
editor to change the first character in the configuration file
from 0 to 1. If you are using a color monitor, or if your
computer is not equipped with a color adaptor card, you do not
need to change the configuration £ile.

The configuration f£ile on the IBM PC omits many parameters which
are described in the manual but which are not relevant on the IBM
PC, It does contain specifications for the colors used in the
display, and you can change these if you like.

CHANGES FOR PIE 1.5(d):
The distribution disk contains only the ¢two £iles PIE.COM and

PCONFIG.COM. PIE.COM is the proper version of PIE for the 2100
under MSDOS.

CHANGES FOR SPELL:

The distribution disk contains two dictionaries: DICTNARY.128 and
DICTNARY.64K. The proper one to use is DICTNARY.128; copy it to
your working disk and rename it to be DICTNARY.SPL. The 64K
dictionary is physically smaller and slightly less accurate; you
may wish to use it if disk space is at a premium.

