
VOLUME

HEATH data
systems

HD OS System
Programmer’s Guide

Software Reference Manual

C opyright © 1980
Heath Company
All Rights Reserved

H E A T H C O M P A N Y
ENTON HARBOR, M IC H IG A N 4 9 0 2 2

5 9 5 -2 5 5 3 -0 2

Printed in the United
States of America

2

TABLE OF CONTENTS

Part 1 — Introduction.. 5
Purpose ... 5
Background .. 5
Preface... 5

Part 2 — Run-Time Environment ... 6
Memory Layout.. 6
I/O Environment.. 7
Interrupt Environment... 8

Interrupt Vectors... 8
Discontinuing Interrupts... 9

CPU Environment.. 9
Channel Environment... 9

Part 3 — I/O Channels... 10

Part 4 — Precautions ... 11
Memory Precautions ... 11

User Memory A rea ... 11
Stack Maintenance ... 11

I/O Precautions.. 11
Interrupt Precautions... 12
CPU Precautions.. 12
Debugging H ints.. 13

Part 5 — Resident SCALLs... 14
•EXIT.. 15
.SC IN ... 16
.SCO U T.. 17
.READ .. 18
.W RITE.. 20
.PRINT.. 21
.CON SL.. 22

I.CSLM D.. 22
I.CO N TY.. 23
I.CU SOR.. 23
I.CONWI.. 23
I.CONFL .. 24

.CLRCO.. 26

.LOADO .. 27

.VERS... 28

Part 6 — Overlaid SCALLS... 29
Overlay Management... 29
File N am es.. 30

.OPENR.. 31

.OPENW .. 33

.OPENU.. 35

.C LO SE .. 37

.RENAME.. 38

.DELETE.. 40

.CHFLG... 41

.POSIT... 43

.DECODE.. 48

.NAME... 50

.LIN K... 52

.CTLC... 53

.SETTOP.. 55

.CLEAR .. 57

.ERROR.. 59

.LOADD.. 60

.M OUNT.. 61

.DMOUN.. 62

.MONMS.. 63

.DMNMS.. 64

.RESET .. 65

Part 7 — HDOS Symbol Definitions... 66
Recommended HDOS Common Deck Contents ... 67

Recommended HOSDEF.ACM Contents... 67
Recommended HOSEQU.ACM Contents ... 69
Recommended ASCII.ACM Contents ... 70
Recommended ECDEF.ACM Contents ... 71

HDOS Symbol V a lu es... 72
HOSDEF Symbol Definitions.. 72
HOSEQU Symbol D efinitions.. 72
ECDEF Symbol Definitions .. 73

Part 8 — Programming Examples.. 74
Menu Prologue for MB ASIC ... 74

Index 76

4

5

Part 1

INTRODUCTION

Purpose

This manual describes the advanced features of HDOS that are necessary for a
user program to interface with HDOS at the assembly language level. This
information is provided for use by the more advanced programmer and is not
presented in a tutorial manner.

Background

The “ HDOS Software Reference Manual” documents the various system com
mands and BASIC statements used to generate and maintain files at the higher
language level. At this level, the novice or average programmer need not be
concerned about the involved details of interfacing his programs with HDOS or
the disk drives. Since the release of HDOS, Heath has received from some
advanced programmers requests for information on how to interface with HDOS
at the assembly language level. For their particular tasks, programs must be
written in assembly language. It is in an effort to be of service to these users that
this manual has been written.

Any comments or questions regarding the contents of this Manual should be
directed to and only to the Heath Technical Consultation Department, Benton
Harbor, MI 49022.

Preface

HDOS provides a full run-time support environment for assembly language
programs. Communications with file-oriented devices, console communica
tions, memory allocation, and other such services are provided by the HDOS
system. Since the H8 and H89 do not afford any hardware protection, assembly
language routines must be “ polite” , in that they should not damage the H8 or
H89 running environment. This subject will be discussed in more detail further
on in this document.

HDOS also contains many useful general-purpose subroutines, which may be
called by user programs. These, together with the system services provided,
make assembly language programming under HDOS very convenient.

6

Part 2

RUN-TIME ENVIRONMENT

When you type “ RUN fname” , HDOS will load your program into memory and
run it. This section will discuss the initial run-time environment of the program.
Refer to the memory map in Chapter 1 of the Heath HDOS System Manual.

Memory Layout

The first 64 bytes of RAM, from 040000 to 040100, are used by PAM-8. The
PAM-8 source listing documents their use.*

The next 295 bytes are used by HDOS and the disk device driver for work cells.
These cells are in low memory so that HDOS and its overlays can reference them
without having to compute relocation factors (HDOS and its overlays are both
relocatable in high memory). Some of the contents of these cells are of interest to
assembly language programmers, and are available (indirectly) through HDOS
system calls. You should refrain from accesssing them directly, since their
position may change with future releases. Use of the proper HDOS symbols and
system calls in assembly language programs will make it possible to transport
your program to future Heath CPUs executing HDOS. There are a few cells that
may be of interest to the programmer; they are documented in Part 7. They may
be read, but must never be written.

Following the work cell area is a 279-byte stack area. When a user program is
executed, the stack pointer is set to the symbol STACK, which is 042200A. Note
that you may not set your stack pointer below that address, and then use the area
below 42200A for code or data (other than data stored by a normal PUSH). You
may make the stack larger, setting SP to a value larger than 042200A. Calls to the
HDOS system will preserve this larger stack.

The user program area starts at 042200A, immediately after the top of the stack.
The user program extends until the last byte loaded by the RUN command. Note
that the assembler generates a dummy 00 byte as the last statement in a program,
so that trailing DS declarations will be contained in the size of the running
program. There is a system call which requests access to more memory. You
must issue the call first, since HDOS may be using that area for its own code.

Although the PAM-8 ROM will be referenced throughout this guide, the general-purpose routines of the MTR-88,
MTR-89, PAM-8-GO, and XCON-8 ROMs all have common entry points. For specific information, refer to the
particular ROM manuals and listings.

7

After the user program LWA, HDOS may (or may not) have HDOSOVL0 or
HDOSOVLl loaded. HDOSOVL0 and 1 are the-HDOS system overlays. The
HDOS functions which reside in the overlays are discussed in Part 7 and listed
on Page 68. In general, HDOS will attempt to reside HDOSOVL0. If there is
sufficient free room for it, it will remain in memory. This is discussed further in
Part 7.

Any active device drivers are loaded immediately before the resident HDOS
code. A device driver is loaded when a file is opened on a device whose driver is
not yet in memory. The TT: device driver is built into the resident HDOS code
and the H17 ROM, and never needs to be loaded. Since the SY: driver is
permanently loaded into memory when the system is first booted up, it also
never needs to be loaded.

Finally, the HDOS system resides in high memory, up against the upper limit of
available RAM. When the system is booted up, HDOS initially loads at a fixed
lower address. After sizing memory, HDOS moves its permanently resident parts
into high memory. This section contains the TT: and SY: device drivers, the
SCALL dispatcher, the overlay loader, and the handlers for many SCALL func
tions. These are discussed in Part 5.

I/O Environment

HDOS has a vested interest in the I/O ports being used by the device drivers
currently in memory. These ports should not be disturbed when HDOS (or a
device driver) may be trying to use them. The ports are:

H89 Port

H47 Floppy Disk
H17 Floppy Disk
Reserved
H88-3 Alternate Terminal
Reserved
H14 Line Printer
Console Terminal
Reserved
H88-5 Cassette
Reserved
Reserved
Reserved

170-173Q (078-07BH)
174-177Q (07C-07FH)
300-307Q (0C0-0C7H)
320-327Q (0D0-0D7H)
330-337Q (0D8-0DFH)
340-347Q (0E0-0E7H)
350-357Q (0E8-0EFH)
360-361Q (0F0-0F1H)
370-371Q (0F8-0F9H)
372-373Q (0F2-0FBH)
374-375Q (OFC-OFDH)
376-377Q (OFE-OFFH)

H47 Floppy Disk
H17 Floppy Disk
Reserved
H8-4 Alternate Terminal
Reserved
H8-4 Line Printer
H8-4 Console Terminal
H8 Front Panel
H8-5 Cassette
Console Terminal
H8-5 Alternate Terminal
Reserved

8

Since the TT: and SY: drivers are permanently resident, it is vital that you do not
disturb the TT: and SY: ports. Disturbing the SY: port will destroy your disks.
Disturbing the TT: ports will damage the console driver package. The console
driver package communicates with the console device at interrupt time, so you
will not be able to detect character entry by examining the console status bits.
HDOS provides you with a facility to test the presence of a console character.

Interrupt Environment

HDOS is an interrupt-driven system, so be careful how you handle interrupts.
Your program must not turn off interrupts via the DI instruction for other than
very short periods of time. The H l7 device driver makes use of the front panel
clock interrupts, so you must not disable them, either directly via port 360Q or by
the PAM-8 control word. Likewise, console interrupts are used by the system
console handler, and should not be disturbed. HDOS does not currently support
any interrupt-driven device drivers, but programs may still make use of inter
rupts. There are two major trouble areas in this: choosing a vector, and discon
tinuing the interrupts.

INTERRUPT VECTORS

Of the eight interrupt vectors available in an 8080A, HDOS makes use of six or
seven of them. In brief:

0
1
2

3
4
5
6
7

Master Clear. Returns control to PAM-8
Clock Interrupts
Single-Step. Used by DBUG. May be used by user program when
not running DBUG.
Console Interrupts.
Reserved for Real-Time Clock (if implemented)
Reserved for H47 (if implemented)
Available for user programs.
HDOS SCALL vector.

Set up the vectors by storing a JMP to your interrupt service routine in the PAM-8
“ .UIVEC” area, as discussed in the PAM-8 Manual.

9

DISCONTINUING INTERRUPTS

When a user program causes a device to start issuing interrupts, it must some
how turn off that device before control returns to the system. HDOS will not alter
the interrupt vector (JMP) in PAM-8’s “ .UIVEC” , and an interrupt occurring after
your program has been removed will be tragic. Also note that as a user, you must
be careful of typing CTL-Z, as this can kill your program before it can shut down
any interrupting devices.

NOTE: You must turn off the device interrupts before surrendering control to
HDOS. Simply replacing your interrupt vector with El and RET instructions will
cause disaster, since the interrupting device will continue to request interrupts
until it is serviced, and HDOS does not know how to service it. Your machine
will then hang in an interrupt service loop.

CPU Environment

After loading your program, HDOS transfers control to the program’s entry
point. This is the address specified in the END (assembler) pseudo.

Channel Environment

HDOS allows user programs to communicate with file-oriented devices via
“ channels” . These channels are discussed in Part 3. In all cases, channel -1
(377Q) is open for read access on the device and file that the program was loaded
from. This is done so you can conveniently load overlays without having to
know under what name and disk drive your program was run from. If your
program was run in response to a RUN command, all other channels will be
closed. If your program was run in response to a “ .LINK” SCALL, then the other
channels will remain as they were set up by the program which issued the
“ .LINK” .

10

Part 3

I/O CHANNELS

All file I/O in the HDOS system is done via I/O channels. “ File I/O” refers to
normal I/O done to HDOS devices via HDOS device drivers. Naturally, a program
may control its “ private devices” (ones not suitable for device drivers) in any
way it pleases.

In general, the sequence for doing file I/O is to issue an “ open” SCALL (.OPENR,
.OPENW, or .OPENU) to HDOS, supplying HDOS with the file descriptor as an
ASCII string. HDOS will parse the string, load the device driver (if necessary),
and open the file. When you issue the “ open” SCALL, you supply a channel
number from - 1 (i.e., 377Q) to 5. This channel number must not already be in
use. This means that you may open a maximum of seven files simultaneously.

Once the file has been opened, you can perform I/O by using the .READ, .WRITE,
and .POSIT SCALLs. Make these requests by suppling HDOS with the channel
number of the file you want read or written. After the initial open, you no longer
need the file descriptor string. Should you suddenly need that file name, say to
issue an error message, HDOS provides the .NAME SCALL to recall the file name
used when that channel was opened.

All disk file I/O is done in multiples of 256 bytes, the system sector size. As many
bytes as desired may be transferred at one time, so long as the count is an integer
multiple of 256. HDOS normally performs I/O in a sequential fashion. For
example, if your program is reading from a disk file one sector (256 bytes) at a
time, the first read will return sector 0, the next read sector 1, etc. For each open
channel, HDOS maintains a “ sector cursor” , which indicates which sector in the
file is next to be read or written. HDOS does provide the facility, via .POSIT, to
randomly read and write sectors to/from a disk file by changing the value of this
“ sector cursor” .

When you are done with the file, use the .CLOSE SCALL, once more supplying
the channel number. HDOS will close the file and thus make that channel
available for another open.

NOTE: Although channel - 1 can be used as a general purpose I/O channel, its
use should normally be avoided. It is already open when your program is started;
you must close it before you can open a file on it. Also, channel - 1 will be cleared
(see the .CLEAR SCALL) if you use the .LINK SCALL. Thus any file open for write
on channel —1 at that time will be lost.

11

Part 4

PRECAUTIONS

We have discussed earlier in this document that the HDOS system does not
provide any hardware protection, and thus is vulnerable to errors in assembly
language programs. This segment discusses the “Do’s and Dont’s” of assembly
language programming in more detail.

Memory Precautions

The two most important areas of memory precautions are: respect for the user
program area, and maintenance of the stack.

USER MEMORY AREA

A user program must never write into memory outside of its domain. This
“ domain” consists of the memory area from 042200A (USERFWA) to the LWA of
the user program area. When your program is first loaded, this LWA is set to the
end of your program and its declared data areas (via DS, DW, or DB; not EQU).
The “ .SETTOP” SCALL is available to adjust this limit. User programs may
adjust this limit as often as they like (see the .SETTOP SCALL documentation).
Note that HDOS may use all memory after this limit for a storage area, which is
going to cause trouble if your routine also tries to access it.

STACK MAINTENANCE

Since the HDOS system uses interrupts, and requires interrupts to handle the
console, the H17 disk, and the H47 disk, your program may be interrupted at any
time. You must always maintain a valid stack pointer, with at least 64 free bytes
on the top of that stack. If you plan to fill the system stack area, then you should
ORG your program above 042200A and set the stack pointer higher, giving
yourself and HDOS a bigger stack. HDOS does not use a separate stack; it uses the
top of the user program stack.

I/O Precautions

As we discussed earlier, I/O precautions consist of keeping your INs and OUTs to
yourself. Don’t disturb the H17, and don’t disturb the console ports! Also, be
careful what you do with the front panel ports, either directly or indirectly via
PAM-8. These ports control the clock interrupts, which are necessary for the H17
device driver.

12

Interrupt Precautions

When you are using interrupts, you must use only the available vectors, which
are 4 (if you are not using a real-time clock), 5 (if you are not using an H47), and 6.
You may also use 2, if you will not be using DBUG. Before you enable your
interrupting device, install the service vector in the appropriate “ .UIVEC” loca
tion.

Most importantly, turn off the interrupting device so it cannot issue any more
interrupts before you either return control to HDOS, or CTL-Z out of the program.
If an interrupt occurs when your program is no longer there to service it, the
operating system, and possibly the information on your diskettes, will be de
stroyed!

Since console and clock interrupts may occur at any time, your program should
not turn off interrupts (via DI) except for very short periods of time.

Finally, HDOS uses the clock interrupts, so you should not overlay its interrupt
vector. Programs desiring clock service should use all means possible to make do
with the interrupt counter (PAM-8’s .TICCNT). If you absolutely must have clock
interrupts, save the address in the clock vector, install your own vector, and have
your service routine exit the interrupt by jumping to the HDOS vector address.
HDOS uses the clock interrupts for H l7 timings; disturbing it might cause your
motors to keep spinning, prematurely wearing the motors. Or worse, you might
defeat the H17 driver’s head settle delays, and cause a bad sector to be written.

CPU Precautions

This precaution should be familiar to all assembly language programmers: Don’t
let the CPU execute undefined memory locations. Should such a thing occur, it is
unlikely that your disks will be damaged, due to some safeguards built into the
system. However, you should immediately re-boot, and not try to warm-start the
system, since the CPU may have damaged tables in memory. Remember, the
HDOS system uses a sophisticated linked-allocation scheme to handle disk files.
Damaging that table, or damaging the directory or allocation areas on the disk,
can cause all files on that disk to become lost, not just one or two!

13

If you are debugging a program which consistently vectors into undefined
write

when you crash, you can quickly restart by using PAM-8 to start at the HDOS
cold-start address, 040100A. Entering at this address should return you to HDOS
command mode. Do this only if you have your disks write-protected. Otherwise
it is too risky. Usually, when your program runs wild, the CPU ends up at some
high memory location where you don’t have any memory. The computer
hardware generates $ for nonexistent memory, so you will quickly run through a
long string of NOP’s, until you wrap from 377377A to 000000A, which is the
master clear restart address for PAM-8. If you display the PC and find it set to
your high memory address, then you probably took this “ circumpolar” route
into PAM-8.

Debugging Hints

The best way to debug programs is to ORG them above DBUG, and test them
using DBUG. After entering DBUG, use the LOAD command to load in the
program under test. You can then break-point and single step through your
program. Do not single step through an HDOS SCALL, or you may damage the
disk.

After the program seems to be working, ORG it back down to 042200A, (or
wherever) and reassemble.

14

Part 5

RESIDENT SCALLs

This segment covers those HDOS service requests (called SCALLs) which are
permanently resident in memory. The use of these SCALLs will not cause an
overlay to be loaded.

In general, a SCALL (Sys CALL) consists of a

RST 7

instruction followed by a byte containing the request number. Most SCALLs
require that some registers be set up before the call. Likewise, most may alter the
registers, so a program should save any registers which it wants to preserve.

The ASM assembler has a special opcode for SCALLS:

SCALL code

where “ code” is the number of the request. This statement
lent of

D 377Q,code

enerates the equiva-

We recommend that you use the HOSDEF. ACM file to include these definitions.
In general, it is advisable to use the recommended symbol definitions for all
references to HDOS, and include them in one or more XTEXT decks. This will
make programming easier for you, and guarantee compatibility with future
releases. Although we will make every effort to keep binary compatibility, we
may need to revert to “assembly language compatability,” in which case you
may have to change some HDOS symbol values and reassemble.

15

.EXIT

* ** EXIT - EXIT USER PROGRAM.

EXIT IS CALLED TO RETURN CONTROL TO THE SYSTEM COMMAND
PROGRAM.

MVI
SCALL

A,ELAG
.EXIT

(see below)

FOR EITHER EXIT, THE CONTROL CHARACTER VECTORS
(SET BY .CTLC) ARE CLEARED.

IN ADDITION, THE ABORT EXIT RESETS THE DISK AND
CONSOLE I/O DRIVERS.

ENTRY
EXIT

(A)
—IF—

-THEN-
-ELSE-

= FLAG (J2f = NORMAL, 1 = ABORT)
[SYSTEM DISK IS STILL MOUNTED]

-or-
[STAND-ALONE IS SET]
EXIT TO "SYSCMD.SYS"
EXIT TO REBOOT CODE

The .EXIT SCALL is the proper way for a program to return control to HDOS. In
any mode, .EXIT will close all open I/O channels. This action is equivalent to that
of the .CLEAR SCALL. It is best for a program to close or clear its own channels
before incurring .EXIT, as future releases may differ in this action.

It should not be necessary for a program to use abort exit unless some process was
being used which affected the state of the console or disk I/O ports. The use of
such processes is not recommended.

If SYjBf: has been dismounted and the STAND-ALONE flag is not set, HDOS exits
to re-boot. If the STAND-ALONE flag has been set and no disk is mounted on
SYj0f:, or SYSCMD.SYS is not found on the disk mounted on SYJ0T:, HDOS exits to
re-boot. Thus, the only way for a program to return to the command level once
SYff: has been dismounted and remounted is for the STAND-ALONE flag to have
been previously set via the SET command, and for the disk mounted on SY# to
have SYSCMD.SYS on it.

** EXAMPLES:
ALDONE MVI A,0

SCALL .EXIT
ABTXIT MVI A,1

SCALL .EXIT

FLAG NORMAL EXIT

FLAG ABORT EXIT

NOTE: We do not encourage this re-entrance to HDOS, and it may not be supported in future releases.

.SCIN — System Console INput

SCIN
*
* SCIN
* BUFFE
*
* LI SCALL
* JC
*
* ENTRY
* EXIT
*
*
* USES

SCIN - SYSTEM CONSOLE INPUT.

SCIN TAKES A SINGLE CHARACTER FROM THE CNSOLE INPUT
UFFER, IF ANY ARE AVAILABLE.

.SCIN
LI

NONE

CHARACTER NOT READY

’C ’ SET IF NO CHARACTER
’C ’ CLEAR IF CHARACTER
(A) CHARACTER

A,F

This command is relatively obvious, and is also explained in the HEATH HDOS
Software Reference Manual. Note that you can use the .CONSL SCALL to set
console mode bits.

** EXAMPLES:

RDCHAR SCALL .SCIN
JC RDCHAR
RET

TRY TO READ CHARACTER
NONE READY YET
EXIT, (A) = CHARACTER

NOTE: Detailed examples of .SCIN are shown in the HEATH HDOS Manual.

17

.SCOUT — System Console OUTput

*** SCOUT - SYSTEM CONSOLE OUTPUT.

SCOUT OUTPUTS A SINGLE CHARACTER TO THE CONSOLE. CURSOR
POSITIONING IS KEPT TRACK OF. A "NL" CHARACTER
INDICATES A NEW LINE. "CR" AND "LF" CHARACTERS SHOULD
NOT BE USED.

MVI A,CHAR
SCALL .SCOUT

ENTRY (A) = CHARACTER
EXIT (A) = CHARACTER
USES NONE

This command is relatively obvious, and is also explained in the HEATH HDOS
Software Reference Manual.

EXAMPLES:

MVI A,'*'
SCALL .SCOUT TYPE AN ASTERISK ON THE CONSOLE

NOTE: Further examples of .SCOUT are shown in the HEATH HDOS Manual.

.READ — Read From File

Use the .READ SCALL to read data from an open channel. The channel must
already have been opened via a .OPENR or .OPENU SCALL (except for channel
- 1 , as noted previously).

Currently, all device I/O under HDOS (with the exception of the console, via the
.SCIN and .SCOUT calls) is “block mode” . This means that you must read or
write to the device in multiples of 256 bytes. If you cannot fill the last block, you
should pad it out with zero bytes. The last block in all HDOS source files is
padded out to 256 characters with 00 bytes.

The quoted C in the following example indicates the carry flag. This SCALL, as
in all others in HDOS, returns with the carry flag set if an error or abnormal
condition has occurred. The most common “ error” for the .READ command is
“ end-of-file” . The convention used above and throughout this document is that
exit conditions which are predicated on the setting of a flag are discussed
directly under that flag, indented one space. Thus, the (BC) register pair contains
the unused byte count if, and only if, the ‘C’ flag is set. If ‘C’ is clear, then all of the
bytes were read, and (BC) contains garbage. Thus, the (BC) and (DE) registers
contain meaningful information only when an error condition occurred, which
is normally an “ end-of-file” . The error codes returned by HDOS are defined in
Part 7. This is simply a condensation of the error messages discussed in the
HEATH HDOS Software Reference Manual. Note that you can use the .ERROR
SCALL to look up an explanatory message.

READ - PROCESS READ SCALL.

READ PROCESSES READ SCALLS. IF A SERIAL DEVICE, PASS TO
DRIVER. IF A STORAGE DEVICE, HANDLE STORAGE MAPPING.

* MVI A ,CHAN
* LX I B ,COUNT
* LXI D tADDR
* SCALL .READ
*

MUST BE MULTIPLE OF 256

READ DATA FROM FILE

ENTRY (A) = I/O CHANNEL/NUMBER
(B) = COUNT OF 256-BYTE BLOCKS TO TRANSFER
(C) = 0
(DE) = DATA ADDRESS

EXIT 'C' CLEAR IF ALL OK
’C ’ SET IF ERROR
(A) = ERROR CODE
(BC) = UNUSED TRANSFER COUNT

USES
(DE)
ALL

= NEXT UNUSED ADDRESS

NOTE: All read operations must be for integer multiples of 256 bytes. Thus, the
last sector in a file may have been padded with 00 bytes. All ASCII (coded) files in
HDOS are zero-byte filled in the last sector (if they need it). A 00 byte is
considered a NULL character, and should always be ignored when encountered
in an ASCII file.

* * EXAMPLES:

READ MVI A,1 READ FROM ALREADY OPEN CHANNEL
LXI B,256 READ ONE SECTOR
LX I D,BUFFER
SCALL .READ READ IT
JC READ1 ERROR
LXI B,256 READ 256 BYTES
JMP READ2

* HAVE ERROR. SEE IF EOF, OR SOMETHING WORSE

READ1 CPI EC.EOF SEE IF JUST EOF
JNE ERROR HAVE SERIOUS ERROR
STA EOFFLG FLAG HAVE SEEN EOF
LXI H,256 (HL) = ORIGINAL STARTING COUNT
MOV A,L
SUB
MOV
MOV
SBB
MOV

C
C, A
A, H
B
B, A (BC) = 256-REMCNT = AMOUNT READ

READ COMPLETE. (BC) = BYTES AVAILABLE

READ2 • • • •

UFFER DS 256 SECTOR BUFFER

20

.WRITE — Write to Open File

** *
*

WRITE - PROCESS WRITE SCALL.

* MVI A,CHAN
* LXI B,COUNT MUST BE MULTIPLE OF 256
* LXI D ,ADDR
* SCALL .WRITE WRITE DATA TO CHANNEL

ENTRY (A) = CHANNEL #'
(BC) = DATA COUNT

EXIT

USES

(DE) = DATA ADDRESS
' C' CLEAR IF ALL OK
' C' SET IF ERROR
(BC) = UNUSED TRANSFER COUNT
(DE) = NEXT UNUSED ADDRESS
(A) = ERROR CODE
ALL

The .WRITE SCALL is very similar to the .READ call, except that it writes the
data to the file. Once again, the count in (BC) must be an integral multiple of 256.
The most typical error returned by .WRITE is “NO ROOM ON MEDIA” .

NOTE: All write operations must be for integer multiples of 256 bytes. Thus, the
last sector in a file may have to be filled out to 2 56 bytes. All ASCII (coded) files in
HDOS are zero-byte filled in the last sector (if they need it). A 00 byte is
considered a NULL character, and should always be ignored when encountered
in an ASCII file.

** EXAMPLES:

WRIDAT MVI A,1
LXI B,512
LXI D,BUFFER
SCALL .WRITE
JC ERROR

CHANNEL 1 ALREADY OPEN
WRITE 512 BYTES

WRITE IT
SERIOUS ERROR

UFFER UFFER AREA FOR WRITE

.PRINT — Print Line on System Console

*** PRINT - PRINT CONSOLE LINE.
*
* PRINT CAUSES A CODED LINE TO BE PRINTED AT THE CONSOLE.
*
* LXI H,LINEADDR
* SCALL .PRINT
*
* THE LAST CHARACTER IN THE LINE SHOULD HAVE THE
* 200Q BIT SET.

ENTRY (HL) = LINE ADDRESS
EXIT (HL) = LWA OF MESSAGE +1
USES A.F.H.L

.PRINT is an efficient and convenient way to print lines on the system console.
Another good way is to use the subroutine “ $TYPTX” , as shown in Part 8. Note
that the parity bit (bit 200Q) is set over the last character to be printed to notify the
end-of-line to HDOS. Remember, use the NL character (012Q, same as LF) for a
CRLF sequence. HDOS will automatically insert the required number of PAD
characters for the console. If you prefer, you can include the NULL (00) character
in a print line. It is ignored, does not cause a delay in console output, and thus
cannot be used as a PAD character.

** EXAMPLES:

LXI H,MSGA TYPE OUT STARTUP MESSAGE
SCALL
•

.PRINT

PROMPT
t
LXI H,MSGB TYPE OUT PROMPT MESSAGE
SCALL .PRINT

REACHA SCALL
i

.SCIN READ REPLY___

MSGA

1
•
DB 12Q, 'SET OPTIONS:'
D
DB
DB
DB

12Q
12Q, 'HELP TYPE THIS LIST'
12Q, 'CRASH - DESTROY DISK SURFACE'

NEW LINE, END OF PRINT12Q+20QQ

MSGB D 12Q,'Y0UR COMMAND?',' ’+20DQ

.CONSL — Set Console Mode Bits

* ** CONSL - SET AND CLEAR CONSOLE FLAGS.

*
*

CONSL IS CALLED TO SET,
VARIOUS CONSOLE FLAGS.

CLEAR, OR READ ITS IN THE

* THE CALLER PASSES AN INDEX INTO THE PROPER FLAG, A
MASK TO INDICATE THE AFFECTED BITS, AND A SET OF NEW
VALUES FOR THOSE BITS.

INDEX =

0
1
2
3
4

I
I
I
I
I

CSLMD
CONTY
CUSOR
CONWI
CONFL*

ENTRY

EXIT

(A) = INDEX
(B) = NEW VALUES
(C)
' C ’

= MASK (’1 ’ BIT FOR EVERY BIT TO CHANGE)
CLEAR IF NO ERROR

USES

(A) = NEW VALUE
'C' SET IF ERROR
(A) = ERROR CODE

ALL

The .CONSL SCALL is used to read and write the console control bits and bytes.
These bytes are available directly in memory, but we recommend that you access
them via the .CONSL command to guarantee synchronization and upward com
patibility with future releases.

The caller supplies HDOS with three values: the index of the byte to be read
and/or written, the bits to be altered, and the new bit values. The technique of
supplying a “bits-affected” mask and a “new value” pattern allows you to alter
just one bit in a byte, without having to know the values of the other bits in the
byte. Since the console is an interrupt-responsive device, this also avoids syn
chronization probems. There are five bytes which can be read and/or written via
the .CONSL function.

I .CSLMD - Console Mode

I.CSLMD EQU □ I.CSLMD IS FIRST YTE

CSL.ECH EQU
CSL.WRP EQU
CSL.CHR EQU

10000000B
00000010B
00000001B

SUPPRESS ECHO
WRAP LINES AT WIDTH
OPERATE IN CHARACTER MODE

23

These three bits are used to affect the mode in which HDOS handles characters
typed at the console. They are documented in more detail in the HDOS Software
Reference Manual.

I.CONTY - Console Type

I.CONTY EQU I.CONTY IS 2ND BYTE

CTP
CTP
CTP
CTP
CTP
CTP

BKS
MLI
MLO
2SB
BKM
TAB

EQU
EQU
EQU
EQU
EQU
EQU

1ODQOOODB
00100000B
OOO1OOOOB
OOOOIOOOB
OOOOOO1OB
OOOOOOO1B

TERMINAL PROCESSES BACKSPACES
MAP LOWER CASE TO UPPER ON INPUT
MAP LOWER CASE TO UPPER ON OUTPUT
TERMINAL NEEDS TWO STOP BITS
MAP BKSP (UPON INPUT) TO RUBOUT
TERMINAL SUPPORTS TAB CHARACTERS

The bits in the I.CONTY byte are used to describe the console’s hardware
characteristics. These bits are all discussed under the SET command section in
the HEATH HDOS Software Reference Manual.

I .CUSOR - Console Cursor Position

I.CUSOR EQU 2 I.CUSOR IS 3RD BYTE

The I.CUSOR byte contains the current cursor position of the console terminal
cursor. Immediately after a New-Line, this byte contains 001.

I.CONWI - Console Width

I .CONWI EQU 3 I.CONWI IS 4TH YTE

The I.CONWI byte contains the current console width. This value is documented
under the SET command in the HDOS Software Reference Manual. In brief,
when the cursor reaches this value, HDOS automatically generates an NL. You
can effectively disable this option by setting the width to 255.

24

I.CONFL - Console Flags

I .CONFL EQU 4 I.CONFL IS 5TH

CO.FLG EQU 00D00001B CTL-O FLAG
CS.FLG EQU 10000000B CTL-S FLAG

YTE

The I.CONFL byte contains the current setting of the console CTL-0 and CTL-S
bytes. A user program may find it useful to note that the user has typed CTL-S or
CTL-O. In addition, your program may want to clear the CTL-O flag immediately
before an input prompt is typed, so that the typing of the prompt is guaranteed.

NOTE: If the CTL-S flag is set, and your program issues a character to the console
(via .SCOUT or .PRINT) then your program will hang up in HDOS waiting for the
CTL-S flag to clear. There is no way to do a “ conditional” character type-out.
Programs which do not want to hang up must check the CTL-S flag before every
.PRINT or .SCOUT, and trust to luck that your user doesn’t type the CTL-S
between the .CONSL and the .SCOUT.

25

EXAMPLES:

SET CHARACTER MODE, NO ECHO

MVI
MV I
MVI
SCALL

A.I.CSLMD (A) = BYTE INDEX
B , CSL.ECH+CSL.CHR
C , CSL.ECH+CSL.CHR
.CONSL

SET BOTH BITS
AFFECT BOTH BITS

SET MAP LOWER CASE TO UPPER, CLEAR BACKSPACE ON ’RUBOUT'
KEY

MVI
MVI
MVI

A.I.CONTY (A) = BYTE INDEX
,CTP.MLI+CTP.MLO SET MAP LOWER CASE BITS

C ,CTP.MLI+CTP.MLO+CTP.BKS SET MAP, CLEAR

••
JKS

SCALL .CONSL

READ CONSOLE CURSOR POSITION
MVI
MVI
SCALL

A.I.CUSOR
C,0
.CONSL

CPI

AFFECT NO BITS, (B) MEANINGLESS
AFFECT NOTHING, JUST GET NEW
(SAME AS OLD) VALUE
SEE IF CURSOR OVER COLUMN 11

SET CONSOLE WIDTH

MVI
MVI
MVI
SCALL

A, I.CONWI
B, 80
C, 377Q
.CONSL

SET 80 COLUMNS
AFFECT FULL BYTE
SET WIDTH

.CLRCO — Clear Console Buffer

* * *
-K-

CLRCO - CLEAR CONSOLE BUFFERS.
r »
* CLRCO CLEARS THE CONSOLE TYPE-AHEAD BUFFER
*
*

CTL-0 AND CTL-S FLAGS ARE ALSO CLEARED.

* ENTRY NONE
* EXIT NONE
* USES ALL

The .CLRCO SCALL is used to clear the console buffer, and the console CTL-S
and CTL-0 flags. HDOS contains a console “type-ahead” buffer, so the user may
type commands before a program asks to read from the console. All typed text is
stored in the type-ahead buffer; the .SCIN SCALL reads the characters from the
buffer. The special control characters; CTL-A, CTL-B, and CTL-C; are not stored
in the type-ahead buffer; but instead, cause an interrupt to a user service routine
(if you set one up via the .CTLC SCALL). Often, a user has typed a partial line
before he typed the CTL-C (or CTL-A or CTL-B). You can use the .CLRCO
function to clear out any unwanted type-ahead.

NOTE: Issuing the .CLRCO function does not cause a New-Line to be sent to the
console. The user is given no indication that the characters he may have typed in
have been discarded. Your program should issue a new prompt immediately
after the .CLRCO function, to make things clear to the user.

EXAMPLE: CLEANUP AFTER CTL-C

(Part 6 discusses intercepting CTL-C’s)

* ASSUME CONTROL PASSES HERE AT CTL-C

CCHIT LXI H,CCHITA TYPE nC
SCALL .PRINT ACKNOWLEDGE CTL-C, SETUP NEW LINE
SCALL .CLRCO CLEAR TYPE AHEAD

CCHITA ,OC',212Q nC WITH NEW-LINE

27

.LOADO — Load Overlay

* * *
*

LOADO - LOAD SPECIFIED OVERLAY

* LOADO LOADS THE OVERLAY SPECIFIED THROUGH THE INDEX

*
*

OVERLAY INDEX

* HDOSOVL01 r
* HD0S0VL1 1

* ENTRY (A) OVERLAY INDEX
* EXIT (PSW) 'C' CLEAR IF NO ERROR
* ’C ’ SET IE ERROR
* (A) = ERROR CODE
* USES ALL

The .LOADO system call is used to force an overlay load. Before you dismount
the system disk (SY0:),you must load both overlays “ 0” and “ 1” . Quite simply,
once the system disk has been dismounted, subsequent diskettes are only data
diskettes. That is, the overlays may not be loaded from them. A sample program
fragment follows, and further examples may be found in Part 8.

NOTE: This system call may generate an error if enough memory is not available
for both your program and the indicated overlay. In such a case, either the size of
your program must somehow be reduced, or you will have to forego the overlay
loading.

* * Examples:

MVI A,0VL0
SCALL .LOADO LOAD ' HDOSOVL#.SYS'
JC FATAL Error on attempted load

MVI
SCALL

A.0VL1
.LOADO LOAD ' HD0S0VL1.SYS’

JC FATAL Error on attempted load

.VERS — HDOS Version Number

VERS - RETURN HDOS VERSION NUMBER

VERS RETURNS THE HDOS VERSION NUMBER AS A ONE-BYTE
BCD NUMBER. A DECIMAL IS ASSUMED BETWEEN THE HIGH
AND LOW ORDER NYBBLES.

ENTRY NONE
EXIT (PSW) = 'C' CLEAR IF NO ERROR

(A/ = VERSION NUMBER
' C' SET IF ERROR (VERS < 1 . 5)
(A) = ERROR CODE (EC.ILC)

USES A.F

The .VERS system call returns the current version number of HDOS. The primary
use of this system call is to ascertain under which version of HDOS the program
is running. If the program determines that the version does not support these
new calls, it may exit gracefully with an error message. Versions earlier than 1.5
may be distinguished because they will return an invalid system call.

The version number is returned as one BCD byte. That is, version 1.5 will return
21, or 25Q, or 015H. (See the HDOS common deck listing for an example of the
definition format).

ADVER

SCALL
JC
CPI
JNZ

,V£RS
BADVER
VERS
BADVER

No version system call

Invalid version

LXI
SCALL

3,MESSAG
.PRINT

MESSAG 12Q,'This version of HDOS does not support'
'the required system c a l l s 1 2 Q + 2 0 0 Q

29

Part 6

OVERLAID SCALLs

This section discusses those HDOS SCALLs which are resident in the overlaid
portion of HDOS.

Overlay Management

When an overlaid request is issued, HDOS checks the status of the overlay area. If
it is already in memory, the request is processed. If it is not in memory, HDOS
then checks the LWA of your user program. If there is not enough room past the
end of your user LWA, then some of the last bytes in the user memory area are
swapped to disk. Then the overlay is loaded and the function performed. After
the function is performed, HDOS will reload any paged-out portion of your
program.

This overlay structure affects assembly language programmers in two ways:

1. Arguments passed to HDOS for SCALL requests should not be too high
up in user memory, as they might get swapped to the disk when the
overlay is loaded.

2. In program where you plan on doing many overlay SCALLs, try to
limit your memory requests so that the overlay area can remain resi
dent. Currently, the best way of doing this is to use the .SETTOP
SCALL to find the maximum allowable allocation; then subtract the
overlay size, kept in HDOS’s low memory (see Part 7). Also subtract a
10-byte margin of error. You may request memory up to this new limit
without causing the overlay area to be swapped out.

30

File Names

Since many overlaid SCALLs require file names as arguments, this is a good time
to discuss HDOS file names.

In general, when you supply a file name as an argument to a SCALL, you point to
an ASCII string containing the file descriptor just as the user would have typed it.
The line should be terminated with a delimiter of some sort, usually a comma,
blank, or character. For example, the following are examples of valid file
names:

DB
DB
DB

' SYjZ: MYFILE . TMP' ,J2f
’TEMP’
'BASIC.SAV, ' (’ , ' delimits name)

Of course, these names are all shown being assembled into the program. You
might just as well have read them from the user’s console, or generated the names
somehow. They must not have embedded #0 bytes or blanks in the names.

Also note that some of the examples shown do not specifiy an extension or a
device. All SCALLs that take file names as arguments also require a default
block. This block is a 6-byte area, containing the default device specification and
a default extension specification. A typical default block is:

DB SY0TMP

which yields a default device of SY0f: and extension of TMP. Another common
default block is:

DB 'SYjzf’

which indicates that there is no default extension. File descriptors not specifying
a name will generate a file with a null extension.

31

.OPENR — Open File for Read

*** OPENR - OPENR SCALL PROCESSOR.
*
* OPENR IS CALLED TO OPEN A CHANNEL FOR READ.

THE CALLER SUPPLIES A FILE NAME, A DEFAULT BLOCK
FOR THE DEVICE AND EXTENSION, AND A CHANNEL NUMBER.

DEFAULT BLOCK FORMAT:

*
*

’DDD'
’XXX'

DEFAULT DEVICE
DEFAULT EXTENSION

ENTRY (DE) = DEFAULT BLOCK ADDRESS
(HL) = NAME ADDRESS
(A) = CHANNEL NUMBER

EXIT ’C' CLEAR IF OK
(HL) = ADVANCED PAST FILE NAME
’C' SET IF ERROR
(A) = ERROR CODE

USES ALL

Use the .OPENR SCALL to open files for read access. This means that you may
then read the file, but HDOS will not allow any write requests to it. You may open
an individual file for read access on as many channels as you wish.

The channel number supplied must be a legal one (— 1 to 5), and must not already
have a file open on it.

HDOS will not allow any one file to be open for both read and write at the same
time, nor may any one file be open for write on more than one channel. Attempt
ing to do so will cause a ‘ ‘usage conflict” error. This means that you may not open
a file via .OPENR if it is already open for write (or update) on another channel.

32

** EXAMPLES:

* OPEN PRE-DETERMINED FILE NAME ON CHANNEL 1

MV I A,1 CHANNEL 1
LXI D,DEFALT POINT TO DEFAULT BLOCK
LXI H,FNAME POINT TO FILE DESCRIPTOR
SCALL .OPENR OPEN FOR READ
JC ERROR 3ome error

READ FILE NAME FROM USER, OPEN ON CHANNEL 2

REA1

LXI H,MSGA
SCALL .PRINT PROMPT HIM
LXI H,BUFFER
SCALL .SCIN
JC REA1 NO CHARACTER
MOV M, A STORE IN MEMORY
INX H
CPI □ 12Q SEE IF NEWLINE (USER HIT KEYAaa mm B̂» • A w W • B̂BM fl̂BB A « MBfl B̂BW A B 9 A <A> 9k A MMb ̂ b »

JNE REA1 NOT YET
DCX H
MVI M,0 TERMINATE LINE WITH 00, INSTEAD

OF 12Q

LXI H,BUFFER
LXI D,DEFALT POINT TO DEFAULT BLOCK
MVI A,2 CHANNEL 2
SCALL .OPENR OPEN FILE
JC ERROR

MSGA D
DEFALT DB
BUFFER DS
FNAME D

12Q,'FILE NAME?',' '+200Q
'SYXTMP' DEFAULT DEVICE AND EXTENSION
2D FILE NAME BUFFER
*SY1:MYFILE.NEW FILE NAME FOR CHANNEL 1

.OPENW — Open File for Write

* * * OPENW - OPEN FILE FOR WRITE

OPENW IS CALLED TO OPEN A CHANNEL FOR WRITE.

THE FILE IS ENTERED IN THE CHANNEL TABLE, BUT NOT ON THE
DISK. IT WILL BE ENTERED IN THE DIRECTORY AT CLOSE TIME.

THE CALLER SUPPLIES A FILE NAME, A DEFAULT BLOCK FOR THE
DEVICE AND EXTENSION, AND A CHANNEL NUMBER.

DEFAULT BLOCK FORMAT

DB
DB

'DDD'
'XXX'

DEFAULT DEVICE
DEFAULT EXTENSION

ENTRY

EXIT

USES

(DE) = DEFAULT BLOCK ADDRESS
(HL) = NAME ADDRESS
(A) = CHANNEL NUMBER
'C' CLEAR IF OK
(HL) = ADVANCED PAST FILE NAME
' C SET IF ERROR
(A) = ERROR CODE

ALL

writin
.OPENW SCALL, the file is opened with a “ temporary” name, which does not
appear in the directory. When the channel is closed, HDOS will then enter the
name in the directory. If any previous file by that name existed, it will be deleted
at that time. This procedure has three implications:

1. You cannot modify an existing file by means of the .OPENW SCALL,
.OPENW is intended for creating new files, or replacing old ones.

2. If you are replacing an existing file, there must be enough free space to
hold both the new version and the old one, as the old one will not be
deleted until the new one is closed. You might want to manually
delete (via .DELETE) the old one first.

3. If you do not properly close the channel, the new file will be lost. This
is intended as a safety factor; a previously existing file by that name
will not be destroyed until the new one has been successfully com
pleted. If you should start to write a file by some name, then realize
that you already have a useful file by that name, you can CTL-Z out and
still retain the old file.

HDOS will not allow any one file to be open for both read and write at the same
time, nor may any one file be open for write on more than one channel. If you
attempt to do so you will cause a “usage conflict” error. This means that you
cannot open a file with .OPENW if it is already open for write or update, or if it is
open for read.

The examples shown above for .READ are applicable to .WRITE as well. The
following example illustrates opening a file on a non-disk device, “AT:” . Note
that exactly the same procedure is followed. In fact, in the above example where
the user types in a file name, he may just as well have typed in “TT:” or “ AT:” for
a device specification.

EXAMPLES:

MVI A,3 OPEN ON CHANNEL 3
LX I D,DEFALT POINT TO DEFAULT BLOCK
LXI H,FNAME
SCALL .OPENW
JC ERROR ERROR

DEFALT DB
FNAME DB

UNUSED, BUT REQUIRED
NAME AND EXTENSION MEANINGLESS

.OPENU — Open File for Update

*** OPENU - OPEN FILE FOR UPDATE.
*
* OPENU IS CALLED TO OPEN A CHANNEL FOR UPDATE.
*
* UPDATE IS JUST LIKE READ. BUT THE FILE MAY BE WRITTEN
* ALSO.

THE CALLER SUPPLIES A FILE NAME, A DEFAULT BLOCK FOR THE
DEVICE AND EXTENSION, AND A CHANNEL NUMBER.

DEFAULT BLOCK FORMAT:

DB 'DDD' DEFAULT DEVICE
DB 'XXX' DEFAULT EXTENSION

ENTRY (DE) = DEFAULT BLOCK ADDRESS
(HL) = NAME ADDRESS
(A) = CHANNEL NUMBER

EXIT ' C' CLEAR IF OK
(HL) = ADVANCED PAST FILE NAME
'C' SET IF ERROR
(A) = ERROR CODE

USES ALL

Use .OPENU to open a file for update. This means that a previously existing disk
file is opened for both read and write. When opened, the file is positioned at
sector 0.

If the channel is positioned over an existing sector and you issue a .WRITE, then
that sector will be re-written. If the channel is positioned at the end of the file, the
file will be extended. You can use the .POSIT SCALL to position the channel at
the end of the file. Thus, the .OPENU and .POSIT combination allows you to
append information onto an existing file.

NOTE: Always close a file that was opened for update. Failure to do so causes
undefined results. Failing to close the channel properly can also cause “ or
phaned” sectors, which are not being used by a file, nor are they in the free list.
HDOS will automatically recover these orphans when the disk is next mounted
for booted) and return them to the free list.

36

The examples used for .OPENR on Pa
there are some differences:

31 also apply to .OPENU . Of course,

1. The file opened must already exist.

2. The file must reside on a mass storage device, which can be both read
and written (i.e., not write protected).

.CLOSE — Close Channel

*** CLOSE - PROCESS CLOSE SCALL.
*
* CLOSE PROCESSING DEPENDS UPON THE FILE AND DEVICE TYPE.
*
* FOR A WRITE/DIRECTORY TYPE, THE DIRECTORY IS SEARCHED
* FOR A PREVIOUS ENTRY. IF FOUND, IT IS DELETED. THE NEW
* ENTRY IS THEN INSERTED.
*
* FOR A UPDATE/DIRECTORY TYPE, THE PREVIOUS ENTRY IS
* UPDATED.
*
♦ FOR ALL FILES, THE DRIVER IS CALLED WITH THE D C .CLO
* FUNCTION. THE CHANNEL IS RELEASED.

* ENTRY (A) = CHANNEL #
* EXIT ' C' CLEAR IF OK
* ' C' SET IF ERROR
* (A) = CODE
* USES ALL

Use the .CLOSE SCALL to close a channel when you are done with it. Always
close all the channels your program has opened, with two exceptions:

1. HDOS enters your program with channel —1 open on your program
load file. If you do not use this channel you need not close it — HDOS
will perform the close on it automatically.

2. Scratch files which were created via .OPENW, which are no longer
needed need not be closed. See “ .CLEAR” , Page 57.

EXAMPLES:

MVI A, 1
SCALL .CLOSE CLOSE CHANNEL 1
JC ERROR
MVI A,2
SCALL .CLOSE CLOSE CHANNEL 2
JC ERROR IF ERROR

.RENAME — Rename Disk File

** * RENAME - PROCESS RENAME FUNCTION.

RENAME RENAMES A FILE ON A DIRECTORY DEVICE.

* NOTE * RENAME DOES NOT CHECK TO SEE IF THE NEW NAME
ALREADY EXISTS— THIS IS CURRENTLY THE RESPONSIBILITY
OF THE CALLER !

ENTRY

EXIT

USES

(HL) = NAME STRING
(DE) = DEFAULT BLOCK
(BC) = NEW NAME STRING
’C' CLEAR IF OK
’C' SET IF ERROR
(A) = CODE

ALL

Use the .RENAME SCALL to change the name of a file on disk. A renaming is
considered a form of writing on a file, so the same “usage conflict” restrictions
apply: the file to be renamed must not be open on another channel. Two other
restrictions exist:

1. A file with the “ new name” must not already exist on that device.
RENAME unfortunately does not check for this currently, so you must
check yourself by trying to .OPENR the file, before doing the .RE
NAME . Currently, RENAME will allow you to create two files on a
disk with the same name. The results of this will be disastrous.

2. The “ name string” and the “ new name string” must both specify the
same device (SY0(:, SYl:, SY2:, DKp":, DKl:, or DK2:). Alternatively,
both files may use the default device, which may be any valid HDOS
drive name.

NOTE: The default block device and extension applies only to the old file name
not to the new name. The new file name must be fully specified, including
device, file name, and extension, if there is to be one.

** EXAMPLES:

* RENAME 'SY1:SORT.ASM' TO 'SY1:SORT.BAR'
LXI
LXI
LXI
SCALL
JC
•

B,NEWNAM
D,DEFALT
H,OLDNAM
.RENAME
ERROR

NEWNAM
•
DB 'SY1:SORT.BAK11 ,IZf NO DEFAULTS* r ALLOWED

OLDNAM DB 'SORT' USE DEFAULT DEVICE AND EXTENSION
DEFALT DB 'SY1ASM' DEFAULT DEVICE AND EXTENSION

.DELETE — Delete Disk File.

DELETE - PROCESS DELETE COMMAND.

* ENTRY

EXIT

USES

(HL) = NAME STRING
(DE) = DEFAULT BLOCK
' C' CLEAR IF OK
'C' SET IF ERROR
(A) = CODE

ALL

Use the .DELETE SCALL to delete a disk file. The format of the call is similar to
that of .OPENW, except that no channel number is specified. Note that deleting a
file is considered a form of writing, so the file must not be open on any channel
for reading or writing, as that would cause a “file usage conflict” .

* *
DELTEMP

EXAMPLE: DELETE FILE
LXI H,NAME
LXI D,DEFALT
SCALL .DELETE
JC ERROR

TEMP.TMP"

NAME
DEFALT

TEMP.TMP
SYCfXXX'

/
FILE NAME
DEFAULT DEVICE, DEFAULT EXTENSION

41

.CHFLG — Change File Flags

CHFLG - CHANGE FILE FLAGS.

*

CHFLG IS CALLED TO CHANGE THE FILE DESCRIPTION FLAGS
FOR A MASS STORAGE FILE. ONLY CERTAIN FLAGS MAY BE
CHANGED:

* FLAG BIT MEANING

* DIF.SYS 200Q IS SYSTEM FILE
* DIF.LOC 100Q LOCKED FOR CHANGE (SETABLE ONLY)
* DIF.WP 040Q IS WRITE PROTECTED

* CHFLG WILL REFUSE THE OPERATION IF THE DIF.LOC BIT
*
*

IS SET •

* ENTRY (B) = NEW BIT VALUES
* (C) = CHANGE MASK (BIT SET FOR EVERY BIT
* TO REPLACE FROM (B))
* (DE) = DEFAULT BLOCK ADDRESS
* (HL) = FILE NAME
* EXIT ’C ’ CLEAR, CHANGE DONE
* ’C ’ SET, ERROR
* (A) = ERROR CODE
* USES ALL

Use the .CHFLG SCALL to change the attribute flags on a file. These flags are
discussed in detail in the Heath HDOS “ Software Reference Manual,” under the
program “FLAGS” . The arguments are similar to the .OPEN SCALLs. Note that a
two-byte “bits to effect” and “ new bit values” scheme is used, just as described
earlier for the .CONSL SCALL.

NOTE: You can use the .CHFLG SCALL to set the DIF.LOC (LOCKed) flag on a
file, but you cannot use to clear the flag. Once the DIF.LOC flag is set, no other
flag changes may be made, including clearing the DIF.LOC flag. If the file is not
write-protected (DIF.WP not set), you can copy it to a temp file, delete the old
LOCKed version, and rename the temp file back. If the file is both LOCKed and
write protected, then it is there “ forever” , or until the volume is re-initialized via
INIT.

42

** EXAMPLE: WRITE-PROTECT ’OUTPUT.DAT’

WRIPRO MVI B.DIF.WP EFFECT WRITE PROTECT
MVI C,DIF.WP SET WRITE PROTECT
LXI
LXI
SCALL
JC

D,DEFALT
H,NAME
.CHFLG
ERROR ERROR

NAME 'SY1:OUTPUT.DAT FILE NAME

43

.POSIT — Position Disk File

* * * POSIT - POSITION FILE.

* LXI B,POSITION
* MVI A,CHANNEL NUMBER
*
-X-

SCALL .POSIT

* ENTRY (A) = CHANNEL NUMBER
* (BC) = SECTOR NUMBER TO POSITION BEFORE
* EXIT ’C ’ CLEAR IF OK
* ’C' SET IF ERROR
* (A) = ERROR CODE
* (A) = EC.EOF IF OFF END
* (BC) = SECTORS UNSKIPPED (REMAINDER OF COUNT)
* FILE POSITIONED AT EOF
* USES ALL

Use the .POSIT SCALL to position the “ channel cursor” . Since each read or write
on a file (via a channel) must transfer in sector (or multi-sector) lots, the chan
nel’s current position in the file is simply the logical sector number next to be
read or written. This sector number has no relation to actual physical sector
numbers; the first sector in a file is sector 0, the next is sector 1, the last sector in
an n sector file is n-1.

NOTE: The .POSIT SCALL positions the channel (file) before the specified
sector. Thus, a .POSIT to 0 positions the channel before sector X so that a
one-sector read will return sector 0. To position the channel at the end of a file,
.POSIT to n, where n is the number of sectors in the file. If you do not know how
long the file is, .POSIT to 65535 (377377A), verify that an EC.EOF error was
flagged, and then compute the file size as SIZE = 65535-(BC).

Thus, when a file is first opened, via .OPENR, .OPENW, or .OPENU, it is
positioned at sector 0. The first read or write of m sectors will read or write
sectors 0 through m-1. This is a normal sequential access. For example, when
reading, each one-sector read will return the next sector in the file.

44

You can use the .POSIT SCALL to set this “ sector cursor” at any spot in the file.
Positioning a file at sector 0 is the equivalent of rewinding it. A file may be
positioned at its end, so a read will return end-of-file, and a write will extend the
file. It may not be positioned after the last sector+1 in an attempt to extend the
file size-files may be extended only via .WRITE SCALLs.

Note that the .POSIT SCALL strengthens the similarity between .OPENW and
.OPENU. If you have opened a file via .OPENW, you may use .POSIT to position
the channel cursor to allow you to re-write any sector in the file, at any time. If
you then wish to add some more sectors to the end, you can position to the end of
the file and .WRITE some more. Also note that you can change the value of any
byte or bytes in a file open for write or update by positioning before the proper
sector, reading the sector, modifying it, repositioning over it again, and writing
the sector back.

EXAMPLE 1: REWINDING A FILE AFTER READING IT

<0PEN AND READ A FILE ON CHANNEL 1>

LXI
MVI
SCALL
JC

r --------1
A, 1
.POSIT
ERROR

BEFORE SECTOR 0
CHANNEL 1
POSITION

<READ THE FILE OVER AGAIN>

45

** EXAMPLE 2: REPLACING A SECTOR IN A FILE BEING WRITTEN

<OPEN THE FILE VIA
MVI A,2
LXI B,256*10
LXI D,BUFFER
SCALL .WRITE
JC ERROR
LXI B,1

MVI A,2
SCALL .POSIT
JC ERROR
MVI A,2
LXI B,256
LXI D,BUFFER2
SCALL .WRITE
MVI A,2
LXI B,— 1
SCALL .POSIT
CPI EC.EOF
JNE ERROR

.OPENW >
CHANNEL 2
WRITE 10 SECTORS
FROM BUFFER

PREPARE TO RE-WRITE 2ND SECTOR
IN FILE

CHANNEL 2

WRITE DIFFERENT DATA
CHANNEL 2
POSITION AT END OF FILE
WILL RETURN EOF ERROR

OTHER ERROR

< FURTHER WRITES WILL APPEND TO END OF FILE >

46 |

* * EXAMPLE 3: INCREMENTING BYTE 7423 IN FILE "DATA.RAW"

MVI A,0 OPEN ON CHANNEL 0
LXI D,DEFALT
LX I H,FNAME
SCALL .OPENU OPEN FOR UPDATE
JC ERROR

POSITION[FOR READ

LXI H,7423 (H) = SECTOR NUMBER,
(L) = BYTE INDEX

MOV C,H
MVI B,0 (BC) = SECTOR NUMBER
PUSH H SAVE (HL)
MVI A,0
SCALL .POSIT POSITION
JC ERROR

READ SECTOR INTO WORK BUFFER

MVI A,0 (A) = CHANNEL
LXI B,256
LXI D,BUFFER
SCALL .READ
JC ERROR

INCREMENT BYTE

POP
LX I
MOV
CALL

B
H,BUFFER
A,C
$DADA

INR M

(B) = SECTOR, (C) = BYTE INDEX

(A) = BYTE INDEX
ADD (A) INTO (HL) (ROUTINE IN
H17 -ROM)
INCREMENT BYTE IN BUFFER

POSITION FOR RE-WRITE

MOV
MV I
MVI
SCALL
JC

C,B
B,0
A,0
.POSIT
ERROR

= SECTOR NUMBER

47

WRITE BACK OUT

DEFALT
FNAME
BUFFER

MVI A,0
LXI B,256
LXI D,BUFFER
SCALL .WRITE
JC ERROR

CLOSE FILE

MVI A,0
SCALL .CLOSE
JC
•

ERROR

•
•
DB ' SYJZf’ ,0
DB 'SYtfiDATA
DS 256

r.

CHANNEL

.DECODE — Decode File Name

DECODE - PROCESS DECODE SCALL.

DECODE DECODES THE SUPPLIED FILE NAME
INTO A BLOCK IN THE FORM:

DS
DS
DS
DS
DS
DS

1
2
1

3
4*

RESERVED
DEVICE NAME
DEVICE UNIT
FILE NAME
FILE EXTENSION
RESERVED

ENTRY

EXIT

USES

(BC) = AREA FOR TABLE TO BE WRITTEN
(DE) = DEFAULT LIST
(HL) = NAME ADDRESS
’C' CLEAR IF OK
’ C ’ SET IF ERROR
(A) = ERROR CODE

ALL

Use the .DECODE SCALL to decode an ASCII file descriptor into a formatted
block. The fields in the block contain the device, unit, name, and extension
values from the file descriptor. The fields are 0 filled. This function is useful for
programs which wish to in some way examine the file name, extension or device
specification without going to the work of manually cracking the file descriptor.
For example, if your program reads a file descriptor from the console, then wants
to know if the extension is “ABC” , it might use the .DECODE SCALL to crack out
the extension field.

** EXAMPLE: SEE IF USER TYPED DEVICE CODE 'T T :'

<READ LINE FROM CONSOLE INTO *LINE* >

LX I B,BUFFER
LXI D,DEFALT
LXI H,LINE
SCALL .DECODE
JC ERROR
LXI B,3
LXI D,BUFFER+1
LXI H,TTSTR
CALL $COMP

JNE NOTTT
JMP GOTTT

DECODE SUPPLIED
ILLEGAL NAME
COMPARE 3 BYTES
(DE) = SUPPLIED

FILE NAME

DEVICE NAME

COMPARE STRINGS (ROUTINE
IN H17 ROM)
FILE NOT ON T T :
NAME DID SPECIFY T T :

BUFFER DS
LINE DS
TTSTR DB

19
80
' T T ' , 0

ROOM FOR REPLY DATA
USER-SUPPLIED FILE NAME
NAME AND UNIT IF DEVICE WAS 'T T :

.NAME — Get File Name from Channel

NAME - PROCESS NAME SCALL.

THE NAME SCALL RETURNS THE DEVICE, FILE NAME, AND
FILE EXTENSION OF AN OPEN CHANNEL.

THE INFORMATION IS OBTAINED FROM THE CHANNEL TABLE,
WHICH WAS SET UP UPON FILE OPEN.

ENTRY

EXIT

USES

(A) = CHANNEL NUMBER
(DE) = ADDRESS FOR DEVICE AND EXTENSION (DEFAULT

BLOCK FORMAT)
(HL) ADDRESS FOR NAME (8 CHARACTERS, FOLLOWED

BY 00 BYTE)
'C ’ CLEAR IF OK
' C ’ SET IF ERROR
(A) = ERROR CODE

ALL

Use the .NAME SCALL to recall the name which was supplied to HDOS when the
channel was opened. This is mainly used when an error message is prepared
after HDOS has flagged an error on a channel operation.

* * EXAMPLE: ERROR PRINTING PROGRAM.
*
* THIS ROUTINE PRINTS AN ERROR MESSAGE FOR A FILE
*
-W-

OPERATION GONE WRONG •
/I
* ENTRY (A) = ERROR NUMBER
* (CURCHAN) = CHANNEL NUMBER USED IN
* FAILED OPERATION
* EXIT • • •

ERROR PUSH PSW SAVE ERROR CODE
LXI H,ERRORA
SCALL .PRINT PRINT 'ERROR - '
POP PSW (A) = CODE
MV I H,07Q BELL AFTER ERROR CODE
SCALL .ERROR PRINT ERROR
LXI H,ERRORB
SCALL .PRINT PRINT ' ON FILE '
LDA CURCHAN (A) = CHANNEL NUMBER
LXI D ,ERRDFB (DE) = ADDRESS FOR DEVICE

EXTENSION
LXI H ,ERRNAM (HL) = ADDRESS FOR NAME
SCALL .NAME GET FILE NAME

* MANIPULATE DEVICE, NAME, AND EXTENSION INTO
* PRESENTAE&LE FORMAT, AND PRINT ON CONSOLE.

ERRORA DB
ERRORB DB
ERRDEB DS
ERRNAM DS

012Q,’ERROR ’ '+200Q
’ ON FILE’,’
6

+200Q
DEVICE AND EXTENSION FOR BAD FILE
NAME FOR BAD FILE9

.LINK — Link to Another Program

LINK - PROCESS LINK SCALL.

*
*

LINK LOADS IN AND RUNS ANOTHER PROGRAM. THE OPEN FILES,
SYSTEM TABLES, AND STACK ARE NOT DISTURBED.

ENTRY (HL) = ADDRESS OF PROGRAM FILE DESCRIPTOR
EXIT TO LINKED PROGRAM, IF OK

(A) UNCHANGED
(SP) = VALUE AT 'LINK' SCALL

TO CALLER IF ERROR
’C' SET
(A) = ERROR CODE

USES ALL

The .LINK SCALL is used to pass control to another program.

** EXAMPLE: TRANSFER CONTROL TO PROGRAM ’CLEANUP.ABS’

XFER MVI A,-l CHANNEL -1 OPEN ON LOADED FILE

GET DEVICE WE WERE LOADED FROM, SO THAT WE CAN
RUN ’CLEANUP.ABS' FROM THAT SAME DISK

LX I
LX I
SCALL

D,DEVCODE
H,BUFFER
.NAME

AREA FOR DEVCODE
PUT NAME INTO SCRATCH AREA

BUILD NAME TO LINK TO...

LXI B ,XFERAL
LXI D ,XFERA
LXI H,DEVC0DE+3
CALL SMOVE

(BC) = NUMBER OF
FROM XFERA

YTES TO MOVE

PUT AFTER DEVICE SPECIFICATION
PUT NAME AFTER DEVICE (ROUTINE
IN H17 ROM)

* CALL PROGRAM

LXI
SCALL
JC

H,DEVCODE
.LINK
ERROR

TRY TO
FAILED

EXECUTE IT

XFERA
XFERAL

DB
EQU

':CLEANUP.ABS’
*-XFERA

.0
AMOUNT

NAME
TO MOVE

DEVCODE DS 3+XFERAL ROOM FOR ENTIRE FILE SPECIFICAION

53

.CTLC — Set Up Handlers for Control Characters

CTLC - SET CONTROL CHARACTER ADDRESS

*
*

THE .CTLC SCALL IS USED TO SET UP HANDLING FOR
THE CONTROL CHARACTERS CTL-A, CTL AND CTL-C

A SEPARATE ADDRESS IS SPECIFIABLE FOR EACH CHARACTER. IF
AN ADDRESS OF 0 IS SPECIFIED, PROCESSING OF THAT
CHARACTER IS SUSPENDED.

THE PROCESS ADDRESS MUST BE > 255A.

ENTRY (A) = CONTROL CHARACTER WHOSE PROCESS ADDRESS IS

EXIT

USES

TO CHANGE (CTL-A, CTL-B, OR CTL-C)
(HL) = NEW ADDRESS (=0 TO CLEAR PROCESSING)
'C' CLEAR IF OK
' C' SET IF ERROR
(A) = ERROR CODE

A,F,H,L

The .CTLC SCALL allows you to set up interrupt service subroutines for the
handling of CTL-A, CTL-B, and CTL-C. You may set up a separate service routine
for each character.

When a service routine has been set up and the specified character has been
struck, your routine will be entered at interrupt-time, with interrupts enabled.

Upon entry to your routine, the registers B, C, D, E, H, and L have whatever
contents were in them at the time of the control character interrupt. The stack
contains:

((SP)+O) = Return Address into HDOS
((SP)+2) = Interrupted PSW
((SP)+4) = Interrupted PC

Your routine cando some interrupt-time work (having saved the registers first, of
course) and then do a RET to HDOS, in which case HDOS will take care of the
rest. Or, if you wish, you may ignore the HDOS return address and jump back
into your program’s command loop, or whatever.

54

* * EXAMPLE 1: SETTING AN ’INTERRUPT OCCURRED' FLAG

LX I
MVI
SCALL
•

H,CCINT
A,003
. CTLC

SET UP CTL-C INTERRUPT PROCESSOR
(A) = CTLC
SET UP CTL C

LOOP

•
•
SCALL .SCIN
JNC GOTONE GOT A CHARACTER
LDA CCHIT
ANA A
JZ LOOP NO CTL-C HIT
JMP
•
•

PROCC PROCESS CTL-C

*

•

CTL-C CAUSES THIS ROUTINE TO BE ACTIVATED

CCINT MVI A,1 PSW IS ALREADY SAVED
STA CCHIT SET CC HIT
RET RETURN TO INTERRUPTED CODE VIA

HDOS
•

CCHIT

•
•
DB □ SET =1 WHEN CTL-C TYPED

* * EXAMPLE 2: RETURNING CONTROL TO MAIN COMMAND LOOP.

•
•
LXI H, CBHIT
MVI A,002 (A) = CTLB
SCALL
•

. CTLB

START
•
LXI SP,STACK CLEANUP STACK

LOOP •
•

DO WHATEVER WE D O ...

*

•

ENTERED HERE IF CTL-B HIT

CBHIT JMP START RESTART COMMAND LOOP

55

.SETTOP — Set Top of User Memory

*** SETTOP - SET TOP OF USER MEMORY.

* SETTOP IS CALLED TO NOTIFY THE SYSTEM OF A NEW
* MEMORY LIMIT ADDRESS. IF NECESSARY, THE OVERLAYS
*
-w-

WILL BE! UNLOADED •

* ENTRY (HL) = NEW ADDRESS
* EXIT (PSW) = 'C' CLEAR IF OK
* 'C' SET IF TOO HIGH
* (A) = ERROR CODE
* (HL) = MAXIMUM ADDRESS
* USES ALL

Use the .SETTOP SCALL to set the top of the user memory area. Since HDOS sets
the top of memory to the last address in your program, most programs do not
need to use .SETTOP. Programs which need large buffer areas should not declare
them with DS statements, since the generated binary file will be excessively
large. Instead, they should define the areas via EQU statements, and use the
.SETTOP SCALL to request the needed space from HDOS.

Note that, by requesting the impossible (65535 bytes), you can determine the
actual maximum memory available from the error return.

If you want to request maximum memory but avoid swapping the overlays, the
approved method is to first load both overlays (see .LOADO) and then make the
memory request.

**

MAXMEM

EXAMPLE 1: GETTING MAXIMUM MEMORY WITHOUT SWAPPING

MVI
SCALL
JC

A,OVLO
.LOADO
ERROR

LOAD OVERLAY 0

MVI
SCALL
JC

A,OVL1
.LOADO
ERROR

LOAD OVERLAY 1

LXI H,— 1 CAUSE DELIBERATE ERROR
SCALL .SETTOP . .TO GET MAX IN (HL)
LXI
DAD

D,— 10
D

SUBTRACT ’SLOP’ FACTOR

SHLD MAXMEM SAVE MAX MEMORY
SCALL .SETTOP NOW ASK FOR THE MAX ALLOWABLE
JC
•

ERROR SHOULD NOT HAPPEN

•
DS 2 MEMORY LIMIT

**
*

EXAMPLE 2: GETTING ABSOLUTE MAXIMUM MEMORY

LXI
SCALL
SHLD
SCALL
JC
•

(ENTER HERE WITHOUT LOADING OVERLAYS

H,-l
.SETTOP
MAXMEM
.SETTOP
ERROR

IMPOSSIBLE AMOUNT
WILL FAIL. .
SAVE RESULT
ASK FOR MAX
SHOULD NOT HAPPEN

MAXMEM
•
DS 2 MEMORY LIMIT

REMEMBER THAT IE THE .SETTOP IS SUCCESSFUL,
THE CONTENTS OF (HL) ARE MEANINGLESS.

57

.CLEAR — Clear I/O Channel

CLEAR - CLEAR I/O CHANNEL.

* CLEAR IS CALLED TO CLEAR AN I/O CHANNEL. IF THE
* CHANNEL IS CLOSED, NO ACTION IS PERFORMED. IF THE
* CHANNEL IS OPEN, IT IS FLAGGED CLOSED. THE RESULTS
* OF THIS OPERATION DEPEND UPON THE TYPE OF FILE:
*
* OPEN FOR ACTION

SAME AS .CLOSEREAD

* WRITE FILE
* DISK
* FREE

IS FORGOTTEN. ANY WRITTEN
BLOCKS ARE RESTORED TO THE
POOL.

* UPDATE
*
*
*

REPLACED SECTORS REMAIN REPLACED.
APPENDED SECTORS ARE LOST UNTIL
NEXT BOOT. FILE STAYS AT PREVIOUS
LENGTH.

* THE DEVICE DRIVER IS NOT INFORMED OF THE CLOSING.

*
-W-

SCALL .CLEAR

* ENTRY (A) = CHANNEL NUMBER
* EXIT ' C' CLEAR IF OK

' C' SET IF ERROR
* (A) = ERROR CODE
* USES ALL

Use the .CLEAR SCALL to free up a channel without closing it. The actions
discussed above merely document the current results of the .CLEAR SCALL;
they may not stay the same for future releases. There is only one supported use of
the .CLEAR SCALL, which is to delete temp files. A temp work file is created by
means of a .OPENW SCALL. You need not worry about name conflicts, as any
pre-existing file will not be disturbed by the .OPENW. However, when you are
done, you do not want to .CLOSE then .DELETE the file, since this would destroy
any pre-existing file by that name. In that case, use .CLEAR on the channel to free
up the channel and release the used disk sectors.

** EXAMPLE: CREATING, USING, AND DESTROYING A SCRATCH PILE

MVI A,D USE CHANNEL □
LXI D,DEFALT
LXI H,SCRNAME
SCALL .OPENW OPEN SCRATCH FILE
JC ERROR

< WRITE DATA ON SCRATCH FILE >

MVI
LXI
SCALL

A, 0
B, 0
.POSIT REWIND SCRATCH FILE

< READ DATA FROM SCRATCH FILE >

MVI
SCALL

A,0
.CLEAR DESTROY SCRATCH FILE

SCRNAME SYJ0: TEMP . TMP ’ .□ ANY PRE-EXISTING TEMP.TMP
NOT AFFECTED

59

.ERROR -— Print Error Message

*
ERROR - PRINT ERROR MESSAGE.

*
*

ERROR IS CALLED TO PRINT AN ERROR MESSAGE.

* THE HDOS SYSTEM RETURNS ERROR CODE NUMBERS WHEN
* IT DETECTS AN ERROR. THE ERROR FUNCTION MAY BE
* USED TO TYPE AN ALPHABETIC EXPLANATION OF THE ERROR.

* THE ERRORS ARE STORED IN THE FILE 'ERRORMSG.SYS'
* ON THE SYSTEM DISK, ONE MESSAGE PER LINE. THE
*
*

LINES LOOK LIKE:

*
*

NNNTEXT
• •
*
*

FOR EXAMPLE,

* 002END OF MEDIA

* IF THE ERROR MESSAGE FILE CANNOT BE READ, OR THE
* MESSAGE DOES NOT APPEAR, THE ERROR IS TYPED AS

* 'SYSTEM ERROR # NNN'

* ENTRY (A) = ERROR CODE
* (H) = TRAILING CHARACTER (TYPED AFTER MESSAGE)
* EXIT NONE
* USES ALL

Use the .ERROR SCALL to look up an error message in the system error message
file “ ERRORMSG.SYS” . Since HDOS returns all error messages as numbers, this
function allows you to easily inform the user, in English, just what went wrong.
Also note that if you have a program which needs to generate a large number of
messages, you can add them to ERRORMSG.SYS. Of course, this is not a sup
ported use of .ERROR, and may not work with future releases.

An example of the use of the .ERROR SCALL is shown in the example of the
.NAME SCALL.

.LOADD — Load Device Driver

* * * LOADD - LOAD DEVICE DRIVER

* LOADD LOADS THE SPECIFIED DEVICE DRIVER

* ENTRY (HL) = DEVICE DRIVER DESCRIPTOR STRING
* EXIT (PSW) = 'C' CLEAR IF OK
* 'C' SET IF ERROR
* (A) = ERROR CODE

* USES ALL

Use the LOADD system call to load a specified device driver in memory without
opening a file on the device. Like the .LOADO system call, this system call is not
to be used when SY# is to be dismounted. If a device driver is not in memory at
the time SY# is dismounted (because it was not loaded and no channel is
currently open on the device), subsequent references to the device will generate
unknown device errors. Examples of the use of this call are found in Part 8, and
below.

LXI H,DEVICE
SCALL .LOADD
JC ERROR

DEVICE

61

.MOUNT — Mount Disk

* **
*

MOUNT - MOUNT DISK

*
*

MOUNT DISK ON SPECIFIED UNIT OF SELECTED DEVICE

* ENTRY (HL) = ADDRESS OF DEVICE SPECIFICATION
* EXIT (PSW) = ' C' SET IF ERROR
* (A) = ERROR CODE
* ’ C ’ CLEAR IF NO ERROR
* 'Z' CLEAR IF AN ABORT
* USES ALL

Use the .MOUNT system call to mount additional devices. The device specified
must not have a volume already mounted on it. If it does, a successful dismount
must be issued before a .MOUNT may be processed. The devices currently
supported are SY0:, SYl:, SY2:, DKp':, DKl:, and DK2:. This system call also
prints a message informing the user that a volume has been mounted, as per the
format of the HDOS “ MOUNT” command. This call will also verify that the disk
structure is not corrupt. If the disk structure is corrupt, the volume will not be
successfully mounted and an error will be returned. If you do not want the
message, you may issue the .MONMS system call.

For a detailed example of .MOUNT, see Part 8.

62

.DMOUN — Dismount Disk

*** DMOUN - DISMOUNT DISK

* DISMOUNT1 DISK ON SELECTED DRIVE

* ENTRY (HL) = ADDRESS OF DEVICE SPECIFICATION
* EXIT (PSW) = ’C ’ SET IF ERROR
*
-¥■

(A) = ERROR CODE

* USES ALL

Use the .DMOUN system call to dismount diskettes. After the volume has been
successfully dismounted, it will also print a message verifying that the volume
has, in fact, been dismounted. The device to be dismounted must have a volume
currently mounted. If it does not, .DMOUN returns an error.

If the volume to be dismounted is the system volume, you must observe several
precautions. Since HDOS will no longer be able to overlay itself, the overlays
must be loaded via the .LOADO SCALL. Similarly, device drivers not currently
in memory at the time of the dismount will be considered nonexistent. Sub
sequent references to drivers so marked will generate unknown device errors.
You may load a device driver by opening a channel on the device, or by
“ .LOADD”ing it. Even if the current program will not use the device, the device
must be loaded before you dismount the system volume if any subsequent
programs are to use it.

Before you dismount a disk, you must clear all of the I/O channels open to that
disk. Remember that the program itself is left open on channel -1 (3 7 7 Q), and this
channel must be closed before you dismount the system disk (SY^:)-

63

.MONMS — Mount Disk with No Message

* * *
*

MONMS - MOUNT/NO MESSAGE

* MOUNT SPECIFIED UNIT OF SELECTED DEVICE WITHOUT ISSUING
*
*

A MOUNT MESSAGE

* ENTRY (HL) = ADDRESS OF DEVICE SPECIFICATION
* EXIT (PSW) = ’C ’ SET IF ERROR
* (A) =ERROR CODE
* ’C ’ CLEAR IF NO ERROR

’Z ’ CLEAR IF AN ABORT
* USES ALL

In versions of HDOS later than Version 1.5, the .MONMS system call is identical
to the .MOUNT system call, except that .MONMS prints no mount message. In
the future, this may not be the case. In all likelihood, this will be changed to a
“quick” mount which neither prints the message nor verifies the disk structure.
Therefore, we do not recommend that you use .MONMS for the present.

For a detailed example, see Part 8.

64

.DMNMS — Dismount Disk with No Message

DMNMS - DISMOUNT DEVICE/NO MESSAGE

* DISMOUNT SELECTED UNIT OF SPECIFIED DEVICE WITHOUT
* ISSUING MESSAGE
*
* ENTRY (HL) = ADDRESS OF DEVICE SPECIFICATION
* EXIT (PSW) = 'C' SET IF ERROR
* (A) = ERROR CODE
* USES ALL

The .DMNMS system call is virtually identical to the .DMOUN call, except for
the printing of the dismount message. In future releases, this will probably be
changed to some form of quick dismount. For the present, we do not suggest that
you use it.

65

.RESET — Mount/Dismount Disk

* * * RESET RESET DEVICE

RESET THE SPECIFIED UNIT OF THE SELECTED DEVICE
BY ISSUING A DISMOUNT FOLLOWED BY A MOUNT.
THE DEVICE NAME SHOULD BE IN THE SAME FORMAT AS
THAT EXPECTED BY MOUNT AND DISMOUNT.

* ENTRY (HL) = ADDRESS OF DEVICE SPECIFICATION
* EXIT (PSW) = 'C' CLEAR IF NO ERROR
* 'C ' SET IF ERROR
*
Jf.

(A) = ERROR CODE

* USES ALL

If a disk is mounted on the specified device, the .RESET SCALL is equivalent to a
.DMOUN, a disk change prompt, and a .MOUNT. You must verify the prompt by
opening the drive door (so that the diskette stops spinning) and then closing it. If
no volume is mounted, the call is equivalent to a .MOUNT and no prompt
message is printed. This call may be interrupted between the .MOUNT and
.DMOUN by means of control characters (°C, etc.), in which case the device will
be left without a volume mounted on it.

For a detailed example, see Part 8.

HDOS SYMBOL DEFINITIONS

As we stressed in earlier sections, there are numerous advantages to using
symbolic definitions when you are interfacing to the operating system. This
section lists suggested common decks which contain the appropriate symbolic
definitions.

To obtain access to these definitions, simply insert the pseudo-ops

XTEXT HOSDEF
XTEXT HOSEQU

XTEXT ASCII
XTEXT ECDEF

into the initial statements of your program. This will cause the assembler to
process, as required, the statements in the file HDOS.ACM, thus defining those
symbols for that assembly.

Note that the assembler will not normally list the contents of any file read by
XTEXT. However, by using the

LON C

pseudo-op, or the

/LO N :C

switch when you are using the assembler, you can cause a listing of all files read
by XTEXT to be written to the listing file.

Recommended HDOS Common Deck Contents

RECOMMENDED HOSDEF.ACM CONTENTS

HOSDEF SPACE 3,10
HOSDEF - DEFINE HOS PARAMETER.

VERS EQU 2*16+0

ORG 0

CURRENT VERSION = 2 . 0

RESIDENT FUNCTIONS

E FIRST).EXIT DS 1
.SCIN DS 1
.SCOUT DS 1
.PRINT DS 1
.READ DS 1
.WRITE DS 1
.CONSL DS 1
.CLRCO DS 1
.LOADO DS 1
.VERS DS 1

EXIT (MUST 1
SCIN
SCOUT
PRINT
READ
WRITE
SET CLEAR CONSOLE OPTIONS
CLEAR CONSOLE BUFFER
LOAD AN OVERLAY
RETURN HDOS VERSION NUMBER

68

9

* HDOSOVLO.SYS FUNCTIONS '• • y •V ♦

ORG 4OA T
.LINK DS 1 LINK (MUST BE' FIRST)
. CTLC DS 1 CTL-C
.OPENR DS 1 OPENR
.OPENW DS 1 OPENW
.OPENU DS 1 OPENU

DS 1 RESERVED
.CLOSE DS 1 CLOSE
.POSIT DS 1 POSITION
.DELETE DS 1 DELETE
.RENAME DS 1 RENAME
.SETTOP DS 1 SETTOP
.DECODE DS 1 NAME DECODE
.NAME DS 1 GET FILE NAME FROM

CHANNEL
.CLEAR DS 1 CLEAR CHANNEL

DS 1 RESERVED
.ERROR DS 1 LOOKUP ERROR
.CHELG DS 1 CHANGE FLAGS

DS 1 RESERVED
.LOADD DS 1 LOAD DEVICE DRIVER

* HDOSOVL1.SYS FUNCTIONS

ORG 200Q .MOUNT (MUST BE FIRST)

.DMOUN DS 1 DISMOUNT

.MONMS DS 1 MOUNT/NO MESSAGE

.DMNMS DS 1 DISMOUNT/NO MESSAGE

.RESET DS 1 RESET = DISMOUNT/MOUNT OF UNIT

OVERLAY INDICES

OVLO
OVL1

EQU
EQU

□
1

HDOSOVLO.SYS
HDOSOVL1.SYS

RECOMMENDED HOSEQU.ACM CONTENTS

HOSEQU SPACE 4,10
* *
*

HDOS Equates

USERFWA EQU 42200A FIRST WORD ADDRESS OF USER
PROGRAMS

STACK EQU 422DDA SYSTEM STACK ADDRESS > • •• < •
ESVAL SPACE 4,10
**
X-

SYSTEM RAM CELL DEFINITIONS.

* THESE VALUES ARE LOCATED IN THE RESERVED HDOS RAM AREA.
ORG 040277A •

S.DATE DS 9
•

SYSTEM DATE (IN ASCII)
S.DATC DS 2 CODED DATE

DS 4 RESERVED
S.HIMEM DS 2 HARDWARE HIGH MEMORY ADDRESS+1

S .SYSM DS 2 FWA RESIDENT SYSTEM
• 1 ‘ • z

S .USRM DS 2 LWA USER MEMORY

S .OMAX DS 2 MAX OVERLAY SIZE FOR SYSTEM

* * THE FOLLOWING SYMBOLS ARE USED BY THE .CONSL SCALL.

CSL.ECH EQU
CSL.WRP EQU
CSL.CHR EQU

1OOOOOOOB
ODOOQO1OB
□□□□□□DIB

SUPPRESS ECHO
WRAP LINES AT WIDTH
OPERATE IN CHARACTER MODE

I.CSLMD EQU □ CONSOLE MODE

CTP.BKS EQU
CTP.MLI EQU
CTP.MLO EQU
CTP.2SB EQU
CTP.BKM EQU
CTP.TAB EQU

1OOODOOOB
OOIDODOOB
OOO1ODOOB
OOOO1DOOB
□□OOOO1OB

□□□□□□□1

TERMINAL PROCESSES BACKSPACES
MAP LOWER CASE TO UPPER ON INPUT
MAP LOWER CASE TO UPPER ON OUTPUT
TERMINAL NEEDS TWO STOP BITS
MAP BKSP (UPON INPUT) TO RUBOUT
TERMINAL SUPPORTS TAB CHARACTERS

I.CONTY EQU
I.CUSOR EQU
I.CONWI EQU

1
2
3

S.CONTY IS 2ND BYTE
S.CUSOR IS 3RD BYTE
S.CONWI IS 4TH BYTE

CO.FLG EQU
CS.FLG EQU

□□□□□□□IB
1DOOOOOOB

CTL-0 FLAG
CTL-S FLAG

I.CONFL EQU 4 S.CONFL IS 5TH BYTE

RECOMMENDED ASCII.ACM CONTENTS

ASCII SPACE 2,10
* * ASCII CHARACTER EQUIVALENCES

CR EQU 15Q CARRIAGE RETURN
LF EQU 12Q LINE FEED
NULL EQU 0 200Q PAD CHARACTER
BELL EQU 7 BELL CHARACTER
RUBOUT EQU 177Q
BKSP EQU 10Q CTL-H
C.SYN EQU 26Q SYNC
C.STX EQU 2 STX
QUOTE EQU 47 Q
TAB EQU 11Q
ESC EQU 33Q
NL EQU 12Q NEW LINE (HDOS SYSTEMS)
ENL EQU NL+200Q NL 4- END-OF-LINE FLAG
FF EQU 14Q FORM FEED
CTLA EQU 01Q CTL-A
CTLB EQU 02Q CTL-B
CTLC EQU 03Q CTL-C
CTLD EQU 04Q CTL-D

RECOMMENDED ECDEF.ACM CONTENTS I

ECDEF
* *

SPACE
ERROR

3,10
CODE DEFINITIONS.

EC.HIN
ORG
DS

0
1 HDOS ISSUE NUMBER

EC.EOF DS 1 END OF FILE
E C .EOM DS 1 END OF MEDIA
EC.ILC DS 1 ILLEGAL SYSCALL CODE
EC.CNA DS 1 CHANNEL NOT AVAILABLE
EC.DNS DS 1 DEVICE NOT SUITABLE
EC.IDN DS 1 ILLEGAL DEVICE NAME
EC.IFN DS 1 ILLEGAL FILE NAME
E C .NRD DS 1 NO ROOM FOR DEVICE DRIVER
EC.FNO DS 1 CHANNEL NOT OPEN
EC.ILR DS 1 ILLEGAL REQUEST
EC.FUC DS 1 FILE USAGE CONFLICT
EC.FNF DS 1 FILE NAME NOT FOUND
EC.UND DS 1 UNKNOWN DEVICE
EC.ICN DS 1 ILLEGAL CHANNEL NUMBER
EC.DIF DS 1 DIRECTORY FULL
EC.IFC DS 1 ILLEGAL FILE CONTENTS
EC.NEM DS 1 NOT ENOUGH MEMORY
EC.RF DS 1 READ FAILURE
EC. WF DS 1 WRITE FAILURE
EC.WPV DS 1 WRITE PROTECTION VIOLATION
EC. WP DS 1 DISK WRITE PROTECTED
EC.FAP DS 1 FILE ALREADY PRESENT
EC.DDA DS 1 DEVICE DRIVER ABORT
EC.FL DS 1 FILE LOCKED
EC.FAO DS 1 FILE ALREADY OPEN
EC. IS DS 1 ILLEGAL SWITCH
E C .UUN DS 1 UNKNOWN UNIT NUMBER
E C .FNR DS 1 FILE NAME REQUIRED
EC.DIW DS 1 DEVICE IS NOT WRITABLE (OR WRITE LOCKED)
EC.UNA DS 1 UNIT NOT AVAILABLE
EC.ILV DS 1 ILLEGAL VALUE
EC.ILO DS 1 ILLEGAL OPTION
EC.VPM DS 1 VOLUME PRESENTLY MOUNTED ON DEVICE
EC.NVM DS 1 NO VOLUME PRESENTLY MOUNTED
EC.FOD DS 1 FILE OPEN ON DEVICE
EC.NPM DS 1 NO PROVISIONS MADE FOR

EC.DNI DS 1
REMOUNTING MORE DISKS
DISK NOT INITIALIZED

EC.DNR DS 1 DISK IS NOT READABLE
EC.DSC DS 1 DISK STRUCTURE IS CORRUPT
EC.NCV DS 1 NOT CORRECT VERSION OF HDOS
EC.NOS DS 1 NO OPERATING SYSTEM MOUNTED
EC.IOI DS 1 ILLEGAL OVERLAY INDEX
EC.OTL DS 1 OVERLAY TOO LARGE

HDOS Symbol Values

This section contains a list of byte-octal values for the HDOS symbols discussed
in this document. These values are presented as a double-check, so you can
compare them to the values generated when you assemble the common decks.
Once again, it is important that you use the common decks and use symbolic
values rather than using the octal values directly.

HOSDEF SYMBOL DEFINITIONS

.CHFLG = 000060A

.CLEAR = 000055A

.CLOSE = 000046A

.CLRCO = 000007A

.CONSL = 000006A

.CTLC = 000041A

.DECODE = 000053A

.DELETE = 000050A

.DMNMS = 000203A

.DMOUN = 000201A

.ERROR = 000057A

.EXIT = 000000A

.LINK = 000040A

.LOADD = 000062A

.LOADO = 000010A

.MONMS = 000202A

.MOUNT = 000200A

.NAME = 000054A

.OPENR = 000042A

.OPENU = 000044A

.OPENW = 000043A

.POSIT = 000047A

.PRINT = 000003A

.READ = 000004A

.RENAME = 80Q0051A

.RESET = 000204A

.SCIN = 000001A

.SCOUT = 000002A

.SETTOP = 000052A

.VERS = 000011A

.WRITE = 000005A
VERS = 000026A

HOSEQU SYMBOL DEFINITIONS

USERFWA = 42200A
STACK = 42200A

CO.ELG = 000001A

CS.ELG = 000200A
CSL.CHR = 000001A
CSL.ECH = 000200A
CSL.WRP = 000002A
CTP.BKM = 000002A
CTP.BKS = 000200A
CTP.MLI = 000040A

CTP.MLO = 000020A

CTP.TAB = 000001A
CTP.2SB = 000010A
I.CONFL = 000004A
I.CONTY = 000001A
I.CONWI = 000003A
I.CSLMD = 000000A

I.CUSOR = 000002A

S.DATC = 040310A
S.DATE = 040277A
S.HIMEM = 040316A
S.OMAX = 040324A
S.SYSM = 040320A
S.USRM = 040322A

ECDEF SYMBOL DEFINITIONS

EC.CNA = OOOOO4A EC.FNR = □00034A 'EC.NEM = 000021A
EC.DDA — □00027A EC.FOD — D00043A EC.NOS = OOOO51A
EC.DIF — 000017A EC.FUC = 000013A EC.NPM — 000044A
EC.DIW = 000035A EC.HIN — OOOOOOA E C .NRD = OOOO1OA
EC.DNI = 000045A EC.ICN = 000016A EC.NVM = 000042A
E C .DNR = OOOO46A EC.IDN = 000006A E C .OTL — □D0053A
EC.DNS = 0D0005A EC.IFC = 000020A EC.RF = 000022A
EC.DSC = OOOO47A EC.IFN = 000007A E C .UNA = 000036A
EC.EOF = OOOOO1A EC.ILC = 000003A E C .UND = 000015A
EC.EOM — 000002A EC.ILO = OOOO4OA E C .UUN = 000033A
EC.FAO = 000031A EC.ILR — 000012A EC.VPM — OOOO41A
EC.FAP — 000026A EC.ILV — 000037A EC. WF = 000023A
EC.FL = 000030A EC.IOI = 000052A EC. WP 000025A
EC.FNF — OOOO14A EC.IS — 000032A EC.WPV = 000D24A
E C .FNO OOOO11A EC.NCV 000050A

Part 8

Programming Examples

Menu Prologue for MBASIC

MENU P ro lo g u e HEATH ASM # 1 0 4 .0 6 .0 0
15-O ct-8O Page 1

00002 *** MENU P ro lo g u e
00003 ft
00004 ft COPYRIGHT 1980, HEATH CO.
00005 *
00006 * T h is P ro lo g u e :
00007 * Loads d e v ic e d r i v e r s (i f
00008 * LP:
00009 * LT:
00010 * LD:
0001 1 * AT:
00012 * Runs MBASIC e s t a b l i s h i n g
00013 * Runs th e MBASIC program
00014 *
00015 * N o te : The command l i n e may be
00016 * accom odate o th e r f i l e s ,
00017 * th e l i n e pushed on th e
00018
00019

*

0 4 2 .2 0 0 00020 XTEXT ASCII
042 .200 00049 XTEXT HOSDEF
0 0 0 .2 0 5 00117

00123
XTEXT HOSEQU

0 3 0 .2 5 2 00124 $MOVE EQU 30252A
031 .136 00125

00126
00127

$TYPTX EQU 31136A

0 4 2 .2 0 0 00128
00129

ORG USERFWA

0 4 2 .2 0 0 00130 START EQU *
00131
00132
00133

* Load th e d e v ic e d r i v e r s

0 4 2 .2 0 0 041 027 043 00134 LOAD1 LXI H,PROAA
0 4 2 .2 0 3 377 062 00135 SCALL .LOADD
042 .205 332 226 042 00136 JC LOAD2
042 .210 315 136 031 00137 CALL $TYPTX
0 4 2 .2 1 3 114 120 072 00138

00139
DB ’LP: L o ad ed ’ ,ENL

0 4 2 .2 2 6 041 033 043 00140 LOAD2 LXI H.PROAB
042.231 377 062 00141 SCALL .LOADD
0 4 2 .2 3 3 332 254 042 00142 JC LOAD3
0 4 2 .2 3 6 315 136 031 00143 CALL $TYPTX
042.241 114 104 072 00144

00145
DB 'LD: L o ad ed ’ ,ENL

0 4 2 .2 5 4 041 037 043 00146 LOAD3 LXI H.PROAC
042 .257 377 062 00147 SCALL .LOADD
042.261 332 302 042 00148 JC L0AD4
0 4 2 .2 6 4 315 136 031 00149 CALL $TYPTX
042 .2 6 7 114 124 072 00150

00151
DB 'LT: L o ad ed ’ ,ENL

0 4 2 .3 0 2 041 043 043 00152 LOAD4 LXI H.PROAD
042 .305 377 062 00153 SCALL .LOADD
0 4 2 .3 0 7 332 330 042 00154 JC PSTACK
0 4 2 .3 1 2 315 136 031 00155 CALL $TYPTX
0 4 2 .3 1 5 101 124 072 00156 DB ’AT: L oaded ',E N L

00157
00158 * Push th e pseudo command l i n e on

p r e s e n t)

5 f i l e b u f f e r s
’’MENU. BAS”

e a s i l y m o d if ie d to
e t c . , by ch an g in g

s ta c k a t "PROB” .

These a r e r o u t in e s in th e H—17 ROM

Load th e d e v ic e d r i v e r
C an’ t lo a d , s k ip m essage

th e u s e r s ta c k fo r MBASIC to f in d

00159

MENU P ro lo g u e HEATH ASM # 1 0 4 .0 6 .0 0
15-O ct-8O Page 2

0 4 2 .3 3 0 041 000 000 00160 PSTACK LXI H,0
0 4 2 .3 3 3 071 00161 DAD SP
0 0 0 .0 1 2 00162 SET PROBE-PROB+1
0 4 2 .3 3 ^ 021 366 377 00163 LXI D ,- .
042 .3 3 7 031 00164 DAD D
042 .3 4 0 371 00165

00166
SPHL

042.341 001 012 000 00167 LXI B,PROBE-PROB+1
042 .3 4 4 021 047 043 00168 LXI D,PROB
042 .3 4 7 315 252 030 00169 CALL $MOVE

00170
00171
00172

* L ink to MBASIC

0 4 2 .3 5 2 041 061 043 00173 LXI H,PROC
0 4 2 .3 5 5 377 040 00174

00175
SCALL .LINK

0 4 2 .3 5 7 315 136 031 00176 CALL $TYPTX
0 4 2 .3 6 2 007 105 122 00177

00178
DB BELL,’ERROR - U nable to

0 4 3 .0 2 4 257 00179 EXIT XRA A
043 .0 2 5 377 000 00180

00181
SCALL .EXIT

0 4 3 .0 2 7 114 120 072 00182 PROAA DB 'L P : ’ ,0
0 4 3 .0 3 3 114 104 072 00183 PROAB DB ’ L D :’ ,0
043 .0 3 7 114 124 072 00184 PROAC DB ’L T :’ ,0
0 4 3 .0 4 3 101 124 072 00185

00186
PROAD DB ’A T :’ ,0

0 4 3 .0 4 7 040 115 105 00187 PROB DB ’ MENU/F:5’ ,0
0 4 3 .0 6 0 00188

00189
PROBE EQU *-1

043.061 123 131 060 00190
00191

PROC DB ’SYO-.MBASIC.ABS’ ,0

0 4 3 .1 0 0 000 00192 END START

HL = c u r r e n t s t a c k v a lu e

DE = - (Number o f b y te s to push)

R ese rv e th e s ta c k sp ace

Move th e s t u f f o n to th e s ta c k

Try to run MBASIC

E x ecu te MBASIC’ ,ENL

Normal EXIT

00192 S ta te m e n ts A ssem bled
32007 B y tes F ree

No E r r o r s D e te c te d

76

INDEX

.CHFLG SCALL, 41

.CLEAR SCALL, 10, 15, 37, 57

.CLOSE SCALL, 10, 37, 57

.CLRCO SCALL, 26

.CONSL SCALL, 16, 22, 41

.CTLC SCALL, 26, 53

.DECODE SCALL, 48

.DELETE SCALL, 33, 40, 57

.DMNMS SCALL, 64

.DMOUN SCALL, 62

.ERROR SCALL, 59

.EXIT SCALL, 15

.LINK SCALL, 9, 10, 52

.LOADD SCALL, 60

.LOADO SCALL, 27

.MONMS SCALL, 63

.MOUNT SCALL, 61

.NAME SCALL,10, 50

.OPENR SCALL, 10, 18, 31, 38, 43

.OPENU SCALL, 10, 18, 35, 43

.OPENW SCALL, 10, 33, 40, 43, 57

.POSIT SCALL, 10, 35, 43

.PRINT SCALL, 21, 24

.READ SCALL, 10, 18

.RENAME SCALL, 38

.RESET SCALL, 65

.SCIN SCALL, 16, 18, 26

.SCOUT SCALL, 17, 18, 24

.SETTOP SCALL, 11, 29, 55

.VERS SCALL, 28

.WRITE SCALL, 10, 20

Booting Volumes, 35
Buffer, Console, 26
Buffer, Type-Ahead, 26

Calls, System, 14, 29
Cells, Low-Memory, 6
Channel -1, 9, 10, 18, 37
Channel Closing, 15, 33, 37
Channel Cursor, 43
Channel Environment, 9
Channel File Name, 50
Channel Numbers, 10, 31
Channels, Freeing, 57
Channels, I/O, 9, 10
Channels, Closing, 37
Clock Interrupts, 7, 8, 11
Closing Channels, 33, 35, 37
Cold Start, HDOS, 12, 13
Compatibility, 14
Computing File Size, 43
Conflicts, Usage, 31, 34, 38, 40
Console, System, 22, 26
Console Buffer, 26
Console Interrupts, 8, 11
Console Pad Characters, 20, 21
Control Character Service Routines, 53
Conventions, Documentation, 18
CPU Compatibility, 6
CPU Environment, 9
CPU Precautions, 12
Creation, File, 33
CRLF Sequence via NL, 21

Appending to Files, 35
Arguments to SCALLs, 29
ASCII Files, 19, 20
ASM, XTEXT Pseudo, 14
ASM SCALL Opcode, 14
Attribute Flags, 41

Block Mode I/O, 18

CTL-A, 26, 53
CTL-B, 26, 53
CTL-C, 26, 53
CTL-O, 24, 26
CTL-S, 24, 26
CTL-Z, 9, 12, 33
Cursor, Sector, 10
Cursor, Channel, 43

77

DB Pseudo, 11
DBUG, 8, 13
Debugging Hints, 13
Default Block, 30, 38
Deletion, File, 33, 40
Descriptor, File, 10, 30, 33, 48
Device Driver, 7, 8
Device Driver, SY:, 7
Device Driver, TT:, 7
Device Driver Interrupts, 8
Device Drivers, Loading, 60
Device Drivers, Ports, 7
Device Drivers, 7, 10
Device I/O, 18
DI Instruction, 12
Discontinuing Interrupts, 9
Dismounting Disks, 62, 64
Documentation Conventions, 18
Domain, User Program, 11
DS Pseudo, 11, 55
DS Statements, 6
DW Pseudo, 11

End Pseudo, 9
Entry Point, User Program, 9
Environment, Interrupt, 8
Environment, Run-Time, 6
Environment, Channel, 9
Environment, CPU, 9
EQU Pseudo, 11, 55
Error Messages, Issuing, 10, 59
ERRORMSG.SYS, 59
Extension, File Descriptor, 30

File Appending, 35
File Attribute Flags, 41
File Creation, 33
File Deletion, 33, 40
File Descriptor, 10, 30, 33, 48
File Flags, LOCK, 41
File Flags, Write-Protect, 41
File I/O, 10, 43

File Modification, 33, 35
File Name, Channel, 50
File Names, 30
File Random Access, 43, 44
File Renaming, 38
File Replacement, 33
File Sequential Access, 43
File Size, Computing, 43
File Updating, 35
File Usage Conflict, 31, 34, 38, 40
File Write Access, 33, 34
Files, ASCII, 19, 20
Files, Temporary, 57
Flags, Attribute, 41
FLAGS Program, 41
Freeing Channels, 57
FWA User Program Area, 6

H17, 7, 8, 11
Hl 7 Device Driver, 7, 8
H17 ROM, 7
H47, 8, 11, 12
HDOS, Cold-Start, 12, 13
HDOS, Overlays, 7, 68
HDOS, Resident Area, 7
HDOS, Returning to, 15
HDOS Version Number, 28
HDOSOVLO, 7, 68
HDOSOVLl, 7, 68
I.CONFL - Console Flags Cell, 24
I.CONTY - Console Type Cell, 23
I.CONWI - Console Width Cell, 23
I.CSLMD - Console Mode Cell, 22
I.CUSOR - Console Cursor Position, 23
I/O, Random, 10, 43
I/O, Sequential, 10, 43
I/O Channels, 10
I/O Environment, 7
I/O Ports, 7
I/O Precautions, 11
INIT Program, 41
Interrupt, Single-Step, 8
Interrupt Environment, 8
Interrupt Precautions, 12
Interrupt Service, 53

78

Interrupt Usage, HDOS, 8, 11, 12
Interrupt Vectors, Available, 12
Interrupt Vectors, 8, 9, 12
Interrupts, Device Drivers, 8
Interrupts, Discontinuing, 9, 12
Interrupts, Turning Off, 12
Interrupts, Clock, 8, 11, 12
Interrupts, Console, 8, 11, 12, 22

Last Block of Files, 18
Loading, Overlays, 27
LWA User Memory, 7, 11, 29, 55

Memory, FWA User Program, 6 ,1 1
Memory, LWA User Program, 7, 11, 29, 55
Memory, Requesting Access, 6, 11, 55
Memory Layout, 6
Memory Precautions, 11
Memory Tables CPU, 12
Modification, File, 33, 35
Mounting Disks, 61, 63
Names, File, 30
NL (New Line) Character, 21
NULL Character, 20
Orphaned Sectors, 35
Overlaid SCALLs, 29
Overlay Management, 29
Overlays, Loading, 27
Overlays, HDOS, 7, 9, 27, 68

Pad Characters, Console, 21
PAM-8, 6, 8, 11, 12, 13
Ports, I/O, 7
Precautions, CPU, 12
Precautions, I/O, 11
Precautions, Interrupt, 12
Precautions, Memory, 11
Precautions, Stack, 11
Precautions, 11
Program Execution, 6, 52
Program Size, 6

Random File Access, 43, 44
Random I/O, 10, 43
Read Access, Files, 31
Real-Time Clock, 8, 12
Relocations of HDOS, 6
Renaming Files, 38
Replacement, File, 33
Resetting Disks, 65
Resident HDOS Code, 7
Resident SCALLs, 14
Restart, HDOS, 12, 13
Return to HDOS, 15
ROM, H17, 7
RUN Command, 6
Run-Time Environment, 6

SCALL
SCALL
SCALL
SCALL
SCALL
SCALL
SCALL
SCALL
SCALL
SCALL
SCALL
SCALL
SCALL
SCALL
SCALL
SCALL
SCALL
SCALL
SCALL
SCALL
SCALL
SCALL
SCALL
SCALL
SCALL

.CHFLG, 41

.CLEAR, 10, 15, 37, 57

.CLOSE, 10, 37, 57

.CLRCO, 26

.CONSL, 16, 22, 41

.CTLC, 26, 53

.DECODE, 48

.DELETE, 33, 40, 57

.DMNMS, 64

.DMOUN, 62

.ERROR, 59

.EXIT, 15

.LINK, 9, 10, 52

.LOADD, 60

.LOADO, 27

.MONMS, 63

.MOUNT, 61

.NAME, 10, 50

.OPENR, 10, 18, 31, 38, 43

.OPENU, 10, 18, 35, 43

.OPENW, 10, 33, 40, 43, 57

.POSIT, 10, 35, 43

.PRINT, 21, 24

.READ, 10, 18

.RENAME, 38

79

SCALL, .RESET, 65
SCALL, .SCIN, 16, 18, 26
SCALL, .SCOUT, 17, 18, 24
SCALL, .SETTOP, 11, 29, 55
SCALL, .VERS, 28
SCALL, .WRITE, 10, 20
SCALL Arguments, 29
SCALLS Overlaid, 29
SCALLs, Resident, 14
SCALLs, Vector, 8
Sector Cursor, 10
Sector, Size, 10
Sequential Access, File, 43
Sequential I/O, 10, 43
Service Routines, Control Character, 53
SET Command, HDOS, 15
Single-Step Interrupt, 8
Size, Program, 6
Stack, 6
Stack, Changing Size, 6
Stack Maintenance, 11
Stack Precautions, 11
Stand-Alone Flag, 15
Subroutines, 5
Swapping User Memory, 29
Symbols, HDOS, 6, 14
SYSCMD.SYS, 15
System Calls, 14
System Console, (see also Console) 22
System Console Interrupts, 8, 11, 12, 22
System Stack, 6

Table, Memory, 12
.TICCNT, 12
Temporary Files, 57
Type-Ahead Buffer, 26
STYPTX, 21

.UIVEC, 9, 12
Updating Files, 35
Usage Conflict, File, 31, 34, 38, 40
User Memory Area, 6 ,1 1
User Memory LWA, 7, 11, 29, 55
User Program Entry Point, 9
User Stack, 6
USERFWA, 6, 11
Utility Subroutines, 5

Vectors, Interrupt, 8, 9, 12
Version Number, HDOS, 28

Write Access, Files, 33
Write-Protection, 13

XTEXT, 14

*

♦

	HD OS System

	Programmer’s Guide

	Part 1

	INTRODUCTION

	Purpose

	Background

	Preface

	Part 2

	RUN-TIME ENVIRONMENT

	Memory Layout

	I/O Environment

	Interrupt Environment

	INTERRUPT VECTORS

	DISCONTINUING INTERRUPTS

	CPU Environment

	Channel Environment

	Part 3

	I/O CHANNELS

	Part 4

	PRECAUTIONS

	Memory Precautions

	USER MEMORY AREA

	STACK MAINTENANCE

	I/O Precautions

	Interrupt Precautions

	CPU Precautions

	Debugging Hints

	Part 5

	RESIDENT SCALLs

	.EXIT

	.SCIN — System Console INput

	.SCOUT — System Console OUTput

	.READ — Read From File

	.WRITE — Write to Open File

	.PRINT — Print Line on System Console

	.CONSL — Set Console Mode Bits

	.CLRCO — Clear Console Buffer

	.LOADO — Load Overlay

	.VERS — HDOS Version Number

	Part 6

	OVERLAID SCALLs

	Overlay Management

	File Names

	.OPENR — Open File for Read

	.OPENW — Open File for Write

	.OPENU — Open File for Update

	.CLOSE — Close Channel

	.RENAME — Rename Disk File

	.DELETE — Delete Disk File.

	.CHFLG — Change File Flags

	.POSIT — Position Disk File

	.DECODE — Decode File Name

	.NAME — Get File Name from Channel

	.LINK — Link to Another Program

	.CTLC — Set Up Handlers for Control Characters

	.SETTOP — Set Top of User Memory

	.CLEAR — Clear I/O Channel

	.LOADD — Load Device Driver

	.MOUNT — Mount Disk

	.DMOUN — Dismount Disk

	.MONMS — Mount Disk with No Message

	.DMNMS — Dismount Disk with No Message

	.RESET — Mount/Dismount Disk

	Recommended HDOS Common Deck Contents

	RECOMMENDED HOSDEF.ACM CONTENTS

	RECOMMENDED HOSEQU.ACM CONTENTS

	HDOS Symbol Values

	HOSDEF SYMBOL DEFINITIONS

	HOSEQU SYMBOL DEFINITIONS

	ECDEF SYMBOL DEFINITIONS

	Part 8

	Programming Examples

	Menu Prologue for MBASIC

	INDEX

