
Software Reference
Manual

HDOS SYSTEM

Chapter 6

EXTENDED BENTON HARBOR
BASIC

Copyright © 1980
Heath Company
All Flights Reserved

H E A T H C O M P A N Y
iE N TO N H A R B O R , M IC H IG A N 4 9 0 2 2

595-2479
Printed in the Unitea

States of America

TABLE OF CONTENTS

INTRODUCTION
Manual Scope
Hardware Requirements

Running BASIC.......

BASIC ARITHMETIC
Data Types ...
Variables...
Subscripted Variables ...
Expressions...
Arithmetic Operators...
Relational Operators..
Boolean Operators ..

6-6
6-7
6-7

6-9
6-11
6-12
6-14
6-14
6-18
6-19

STRING MANIPULATION
Strin;
Strini

Variables..
Operators ..

6-21
6-22

THE COMMAND MODE
Usin the Command Mode for Statement Execution.......................... 6-23

BASIC STATEMENTS
Line Numbers ..
Statement T y p es ..
Command Mode Statements
Statements Valid in the Command or Program Mode
Program Mode Statem ents...

6-25
6-26
6-27
6-33
6-63

PREDEFINED FUNCTIONS
Introduction... 6-67
Arithmetic and Special Feature Functions... 6-67
String Functions.. 6-74

EXTENDED BENTON HARBOR BASIC 6-3

GENERAL TEXT RULES 6-77

ERRORS
Error Messages.. 6-79
Recovering from E rrors... 6-79

ERROR MESSAGES.. 6-81

APPENDIX A
Numeric D ata.. 6-85
Boolean Data .. 6-85
String D a ta ... 6-85
Variables... 6-85
Subscripted Variables ... 6-86
Arithmetic Operators.. 6-86
Relational Operators.. 6-86
Boolean Operators .. 6-87
String Variables.. 6-87
String Operators .. 6-87
The Command M ode.. 6-87
Line Numbers .. 6-87
Multiple Statements on One L ine.. 6-87
Command Mode Statements ... 6-88
Command and Program Mode Statem ents... 6-89
Program Mode Statem ents... 6-93
Predefined Functions.. 6-94

APPENDIX B
ASCII Codes... 6-97

Index .. 6-99

TAB GUIDE

BASIC ARITHMETIC..

STRING MANIPULATION ...

THE COMMAND MODE...

BASIC STATEMENTS..

PREDEFINED FUNCTIONS ...

ERRORS ...

ERROR MESSAGES ..

APPENDIX A

6-6

INTRODUCTION

Extended BENTON HARBOR BASIC (Ex. B. H. BASIC) is a conversational
programming language which is an adaptation of Dartmouth BASIC*. (BASIC is
an acronym for Beginners' All Purpose Symbolic Instruction Code.) It uses
simple English statements and familiar algebraic equations to perform an opera
tion or a series of operations to solve a problem. BENTON HARBOR BASIC is an
interpretive language, compact enough to run in a Heath computer with minimal
memory, yet powerful enough to satisfy most problem-solving requirements.
The interpretive structure of BASIC affords excellent facilities for the detection
and correction of programming errors. It uses advanced techniques to perform
intricate manipulations and to express problems more efficiently.

Manual Scope

This Manual is written for the user who is already familiar with the language
BASIC. It also describes the extended implementation of Dartmouth BASIC and,
in so doing, provides a brief summary of the language. However, this manual is
not intended as an instruction Manual for the language BASIC. If you are not
familiar with BASIC, we suggest that you obtain the Heathkit Continuing Educa
tion course entitled “Basic Programming,” Model EC-1100, before attempting tc
use this Manual.

*BASIC is a registered trademark of the Trustees of Dartmouth College.

6-7

Hardware Requirements

Extended BENTON HARBOR BASIC runs on an H8/H17 or H89 Computer
System with a minimum of 24K bytes of random access memory.
Running BASIC

In order to run BASIC, you must first copy the file BASIC.ABS from your
software distribution disk onto the system disk you plan to use. Use PIP or
ONECOPY to accomplish this. Refer to Chapter 1, the HDOS “System Configura
tion” Manual, for assistance.

Once the file BASIC.ABS is present, you can run BASIC by typin

RUNAdev: A SIC @

where “dev:” is the device name (SYtf:, SYl:, SY2:, DK#:, DKl:, or DK2:j that
contains the file BASIC.ABS. If you do not type a device name, HDOS assumes
the file is on SY0f:. For example:

>RUNaBASIC g)
EXTENDED BENTON HARBOR BA SIC # 1 1 0 . 0 0 . 0 0 .
*

BASIC uses the asterisk (*) as its prompt character.

Note that the part number may be different. However, a part number will be
displayed.

EXTENDED BENTON HARBOR BASIC 6"9

BASIC ARITHMETIC

Data Types

BASIC supports three different data types:

1. Numeric data.
2. Boolean data.
3. String data.

NUMERIC DATA

BASIC accepts real and integer numbers. A real number contains a decimal
point. BASIC assumes a decimal point after integer data. Any number can be
used in mathematical expression without regard to its type. Real numbers must
be in the approximate range of 10-38 to 10+37. Integer numbers must lie in the
range of 0 to 65535. All numbers used in BASIC are internally represented in
floating point, which allows approximately 6.9 digits of accuracy. Numbers may
be either negative or positive.

In addition to integer and real numbers, BASIC recognizes a third format. This
format, called exponential notation, expresses a number as a decimal number
raised to a power of 10. The exponential form is

X X E (±) NN

where E represents the algebraic statement “times ten to the power of”; XX
represents up to a six-digit integer or real number; and NN represents an integer
from 0 to 38. Thus, the number is read as “XX times 10 to the ± power of NN”.

Numeric data in all three forms may be used in the immediate mode, program
mode in data statements, or in response to READ and INPUT statements.

Unless otherwise specified, all the numbers including exponents are presumed
to be positive.

6-10 L
CHAPTER SIX

The results of BASIC computations are printed as decimal numbers if they lie ir
the range of 0.1 to 999999*. If the results do not fall in this range, the exponentia
format is used. BASIC automatically suppresses all leading and trailing zeros in
real and integer numbers. When the output is in exponential format, it is in the
form

(±) X . XXXXXE (±) NN

The following are examples of typical inputs and the corresponding output.
Note the dropping of leading and trailing zeros, truncation to six places of
accuracy, conversion to exponential notation when necessary, and conversion to
decimal notation where permitted.

INPUT NUMBER OUTPUT NUMBER COMMENTS

0 .1 . 1
.0079 7 .9 0 0 0 0 E -0 3
0022 22
2 2 .0 2 0 0 2 2 .0 2
999999 999999
1000000 1 .00000E + 06
100000007 1 .00000E + 08
- 1 0 . 1E+2 -1 0 1 0

(leading zero dropped)
(< .l converts to exponential)
(leading zeros dropped)
(trailing zeros dropped)
(format maintained)
(converted to exponential)
(truncated to 6 places)
(converted to decimal format)

BOOLEAN DATA

Boolean values are a subclass of numeric values. Values representing the posi
tive integers from 0-65,535 (216_1) may be used as Boolean data. When using
numeric data as Boolean values, the numeric data represents the equivalent
16-bit binary numbers. Fractional parts of numeric data used with Boolean
operators are discarded. If the numeric value with the fractional part does not fall
into the range of 0-65,535, an illegal number error is generated.

STRING DATA

Extended BASIC handles data in a character string format. Data elements of this
type are made up of a string of ASCII characters up to 255 characters in length.
Extended BASIC provides operators and functions to manipulate string data.
Any printable ASCII character (with the exception of the quotation mark itself)
may appear in an Extended BASIC string. In addition to the printable ASCII
characters, the line feed and bell characters are also permitted. A string may not
be typed on more than one line. A carriage return is rejected as an illegal string
character.

☆NOTE: This may be changed. See “CNTRL 1,” Page 6-38.

EXTENDED BENTON HARBOR BASIC I 6“11

Variables
A BASIC variable is an algebraic symbol representing a number. Variable nam
ing adheres to the Dartmouth specification. That is, variable names consist of one
alphabetic character which may be followed by one digit (zero to nine). The
following is a list of acceptable and unacceptable variables, and the reason why
the variable is unacceptable.

ACCEPTABLE
VARIABLES

UNACCEPTABLE
VARIABLES

2C

A5 AF

L2 $2

REASON FOR
UNACCEPTABILITY

C A digit cannot begin a variable.

A second character in a variable
must be a number (0-9).

D 3 A single number is not an acceptable
variable.

The first character of a variable must
be a letter (A-Z).

Subscripted variables, string variables, and subscripted string variables are
permitted. See “Subscripted Variables,’’ Page 6-12, and “String Manipulation”
on Page 6-21.

A value is assigned to a variable when you indicate the value in a LET, READ, or
INPUT statement. These operations are discussed in “LET” (Page 6-50),
“PRINT” (6-55), and “INPUT AND LINE INPUT” (Page 6-64).

The value assigned to a variable changes each time a statement equates the
variable to a new value. The RUN command sets all variables to zero (#).
Therefore, it is only necessary to assign an exact value to a variable when an
initial value other than zero is required.

Subscripted Variables
In addition to the variables described above, BASIC permits subscripted vari
ables. Subscripted variables are of the form:

An (N ,................... , N „),

where A is the variable letter, n is a number (optional) 0-9, and N, thru N8 are the
integer dimensions of the variable. Subscripted variables provide you with the
ability to manipulate lists, tables, matrices, or any set of variables. Variables are
allowed one to eight subscripts.

The use of subscripts permits you to create multi-dimensional arrays of numeric
and string variables. It is important to note that a dimensioned variable is
distinguished from a scaler value of the same name. For example, all four of the
following are distinct variables:

A. A (N) , A S, A S ,(N)

When you are referencing a subscripted variable, each element in the subscript
list may consist of an arbitrarily complex expression so long as it evaluates to a
numeric value within the allowable range for the indicated dimension. Thus, the
subscripted variable A(5,5), would be dimensioned as:

X = A (2 ,3)
X = A (2 t 2 , V A L (" 4 . 0 "))
X = A (2 , " 4 . 0 ")

is legal
is legal, as it is equivalent to A(4,4)
is not legal, as (“4.0” is a string)

6-13

The following are graphic illustrations of simple subscripted variables. In these
particular examples, a simple variable (A) is followed by one or two integer
expressions in parentheses. For example,

where I may assume the values of 0 to 5, allows reference to each of the six
elements A(0), A(l), A(2), A(3), A(4), and A(5). A graphic representation of this
6-element, single-dimension array is shown below. Each box represents a mem
ory location reserved for the value of the variable of the indicated name. Often,
the entire array is referred to as A(.

NOTE: Subscripted variables begin at zero. Therefore, the previous example0 to
5 defines six elements.

A two-dimensional array B(I, J) allows you to refer to each of the elements f ,£)),
B(0,2),...., B(0,J),....

This is ;raphically illustrated as follows, for B(3,4).
J

I B(0,0) B(0,1) B[0,2) I B(0,3) B(J0,4)

B(1,0) |I B(l,l) || B(l,2) || B(l,3) || B(l,4) |

B(2,0) B(2,l) B(2,2) B(2,3) B(2,4)

B(3,0) B(3,l) B(3,2) B(3,3) B(3,4)

NOTE: A variable cannot be dimensioned twice in the same program unless you
first clear it with the CLEAR statement.

BASIC does not presume any dimension. Therefore, the DIMension (DIM) state
ment must be used to define the maxium number of elements in any array. It is
described in “DIM (DIMENSION)” on Page 6-40.

Expressions

An expression is a group of symbols to be evaluated by BASIC. Expressions are
composed of numeric data, Boolean data, string data, variables, or functions. In
an expression, these are alone or combined by arithmetic, relational, or Boolean
operators.

The following examples show some expressions BASIC recognizes.

ARITHMETIC
EXPRESSIONS

1.02
1.02-t- 16

A < B

BOOLEAN
EXPRESSIONS

255
255 OR 003

STRING
EXPRESSIONS

“YES”
“YES” + “NO”
“YES” < “NO”

DESCRIPTION

Data
Combined
Relational

A major feature of BASIC is its extensive use of expressions in situations when
many other BASICs only permit variables or numbers. This feature permits you
to perform very sophisticated operations within a particular command or func
tion. It is important to note that not all expressions can be used in all statements.
The explanations describing the individual statements detail any limitations.

Arithmetic Operators

BASIC performs exponentiation, multiplication, division, addition, and subtrac
tion. BASIC also supports two unary operators (— and NOT). The asterisk (*) is
used to signifiy multiplication and the slash (/) is used to indicate division.
Exponentiation is indicated by the up arrow (t).

THE PRIORITY OF ARITHMETIC OPERATIONS

When multiple operations are to be performed in a single expression, an order of
priority is observed. The following list shows the arithmetic operators in order of
descending precedence. Operators appearing on the same line are of equal
precedence.

+

(Unary) (negation)
(exponentiation)
(multiplication
(addition

division)
subtraction)

/

6-15

Parentheses are used to change the precedence of any arithmetic operations, as
they are in common algebra. Parentheses receive top priority. Any expression
within parentheses is evaluated before an expression without parentheses. The
innermost leftmost parenthetical expression has the greatest priority.

UNARY OPERATORS

BASIC supports two unary operators: — and NOT. These operators are referred to
as unary because they require only one operand. For example:

A = - 2
C = NOT D

The unary operator (—) performs arithmetic negation. The NOT operator per
forms Boolean negation. See Page 6-19.

EXPONENTIATION

Exponentiation (t) is used to raise numeric or variable data to a power. For
example:

A = B42 is equivalent to A = B * B.

NOTE: The operand must not be negative. The exponent may be negative. A
negative operand generates a syntax error. For greatest efficiency, Bl2 should be
written as B* B and Bt3 should be written as B * B * B. All other powers should
use the 1.

MULTIPLICATION AND DIVISION
BASIC uses the asterisk (*) and the slash (/) as symbols to perform the algebraic
operations of multiplication and division, respectively. Both multiplication and
division require numeric data as operands.

The following examples use the multiplication and division operators:

♦PR IN T 2 * 6 g)

12

♦ PR IN T 2 / 5 @
.6 6 6 6 6 7

♦ PRIN T 6 / 3 * 2 cr)

4

NOTE: This last expression evaluates to 4, not 1; as * and / have equal precedence
and, therefore, the leftmost operator is evaluated first.

6-161 CHAPTER SIX

ADDITION AND SUBTRACTION

The plus sign (+) and the minus sign (—) perform arithmetic addition and
subtraction. In addition, the plus operator (+) performs string concatenation if
both operands are string data. The following examples use the plus and minus
operators;

♦PR IN T 3 g:
3

♦PR IN T 3 + 5 ®
8

♦PR IN T 1 0 - 3
7

♦ PRIN T "HEATH" + " " + "COMPUTER" g)
HEATH COMPUTER
*

SUMMARY

In any given expression, BASIC performs arithmetic operations in the followin
order:

1.

2.

Parentheses have top priority. Any expression in parentheses is
evaluated prior to a nonparenthetical expression.
Without parentheses, the order of priority is:
a. Unary minus and NOT (equal priority).
b. Exponentiation (proceeds from left to right).
c. Multiplication and division (equal priority, proceeds from left to

right).
d. Addition and subtraction (equal priority, proceeds from left to

right).
If the rules in either 1 or 2 do not clearly designate the order of priority,
the evaluation of expression proceeds from left to right.

The following examples illustrate these principles. The expression 21312 is
evaluated from left to right:

1. 213 = 8 (leftmost exponentiation has highest priority).
2. 812 = 64 (answer).

EXTENDED BENTON HARBOR BASIC 6" 17

The expression 12/6*4 is evaluated from left to right since multiplication and
division are of equal priority:

1. 12/6 — 2 (division is the left-most operator).
2 2*4 = 8 (answer).

The expression 6+4*312 evaluates as:

1. 312 = 9 (exponentiation has highest priority).
2. 9*4 = 36 (multiplication has second priority).
3. 36 + 6 - 42 (addition has lowest priority; answer).

Parentheses may be nested, (enclosed by additional sets of parentheses). The
expression in the innermost set of parentheses is evaluated first. The next
innermost left-justified is second, and so on, until all parenthetical expressions
are evaluated. For example:

6 * ((2 1 3 + 4) /3)

Evaluates as:

1. 2 13 = 8 (exponentiation in parentheses has highest priority).
2. 8 + 4 = 12 (addition in parentheses has next highest priority).
3. 12/3 = 4 (next innermost parentheses are evaluated).
4. 4*6 = 24 (multiplication outside of parentheses is lowest priority)

Parentheses prevent confusion or doubt when you are evaluating the expression.
For example, the two expressions

D * E 1 2 /4 + E /C * A t2
((D * (E t 2)) / 4) + ((E / C) * (A t 2))

are executed identically. However, the second is much easier to understand.

Blanks should be used in a similar manner, as BASIC ignores blanks (except
when they are part of a string enclosed in quotation marks). The two statements:

10 LET = 3 2 + 1
10 LET B=3*2+l

are identical. The blanks in the first statement make it easier to read.

6-181 CHAPTER SIX

Relational Operators

Relational operators compare two variables or expressions. They are generally
used with an IF THEN statement. The result of a comparison by the relational
operators is either a true or a false. A false is represented by zero, and true is
represented by 65535 (216-1). NOTE: These values are chosen so when they are
used as Boolean values, false is all zeros and true is all ones.

The followin table lists relational operators as used in BASIC.

ALGEBRAIC
SYMBOL

BASIC
SYMBOL EXAMPLE MEANING

— — A=B A is equal to B.
< < A<B A is less than B.
-S < = A < = B A is less than or equal to B.
> > A>B A is greater than B.
> > = A> =B A is greater than or equal to B

< > A< >B A is not equal to B.

are not accepted and BASIC generates a syntax errorThe symbols =< , => ,
if they are used.

The following examples show the results of usin. relational operators.

* PR IN T 3 < 4 «) (tru e)

6 5 5 3 5

* PRIN T 4 < 3 cr) (false)

□

EX. B.H. BASIC differs from most other BASICs in the use of the relational
operator. When you are using BASIC, you may use the relational operators in any
expression. When the expression is evaluated, the appropriate numeric answer
(0 or 65535) will be used as the answer to that expression.

6-19

Boolean Operators

OR

The operator OR performs a Boolean OR on the two integer operands. The integer
operands (which must lie in the range of 0 to 65535) are converted to 16-bit
binary numbers. The Boolean (logical) 16-bit OR is applied and the result is
returned to the equivalent integer representation. NOTE: As the Boolean value
chosen to represent true (65535) and false (0), the OR operator implements a
standard truth table OR function. For example:

♦PR IN T 1 3 2 OR 2 5 5 <*)

and

0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 11111111
0 0 0 0 0 0 0 0 11111111

♦PR IN T (3 > 2) OR (4 > 9)

132
255
255

6 5 5 3 5

AND

The AND operator performs a Boolean (logical) AND on the two integer
operands. These integer operands must lie in the range of 0 to 65535. The integer
operands are converted into 16-bit binary numbers and the logical AND is
performed. The result is returned to the equivalent integer representation.
NOTE: The AND operator implements a standard AND truth table on the values
true (65535) AND false (0). For example:

♦ PR IN T 1 3 2 AND 2 5 5 0

132
00000000 10000100
00000000 11111111
00000000 10000100

132
255
132

and

♦PR IN T (3 > 2) AND (9 > 7)

NOT

The NOT operator Boolean negation. That is, the numeric value of the variable is
converted into a 16-bit Boolean data value; each bit is inverted, and the 16-bit
binary number is restored to numeric data. For example:

♦PR IN T NOT 0 0 0 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a n d
65535 65535 = 11111111 11111111

*

6-20

EXTENDED BENTON HARBOR BASIC 6"21

STRING MANIPULATION

Extended BENTON HARBOR BASIC is capable of manipulating string informa
tion. A string is a sequence of characters treated as a single unit of an expression.
It can be composed of alphanumeric and other printing characters. An al
phanumeric string contains letters, numbers, blanks, or any combination of
these characters. A character string may not exceed 255 characters. The blank,
bell, form feed, and TAB are considered to be printing characters.

String Variables
The dollar sign ($) following a variable name indicates a string variable. For
example:

B$
a n d

L 6$

are string variables. A string variable (B$) is used in the following example.

$ = " H I ” : PRIN T B$*

NOTE: The string variable B$ is separate and distinct from the variable B.

Any array name followed by the $ character notes that the dimensioned variable
is a string. For example:

L $ (n) A 2 $ (n) (single-dimensioned string variables).
D $ (m ,n) H i $ (m ,n) (multiple-dimensioned string variables).

The numbers in parentheses indicate the location within the array. See “Sub
scripted Variables,” Page 6-12.

The same variable can be used as a numeric variable and as a string variable in
one program. For example, each of the following is a different variable:

B B (n)

B$ B $ (m ,n)

The followin are illegal, as they are double declarations of the same variable.

A $ (n) A $ (n ,m)

String arrays are defined with a dimension (DIM) statement in the same way that
numerical arrays are defined.

6-221 CHAPTER SIX

String Operators

Extended BASIC provides you with the ability to manipulate strings. The string
manipulation operators are: plus (+), for concatenation, and the relational
operators.

CONCATENATION

Concatenation connects one string to another without any intervening charac
ters. This is specified by using the plus (+) symbol and only works with strings.
The maximum length of a concatenated string is 255 characters. For example:

♦ PRIN T "THE HEATH " + "COMPUTER" @
THE HEATH COMPUTER

RELATIONAL OPERATORS FOR STRINGS

Relational operators, when applied to strings, indicate alphabetic sequence. The
relational comparison is done on the basis of the ASCII value associated with
each character, on a character-by-character basis, using the ASCII collating
sequence. A null character (indicating that the string is exhausted) is considered
to head the collating sequence. For example:

♦ PR IN T "ABC" < "D EE" cr)

6 5 5 3 6 (The relation shown is true)
♦PR IN T "ABC">"ABCD"
0 (The relation is false. “ABC” is less than “ABCD” .)

NOTE: In any string comparison, trailing blanks are not ignored. For example

♦PR IN T "C P E " = "C PE "

□ (The equality is false.)

The following table indicates how relational operators are used with string
variables in Extended BASIC.

OPERATOR EXAMPLE MEANING

String
String
String
String
String
String

and B$ are alphabetically equal,
is alphabetically less than B$
is alphabetically greater than B$
is equal to or less than B$.
is equal to or greater than B$.
and B$ are not alphabetically equal.

EXTENDED BENTON HARBOR BASIC 6“

THE COMMAND MODE

Using the Command Mode for Statement Execution

You may solve a problem in BASIC by using a complete program or by use of the
command mode. Command mode makes BASIC an extremely powerful cal
culator.

Lines of program material entered for later execution are identified by line
numbers. BASIC identifies those lines entered for immediate execution by the
absence of the line number. That is to say, statements that begin with line
numbers are stored, and statements without line numbers are executed im
mediately when a carriage return is received. For example:

ID PR IN T "T H IS I S A COMPUTER"

is not executed when it is entered at the console terminal. However, the state
ment:

*PR IN T "T H IS I S THE HEATH COMPUTER"

when the RETURN key is typed, is immediately executed as:

T H IS I S THE HEATH COMPUTER

The command mode of operation is useful in program de-bugging and perform
ing simple calculations which do not justify the writing of a complete program.

For example, in order to facilitate program de-bugging, you may place STOP
statements liberally throughout a program.

If you use STOP in this manner, an error message will be printed. This is a normal
response and not a programming error on your part. Once BASIC encounters a
STOP statement, the program halts. You can examine and change data values
using the command mode. The statement

CONTINUE cr)

is used to continue execution of the program. You can also use the GOSUB and IF
commands. Values assigned to variables remain intact using this technique. A
SCRATCH, CLEAR, or another RUN command resets these values.

The ability to place multiple statements on a single line is an advantage in the
command mode. For example:

*B = 2 : PRIN T B :P R IN T B + 1 CR)

2

3

Program loops are allowed in the command mode. For example, a table of
squares can be produced as follows:

* FOR A
1
2
3
4
5
6
7

9
10

1 TO 1 0 : PR IN T A, A * A: NEXT A cr)

1
4
9

16
2 5
3 6
4 9
6 4
81

1 0 0

Some statements cannot be used in the command mode. The INPUT statement
for example, is not available in the command mode, and its use results in the
“Illegal Usage” error message. There are certain command functions in the
command mode which make no sense when used in the command mode.
Statements available in the command mode are covered in “Command Mode
Statements” on Page 6-27 and “Statements Valid in the Command or Program
Mode” on Page 6-33.

EXTENDED BENTON HARBOR BASIC I 6~25

BASIC STATEMENTS

A program is composed of one or more lines or “statements” instructing BASIC
to solve a problem. Each program line begins with a line number identifying the
line and its statement. The line number indicates the desired order of statement
execution. Each statement starts with an English word specifying the operation
to be performed. Single statements are terminated with the return key. Multiple
statements are separated by a colon (:), with the last statement terminated by a
return (a non-printing character). A DATA statement cannot share a line with
other statements. (See Page 6-59).

Line Numbers

An integer number begins each line in a BASIC program. BASIC executes the
program statements in numerical sequence, regardless of the input order. State
ment numbers must lie in the range of 1 to 65,534. It is good programming
practice to number lines in increments of 5 of 10 to allow insertion of forgotten or
additional statements when de-bugging the program.

The length of a BASIC statement must not exceed one line. There is no method to
continue a statement to a following line. However, multiple statements may be
written on a single line. In this situation, each statement is separated by a colon.
For example:

10 PRINT ” VALUES” , A , A+l is a single line print statement, whereas
10 LET A=12 : PRINT A ,A +l,A +2 is a line containing two statements, LET and PRINT.

Virtually all statements can be used anywhere in a multiple statement line. There
are, however, a few exceptions. They are noted in the discussion of each state
ment. NOTE: Only the first statement on a line can have a line number. Program
control cannot be transferred to a statement within a line, but only to the
beginning of a line.

Each time you type a statement with a line number, BASIC performs some simple
syntactical checks before inserting the line into your program. BASIC checks to
see if all of the keywords are spelled correctly, and translates them to upper case.
It makes sure that all function calls are immediately followed by an open
parenthesis “(’’.BASIC makes several other checks of the line to check for simple
syntax errors. If the line is determined to be incorrect, the message

SYNTAX ERROR

will be typed and the line will not be inserted into your program. Note that this
preliminary syntax check will not detect all possible errors; BASIC may accept
the line when you type it and then detect an error later when you execute your
program.

6-261 CHAPTER SIX

Statement Types

BENTON HARBOR BASIC supports three different types of statements. First,
there are statements valid only in the command mode. These statements are used
for loading programs, erasing memory, and other such functions directing
BASIC’s activities. Second, there are statements valid as both commands or
within a program. Third, there are statements valid only within a program. These
statements may not be used in the command mode. Most statements fall into the
second category. This means they can appear within a program or be typed
directly in the command mode and immediately executed.

As noted earlier, some statements valid in both modes may not be meaningful in
both modes.

BASIC is designed to allow maximum versatility in its structure. Thus, almost
everywhere that BASIC requires a number or a string, BASIC allows a numeric or
a string expression. For example, you could cause the SIN of 3 to be printed by
typing

PRIN T S I N (6 / 2)

The following three sections are organized as command mode statements, com
mand and program mode statements, and program mode statements. They can
be found, respectively in: “Command Mode Statements” (Page 6-27). “State
ments Valid in the Command or Program Mode” (Page 6-33), and “Program
Mode Statements” (Page 6-63).

To simplify some practical descriptions in these sections and those following,
the notations below are used to describe valid expressions:

1.

2.

3.

4.

5.

6.

“iexp” indicates an integer expression, an expression lying in the
range of 0 to 65535. The fractional part of any integer expression is
discarded when the integer is formed.
“nexp” indicates a numeric expression. This may be an integer, deci
mal, or exponential expression with up to 6 decimal places.
“sexp” indicates a string expression. String expressions are limited to
a maximum of 255 printing ASCII characters.
“linnum” indicates a line number. This must be an unsigned decimal
number, or the expression LNO (iexp). See the discussion of the LNO
function for more information.
“sep” indicates a separator. Separators such as the comma and the
semicolon are used to delineate certain portions of BASIC statements.
“[]” brackets indicate optional portions of a statement, depending on
the exact function desired.

EXTENDED BENTON HARBOR BASIC 6“27

7.

8.

9.

“var” indicates a variable. This may be a numeric or string variable,
depending upon the example.
“name” indicates a string used to identify a date, a program, or a
language record.
“fname” indicates an HDOS file descriptor (“file name”). A file de
scriptor may include a device specification, and a file name and
extension. The device specification and extension may be omitted, in
which case BASIC will supply a default.

Command Mode Statements

The command mode statements cannot be used within a program. For example,
the RUN statement cannot be used within a program to make it self-starting. Any
attempt to incorporate one of these statements within a program generates an
“Illegal Usage” error message.

BUILD

This statement is used to insert or replace many program lines. The form of the
BUILD statement is

BUILD i e x p l , i e x p 2 63) where iexp l = Starting number of build sequence.
iexp2 = Increment.

When BUILD is executed, the initial line number iexp 1 is displayed on the
terminal. Any text entered after the new line number is displayed becomes the
new line, replacing any pre-existing line. Once the line is completed by a
carriage return, the next line number is displayed. NOTE: If a null entry is given
(a carriage return typed directly after the line number is displayed), the line
whose number is displayed is eliminated if it existed.

Build is illustrated in the following example. CTRL-C terminates BUILD.

*BUILD 1 0 0 ,1 0 g

100 PRINT ’’L IN E 1 0 0 " CR)

110 PRIN T ’’LIN E 1 1 0 " g>

120 PRIN T ’’L IN E 1 2 0 " g)

130 (CTRL-C ty p e d here)
* L IS T

100 PRIN T ’’L IN E 1 0 0 "

110 PRIN T ’’L IN E 1 1 0 "

120 PRIN T ’’L IN E 1 2 0 "
*

6-281 CHAPTER SIX

BASIC performs a preliminary syntax check on lines entered via BUILD. Should
an error be detected, BUILD will give an error message. For example:

♦BUILD 1 0 ,1 0 g)

10 PRIN T "L IN E 1 0 "

20 PRANT "L IN E 2 0 " fn o te th e erro r)

SYNTAX ERROR

20 PRIN T "L IN E 2 0 " (re -e n te r th e l in e 20)

30

BYE

The BYE command is used to terminate BASIC and return to HDOS command
mode. BYE will not save your program, close your files, or in any other way clean
up. If you want to save the program you have written, use SAVE or REPLACE
before using BYE. BYE will ask you if you are sure before terminating. For
example:

♦ BYE cr

SURE7YES ct).... .w;
>

CONTINUE

CONTINUE begins or resumes the execution of a BASIC program. CONTINUE
has the unique feature of not affecting any existing variable values, nor does it
affect the GOSUB or FOR stack. CONTINUE is normally used to resume execu
tion after an error in the program or after a CTRL-C stops the program.
CONTINUE may be used to enter a program at a specific line (in conjunction with
a GOTO). CONTINUE is unlike RUN, which resets all variables, stacks, etc.. The
form of the CONTINUE statement is:

CONTINUE

EXTENDED BENTON HARBOR BASIC 6"29

In the following example, CONTINUE starts the program at a specific line
number.

* G0T0 1 0 0 g)

* CONTINUE crj (start execution at line 100)

CONTINUE is also useful for entering a program with a variable or variables set
at particular values. For example:

* A = 2 3 ,5 .
* G0T0 2 3 0 cr;

* CONTINUE cr;

(Program continues execution at Line 230
with variable A set to the value 23.5,
regardless of previous program effects on A.)

DELETE

The DELETE statement is used to remove several lines from the BASIC source
program. The form of the DELETE statement is

DELETE i e x p l , i e x p 2 @

The lines between and including iexpl and iexp2 are deleted.

A syntax error is flagged if “iexpl” is greater than “iexp2.” Normally, DELETE is
used to eliminate a number of lines of text. The SCRATCH command is used to
eliminate all text. A RETURN typed directly after a line number eliminates that
line. This technique is used to eliminate a single line.

LIST

This command lists the program on the console terminal for reviewing, editin
etc. The form of the list command is:

I 9

L IS T [L IN N U M 1], [LINNUM 2]

Line numbers are indicated by the optional integer expressions. If no line
numbers are specified, the entire program is listed. If a single line number
(“iexpl”) is specified, EX. B.H. BASIC lists that single line. You can use a
CTRL-O or CTRL-C to abort the listing. If both of the optional line numbers are
specified, separated by a comma (,), all lines within the range of iexpl to iexp2
are listed. You can abort a listing by using the control characters.

6-30 CHAPTER SIX

The following are examples of the LIST command.

ID LET A=5:LET B=6
2D PRINT A,B,A+B,
30 LET C=A/B
40 PRINT C
50 END

*RUN €r)

115 6

END AT L IN E 50

* L IS T '§)

10 LET A=5:LET B=6
20 PRINT A,B,A+B,
30 LET C=A/B
40 PRINT C
50 END

* L IS T 2 0

20 PR IN T A ,B ,A + B ,

* L IS T 2 0 , 4 0

20
30
40

PRINT A,
LET C=A/
PRINT C

OLD

The OLD command is used to read some pre-existing program into BASIC. OLD
performs a SCRATCH command, destroying the previous program before read
ing in the new one. The format for the OLD command is:

OLD ’’ fn a m e "

where “fname” is the file name of the program to be loaded. If no device code is
specified, BASIC assumes SYiL. If no extension is specified, BASIC assumes
.BAS. For example:

*0LD "DEMO" Qj>

*0LD "SY 1:STA R TR EK .G A M " ?r)

If you want to load a new program without disturbing your variables and their
values, use the CHAIN command.

BASIC performs a preliminary syntax check on lines read in via the OLD com
mand, just as it would for lines you type yourself on the console. Should the OLD
command detect any such syntax errors in the lines being read, it will insert the
characters * ERR* at the spot in the line the error was detected. This should never
occur with programs which you have entered and modified with BASIC, since

EXTENDED BENTON HARBOR BASIC 6“31

BASIC will not let you type lines with such errors. However, such errors could
occur if you used the text editor, EDIT, to modify or create a BASIC program.

You can detect such occurrences by listing the program and looking for the
‘*ERR*’ symbol. Executing a line with the *ERR* symbol in it will generate a
syntax error.

REPLACE

The REPLACE command enables you to replace a file that has previously been
stored on the disk. The syntax of the REPLACE command is:

REPLACE " f n a m e "

The default device is SY0-:; the default extension is .BAS. Note that you can use
the REPLACE command to obtain a copy of a program that is currently in
memory. For example, if you had a configured line printer, the command:

REPLACE " L P :

would cause BASIC to write the source for the program to the line printer, thus
giving you a hard copy listing. The SAVE command cannot be used to obtain
hardcopy listings in this way, since SAVE opens the file specified for read to see
if it already exists. If you typed SAVE “LP:” , BASIC would print an error
message, since file LP: exists.

RUN

A prepared program may be executed using the RUN statement. The program is
executed starting at the lowest numbered statement. All variables and stacks are
cleared (set to zero) before program execution starts.

The form of the RUN statement is:

*RUN

After program completion, BASIC prompts the user with an asterisk (*) in the left
margin, indicating that it is ready for additional command statements. If the
program should contain errors, an error message is printed that indicates the
error and the line number containing the error, and program execution is termi
nated. Again, a prompt is given. The program must now be edited to correct the
error, and then return. This process is continued until the program runs properly
without producing any error messages. See “Errors” (Page 6-79) for a discussion
of error messages.

6-321 CHAPTER SIX

Occasionally, a program contains an error that causes it to enter an unending
loop. In this case, the program never terminates. The user may regain control of
the program by typing CTRL-C. This aborts the program and returns control to
the user. Storage is not altered in this process. CONTINUE resumes program
execution. RUN clears the storage and restarts program execution.

SAVE

The SAVE command is used to save a BASIC program as an HDOS file. The file
can then be listed or copied onto different devices, edited by the text editor, and
reread by BASIC (via the OLD command). The SAVE command is the normal
method of saving a program that you might want to use again. The format of the
SAVE command is:

SAVE " f n a m e "

where “fname” is the name of the file which is to be written. If no device is
specified, BASIC assumes SY0:. If no extension is specified, BASIC assumes
.BAS. NOTE: The file fname must not already exist on the specified device.
BASIC will not allow you to replace a file with the SAVE command. This is done
so you will not accidentally use the same name for two programs and inadver
tently destroy one of them. If you wish to store an updated version of a program,
you can delete the old version first via UNSAVE, or you can use the REPLACE
command. For example:

♦SAVE " S Y l : INCOMETX" eft

♦ L IS T 10 CR)

0 0 0 1 0 PRIN T "H I THRER"

* 1 0 PRIN T " H I THERE" Sj)

♦SAVE " S Y l : INCOMETX" eft

(note the error)
(correct the error)
(attempt to replace program)

! ERROR - F IL E ALREADY E X IST S

♦REPLACE "S Y 1 : INCOMETX" Sj) (replace program)
*

Remember, you can only use “SYl:” if you have a multiple-drive system.

SCRATCH

SCRATCH clears all current storage areas used by BASIC. This deletes any
commands, programs, data, strings, or symbols currently stored by BASIC.

SCRATCH should be used for entering a new program from the terminal
keyboard to ensure that old program lines are not mixed with new program lines.
It also assures a clear symbol table. The form of the SCRATCH statement is:

♦SCRATCH cr)

EXTENDED BENTON HARBOR BASIC 6"

Before destroying stored information, the user is asked “SURE?”. A “Y” reply
causes SCRATCH to proceed. Any other response cancels SCRATCH. For exam
ple:

^SCRATCH cr) (Scratch statement entered.)
SURE? @ (Are you sure, answer Y (YES,)

* (BASIC is ready for a new entry.)

Statements Valid in the Command or Program Mode

You may use the statements in this section in either the command or the program
mode. A few of them have only subtle uses in one mode or the other. Because
they may be used in both modes, they are listed in this section.

CHAIN

The CHAIN command is used to start the execution of another BASIC program.
The format of the CHAIN command is:

CHAIN s e x p @ (or)
CHAIN s e x p , l i n n u m g)

where “sexp” is a string expression containing the file name of the program to be
executed. If no device is specified, BASIC assumes SY0:. If no extension is
specified, BASIC assumes .BAS.

The CHAIN command causes the current program text to be deleted, the new
program to be read in, and execution to begin. If no line number is specified,
execution begins at the first line of the new program. If a line number is specified,
execution begins at that line number. Note that the GOSUB and FOR loop tables
are cleared by the CHAIN process, but no data values (numeric and string
variables and arrays) are affected by the CHAIN. However, the data pointer is
reset to the top of the data statements. In addition, user-defined functions are
undefined, and the random process is restarted. Open data files are not affected.

You can use the CHAIN command in the command mode as a quick way to load
and execute a program. For example,

* CHAIN "DEMO" cr)

H I , I 'M A BASIC DEMO PROGRAM!

(e t c .)

6 -34 1 CHAPTER SIX

You can use the CHAIN command in the execution mode to start a different
program executing, while maintaining any open files and data values. Thus, a
program that is too large to fit in memory all at once can be written in several
sections, with each section chaining to the next one when ready. As an example,
assume we have written a payroll maintenance program that is too large to all fit
in memory. This program can perform 5 different functions upon the payroll file.
One of these functions might be “add an employee” , another one “print monthly
checks”, and so forth. Because the entire program will not fit in memory at one
time, we have split it into five pieces, each of which performs one of the five
functions. A section of the program might look like:

00020 DIM A $(4)
00030 A$(0)="SY 1: PAYR0L1. BAS"
00040 A$ (1) = "SY 1: PAYR0L2. BAS"

0 2 0 0 0 INPUT "WHAT FUNCTION (1 - 5) " , F

0 2 0 1 0 CHAIN A S (F - l)

This program inputs a number from the operator, indicating which function is to
be performed, and then CHAINS to the appropriate program.

The value of A$ and the values of all other variables are preserved during the
CHAIN. In this example, the individual service programs CHAIN back to the
master program when done, with a statement

CHAIN "PA Y R O L L ".2 0 0 0 @>

so the PAYROLL program does not start over at the beginning, but instead, starts
at line 2000.

CLEAR

CLEAR sets the contents of all variables, arrays, string buffers, and stacks to zero.
The program itself is not affected. The command is generally used before a
program is rerun to insure a fresh start if the program is started with a command
other than RUN. The form of the CLEAR statement is:

CLEAR
CLEAR v a r n a m e

EXTENDED BENTON HARBOR BASIC 6"35

All variables, arrays, string buffers, etc., are cleared before a program is executed
by RUN. Therefore, a clear statement is not required. However, a program
terminated prior to execution (by a STOP command or an error) does not set these
variables, etc., to zero. They are left with the last value assigned. If the variable
name (varname) is specified, the CLEAR command clears the named variable,
array, or DEF FN (user defined function).

Note that the memory space used by string variables and arrays is not freed when
CLEAR varname is used. String values should be set to null (for example, A$ =
““) before clearing so the string space can be recovered.

For example:

CLEAR A cr)

CLEAR A$
CLEAR A(

Clears variable A
Clears the string variable A$
Clears the dim ensioned variable A(

If a section of the program is to be rerun after appropriate editing, the variables,
arrays, dimensions, etc., should be reinitialized. You can accomplish this by
using the CLEAR statement in the command mode.

CLOSE

The CLOSE statement is used to close an HDOS file. To read or write to a file,
three things must be done in sequence:

1. The file must be opened (see OPEN).
2. The I/O is performed (via “INPUT #chan” or “PRINT #chan”).
3. The file must be closed.

The format of the CLOSE statement is

CLOSE # c h a n l cr) for)
CLOSE # c h a n l , . . . , # c h a n n

where “#chan” is the channel number assigned to the file when it was opened.
The CLOSE command does three things:

1. If the file was OPENed for writing, the new file is entered into the
disk’s directory. If the file is not closed, it, and the information written

a

to it, are lost.

6-361 CHAPTER SIX

2. The BASIC channel number is freed so a different file may be OPENed
on that channel.

3. If there are no open channels with numbers higher than the one being
closed, the buffer space in the FILE table (see the FREE command) is
freed up. That is, if channels 1 and 2 are open, and you close 1, then no
FILE table space is freed. When you later close channel 2, then the
FILE table space for both channels 1 and 2 is freed.

If your program blows up without closing its channels, you may want to type
CLEAR to discard the partially written files. If you want to save any partial files,
use CLOSE in command mode to close the files.

If the channel number(s) listed in the CLOSE command have not been opened or
have already been closed, they are ignored.

CNTRL (CONTROL)

Control is a multi-purpose command used to set various options and flags. The
form of the CONTROL statement is:

CNTRL i e x p l , i e x p 2 cr)

The various CNTRL options are:

i e x p l i e x p 2

CNTRL X , n n n

CNTRL 1 , n

CNTRL 2 , n

CNTRL 3 , n

CNTRL 4 , n

EXTENDED BENTON HARBOR BASIC 6“37

CNTRL 0

The CNTRL J0, nnn command sets up a GOSUB routine to process CTRL-B
characters. The line number of the routine is specified as “iexp2.” When a
CTRL-B is entered from the terminal, program control is passed to the specified
statement (beginning at the line iexp2) via a GOSUB linkage, after the statement
being executed is completed. For example:

0 0 0 1 0 CNTRL -ef ,5 0 0
0 0 0 2 0 FOR A=1 TO 9
0 0 0 3 0 PRINT A ,A *A ,A *A *A
0 0 0 4 0 NEXT A
0 0 0 5 0 END
0 0 5 0 0 PRIN T " THAT T IC K L E S "
0 0 5 1 0 RETURN
*RUN cSi

1 1 1
<C T R L -B > 2 4

THAT TICKLES
3 9 2 7

4 16 <C T R L -B >
THAT TICK LES

5 2 5 1 2 5

6 3 6 2 1 6

6 4

<CTRL-B>THAT TICK LES
4 9 <C T R L -B >7

THAT TICKLES
8
9

6 4
8 1

3 4 3

5 1 2
7 2 9

END AT L IN E 50
*

6-38

During the execution of the program containing these three statements, a
CTRL-B from the keyboard momentarily interrupts execution of the program.
The program completes the line in progress and then enters the subroutine at
line 500, printing the string:

THAT TICK LES

It then moves to the next statement, a RETURN. This causes the program to
continue with normal program execution. NOTE: The CNTRLjL, nnn must be
executed before it is operational.

CNTRL 1

The CNTRL 1, n command sets the number of digits permitted before the
exponential notation is used. Normal mode N = 6. For example:

* CNTRL 1 , 2 g) (N u m b e rs > 100 are to be in e x p o n e n tia l fo rm a t.)

♦ PRIN T 1 0 1 §)

1 .0 1 0 0 0 E + 0 2

CNTRL 2

The CNTRL 2, n command controls the H8 front panel LED display mode. The
control functions are:

CNTRL 2 , 0 g T u rn d is p la y o f f (N o rm a l m o d e).

CNTRL 2 , 1 g T u rn d is p la y on w ith o u t u p d a te . (For w r itin g in to a d is p la y . S e e th e

e x a m p le u n d e r “T h e SEG F u n c tio n , SEG (N A R G)’’ on P age 5 -7 2 .”)

CNTRL 2 , 2 g T u rn d is p la y on w ith u p d a te (to m o n ito r a reg is ter or

m e m o r y lo ca tio n).

NOTE: The CNTRL 2,n command has no effect on an H89, since there is no front
panel display on this model.

EXTENDED BENTON HARBOR BASIC 6“39

CNTRL 3

The CNTRL 3, n command controls the size of a print zone. This is normally 14.
However, CNTRL 3, n can change the number of spaces in a print zone.

* CNTRL 3 , 5 cfr

* PR IN T 1 , 2 , 3 , 4 , 3 , 2 , 1 , 0 g)

1 2 3 2 3 4 3 2 1 0

CNTRL 4

The CNTRL 4, n command is used to control the HDOS Operating System’s
RAM

SYX:
temporarily. This section of HDOS is called the “overlays”, and is used when
files are opened and closed. The statement

CNTRL 4 , 1 g)

will cause these HDOS overlays to remain in memory permanently. This will
greatly speed up the execution of the RUN, SAVE, UNSAVE, OLD, REPLACE,
OPEN, and CLOSE statements, at the cost of about 2.5K bytes of free RAM.
Executing the statement

CNTRL 4 , 0 g

restores HDOS to its normal mode and allows BASIC to make use of that 2.5K
bytes of RAM. When you first run BASIC, it starts up in the CNTRL 4,0 mode.
Users with sufficient free space will find a significant speed increase by using
the CNTRL 4,1 command.

NOTE: The CNTRL 4,n command cannot be executed as a program statement. If
you want to “lock” the overlays in memory, do so before executing the program.
Good programming practice dictates that you do a CNTRL 4,n command prior to
putting the program into memory.

6-401 CHAPTER SIX

DIM (DIMENSION)

The DIMENSION statement explicitly defines the maximum dimensions of array
variables. A single dimension array is often called a vector. The form of the,
DIMENSION statement is:

*DIM v a r n a m e (i e x p l , . . . , i e x p n) , v a r n a m e 2 (. . . .) CR)

The expressions “iexpl” through “iexpn” are integer expressions specifying the
bounds of each dimension. Dimensions are 0 to “expn.” So, for example, the
statement:

*

DIM A (5 , 5)

reserves an array 6X6 or 36 values. If the dimensioned variable is numeric, the
values are preset to zero. If the dimensioned variable is a string, all the values are
preset to a null string.

You may declare several variables in one DIMENSION statement by separating
them with commas. For example:

♦DIM A 6 (3 , 2) , B (5 , 5) , C 3 (I D , I D) g>

dimensions the following arrays

VARIABLE SIZE

A6
B
C3

4 by 3
6 by 6

11 by 11

12 elements
36 elements

121 elements

EXTENDED BENTON HARBOR BASIC 6-41

You can place a DIMENSION statement anywhere in a multiple statement line
and it can appear anywhere in the program. However, an array can only be
dimensioned once in a program unless it is cleared. DIMENSION statements
must be executed before the first reference to the array, although good program
ming practices place all DIMENSION statements in a group among the first
statements of a program. This allows them to be easily identified and changed if
alterations are required later. The following example demonstrates the use of the
DIMENSION statement with subscripted variables and a two-level FOR state
ment.

♦ L IS T 6j)

10 REM DIMENSION DEMO PROGRAM
2 0 DIM A (5 ,1 J ?)
3D FOR B = # TO 5
4 0 LET A(B,J0T)=B
50 FOR C=JT TO 1J2T
6 0 LET A (X ,C)= C

7 0 PRIN T A (B , C) ;
8 0 NEXT C :P R IN T : NEXT B
90 END

*RUN cr)

X 1 2 3 4 5 6 7
1
2
3
4
5

9 10
0 4/

$ &
X X /

END AT L IN E 90

FOR AND NEXT

FOR and NEXT statements define the beginning and end of a program loop. A
program loop is a set of repeated instructions. Each time they are repeated they
modify a variable in some way until a predetermined condition is reached,
causing the program to exit from the loop. The FOR NEXT statement is of the
form:

FOR v a r = n e x p l t o n e x p 2 [S T E P n e x p 3]

NEXT v a r

6-421 CHAPTER SIX

When BASIC encounters the FOR statement, the expressions nexpl, nexp2, and
nexp3 (if present) are evaluated. The variable “var” may be a scaler numeric
variable, or it may be an element of a numeric array. It is assigned a value of
“nexpl.” For example:

* FOR A=2 TO 2 0 STEP 2 : PRIN T A ;:N E X T A cfe

2 4 6 8 10 12 14 16 18 2 0

causes the program to execute as long as A is less than or equal to 20. Each time
the program passes through the loop, the variable A is incremented by 2 (the
STEP number). Therefore, this loop is executed a total of 10 times. When
incremented to 22, program control passes to the line following the associated
NEXT statement. It is important to note that the initial value used for the variable
is the value assigned to the variable expression when it entered the FOR-NEXT
loop. For example:

♦A = 1 0 :F 0 R A=2 TO 2 0 STEP 2 : PR IN T A ;:N E X T A gi

2 4 6 8 10 12 14 16 18 2 0
*

Prior to execution, the variable A is assigned the value 10. The program passes
through the loop 10 times. A is reset to 2 and then increments from 2 to 20.

If “nexp2” 0, and the initial value of var “nexp2”, the loop terminates. For
example, the program:

* L IS T cn)

10 FOR J = 2 TO 18 STEP 4

20 J = 1 8

3D PRIN T J ; :N E X T J
4 0 END

* RUN cr;

18

END AT L IN E 4 0

is only executed once, since the value of
satisfying the termination condition.

= 18 is reached on the first pass,

EXTENDED BENTON HARBOR BASIC I 6“43

A loop created by the statement:

*FOR A=2D TO 2 STEP 2 : P R INT A ; : NEXT A ch»— ______u ■ _ ~ - - - - - — -----
2 0

is executed only once, as the initial value exceeds the terminal value. However, if
this example is modified to read:

* F0R A =20 TO 2 STEP - 2 : PR IN T A ; : NEXT A g
j - - j — - r — - ' - - -----------
2 0 18 16 14 12 10 8 6 4 2

*

the negative step allows normal operation.

In summary, for positive STEP values, the loop is executed until the variable
(var) is greater than the final assigned value (nexp2). For negative STEP values,
the loop is executed until the variable (var) is less than the final assigned value
(nexp2).

If the loop does not terminate, execution is transferred to the statement following
the FOR statement. Therefore, a series of statements may be executed using the
incremented value of the variable. If the loop does terminate, execution is
transferred to the statement following NEXT.

The expressions in the FOR statement can be any acceptable BASIC numeric
expressions.

If the STEP expression and the word STEP are omitted from the FOR statement, a
step of +1 is the default value. Since 4-1 is an extremely common step value, the
STEP portion of the statement is frequently omitted. For example:

* F0R A=2 TO 10 : PRIN T A ; : NEXT A g)

2 3 4 5 6 7 8 9 10

6-441 CHAPTER SIX

Nesting is a technique frequently used in programming. It consists of placing
one or more loops completely inside another loop. The field or operating range of
the loop (the lines from the FOR statement to the corresponding NEXT state
ment) must not cross the field of another loop. The following two examples show
legal and illegal nesting of FOR NEXT loops.

LEGAL NESTING ILLEGAL NESTING

Two-Level Nesting

FOR A = 1 TO 50

FOR B = 1 TO 10

NEXT B

FOR C = 1 TO 20

NEXT C

LOOP A
FIELD

LOOP B
FIELD

NEXT A

FOR A = 1 TO 100

FOR B = 1 TO 10

NEXT A

L NEXT B

Three-Level Nestin

LOOP A
FIELD

FOR A = 1 TO 10 LOOP A
FIELD

FOR A = 1 TO 3

FOR B = 1 TO 10
FOR B = 1 TO 5

LOOP B
FIELD

LOOP C
FIELD

r FOR C = 1 TO 30

L- NEXT C

LOOP B
FIELD

LOOP C
FIELD

r-FOR C = 1 TO 5

NEXT C

r- FOR D = 1 TO 40 FOR D = 1 TO 30

NEXT D
LOOP D
FIELD NEXT D

LOOP D /
FIELD Z NEXT B NEXT A

NEXT A NEXT B

Note that both columns of nesting illustrations are shown in two-level and
three-level forms. However, right-hand columns are not truly nesting but a
crossover of FOR and NEXT loops (fields), and therefore are illegal. Also note
that each of these examples uses the implied STEP value of 1.

EXTENDED BENTON HARBOR BASIC 6“45

The depth of nesting depends upon the amount of memory space available.

It is possible to exit from a FOR NEXT loop without reaching the variable
termination value. This can be done using a conditional transfer such as an IF
statement within the loop. However, control can only be transferred into a loop if
the loop is left during prior program execution without being completed. This
ensures the assignment of values to the termination and step variables.

Both FOR and NEXT statements can appear anywhere on a multiple statement
line.

The NEXT statement does not require the variable. If the variable is not
BASIC will NEXT the innermost FOR loop.

iven,

FREE

The FREE statement displays the amount of memory used by EX. B.H. BASIC and
any program material. It also displays the total amount of free space left, which is
dependent on the amount of memory in the computer and the program size. This
command is particularly valuable when you are gauging the size of the pro
gram’s data structure and establishing limits on a DIMENSION command. The
FREE command also indicates the cause of memory overflow errors. The form of
the FREE statement is:

*FREE @

The form of the printout is:

TEXT
SYMB
FORL
GSUB
WORK

—

n n n n
n n n n
n n n n
n n n n
n n n n

STRN — n n n n
TSTR — n n n n
F IL E — n n n n
FREE — n n n n n

(B y t e s u s e d b y p r o g r a m t e x t)
(B y t e s u s e d b y v a r i a b l e s a n d a r r a y s)
(B y t e s u s e d b y FOR l o o p s)
(B y t e s u s e d b y GOSUBS)
(B y t e s u s e d b y e x p r e s s i o n a n d

f u n c t i o n e v a l u a t i o n)
(B y t e s u s e d b y s t r i n g s)
(B y t e s u s e d b y t e m p o r a r y s t r i n g s)
(B y t e s u s e d b y f i l e b u f f e r s)
(T o t a l n u m b e r o f f r e e b y t e s)

6-461 CHAPTER SIX

For example, running the program

* 1 0 GOSUB 10

BASIC soon returns a memory overflow error. Executing FREE shows the user a
very large GOSUB table. This, and the statement provided in the error message,
enables one to determine the program is in a GOSUB loop.

*FREE
TEXT = 9
SYMB = □
FORL = □
GSUB = □
WORK = □
STRN = □
TSTR = □
F IL E = □
FREE = 3 4 3 2 0
ID GOSUB 10 -
RUN @

ERROR — O u t
FREE @
TEXT = 9
SYMB = □
EORL = 0
GSUB = 3 2 9 2
WORK = 0
STRN = 0
TSTR = □
F IL E = □
FREE = 1 3 9 2

- O u t o f RAM S p a c e A t L i n e 10

Note that the file table never contains less than 283 bytes when a channel is open.
The file table contains the disk file buffers necessary to read and write files. The
283 bytes are required for BASIC’s internal buffer, which it uses for such com
mands as OLD, SAVE, and REPLACE.

You can compute the amount of space used by the FILE table with the formula:

bytes = N * 256

where N is the number of the highest-numbered channel that is open. Thus,
when your program opens files, it should open them on the lowest numbered
channels first. If you open a file on channel 3, space is reserved for the buffers for
channels 1 and 2, even if they are never opened.

EXTENDED BENTON HARBOR BASIC 6“47

FREEZE

The FREEZE command is used to store BASIC, your program, and all of your
program’s variables on any mounted disk. The format of the command is:

FREEZE " f n a m e " g)

where “fname” is the file name under which the frozen program will be stored. If
SY/:

assumes .BAF (for BASIC Frozen).

The FREEZE command allows you to suspend work temporarily; perhaps to
power-down overnight or to allow some more important work to interrupt. This
command is not intended as a general-purpose, program-save command; the
SAVE and REPLACE commands are provided for normal program saving. The
file created by the FREEZE command is in absolute binary format and cannot be
displayed or edited. Its sole use is to be unfrozen with the UNFREEZE command.

The file is quite large because it contains all of the BASIC interpreter in addition
to your program and variables. Frozen programs are non-transferrable, in that
they cannot be unfrozen by a different version of BASIC than the one they were
frozen with.

NOTE: All files must be closed before a program is saved via FREEZE.

GOSUB AND RETURN

A subroutine is a section of a program performing some operation required one
or more times during program execution. Complicated operations on a volume of
data, mathematical evaluations too complex for user-defined functions, or a
previously written routine are all examples of processes best performed by a
subroutine.

More than one subroutine is allowed in a single program. Good programming
practices dictate that subroutines should be placed one after another at the end of
the program in line number sequence. A useful practice is to assign distinctive
line number groups to subroutines.

For example, a main program uses line numbers through 300. The 400 block is
assigned to subroutine #1 and the 500 block is assigned to subroutine #2. Thus,
any errors, program m
identified.

lifications, etc., involving the subroutine are easily

6-48 CHAPTER SIX

Subroutines are normally placed at the end of a program, but before data state
ments if there are any.

Program execution begins and continues until a GOSUB statement is encoun
tered. The form of the GOSUB statement is:

*G0SU LINNUM g

where LINNUM is the line number of the first line in the subroutine. Once
GOSUB is executed, program control transfers to the first line of the subroutine
and the subroutine is executed. For example:

6 0 GOSUB 5 0 0 g

in this example, control (the sequence of program execution) is transferred to
line 500 in the program after line 60 is executed. The first line in the subroutine
may often be a remark to identify the subroutine, or it may be any executable
statement.

Once program control is transferred to a subroutine, program execution con
tinues in the normal line-by-line manner until a RETURN statement is encoun
tered. The RETURN statement is of the form:

RETURN

RETURN causes the program control to return to the statement following the
original GOSUB statement. A subroutine must always be terminated by a RE
TURN.

Before BASIC transfers control to a subroutine, the next sequential statement to
be processed after the GOSUB statement is internally recorded. The RETURN
statement draws on this stored information to restart normal program execution.
Using this technique, BASIC always knows where to transfer control, no matter
how many times subroutines are called.

Subroutines can be nested in the same manner that FOR NEXT statements can be
nested. That is, one subroutine can call another subroutine, and if necessary, that
subroutine may call a third subroutine, etc. If, during execution of the subroutine
a RETURN is encountered, control is returned to the line following the GOSUB
calling the subroutine. Therefore, a subroutine can call another subroutine, even
itself. Subroutines can be entered at any point and can have more than one
RETURN. Multiple RETURN statements are often necessary when a subroutine
contains conditional statements imbedded in it, which cause different sub
routine completions dependent on the program data.

6-49

It is possible to transfer to the beginning or to any part of the subroutine. Multiple
entry points and returns make the GOSUB statement an extremely versatile tool.

Extended BASIC permits unlimited GOSUB nesting. However, nesting uses
memory and excessive nesting depth will cause an overflow.

GOTO

The GOTO statement provides unconditional transfer of program execution to
another line in the program. The GOTO statement is of the form:

*G 0T0 LINNUM g

When this statement is executed, program control transfers to the line number
specified by LINNUM. For example:

10 LET A=1
20 GOTO 40
30 LET A=2
40 PRINT A
50 END

*RUN gMM
1

END AT L IN E 50

Program lines in this example are executed in the followin order:

10, 20, 40, 50

Line 30 is never executed because the GOTO statement in line 20 uncondition
ally transfers control to line 40. After the unconditional transfer takes place,
normal sequential execution resumes at line 40.

IF THEN (IF GOTO)

The IF THEN (IF GOTO) conditionally transfers program execution from the
normal consecutive order of program lines, depending on the results of a relation
test. The forms of the IF statement are:

{
THEN)

> LINNUM g or

goto)
I F e x p r e s s i o n THEN s t a t e m e n t g

6-50

The expression frequently consists of two variables combined by the relational
operators described in “Relational Operators” (Page 6-18). In the first form, if the
result of the expression is true, control passes to the specified line number
(LINNUM). In the second form, control passes to the statement following THEN
on the remainder of the line. If the result of the expression is false, control passes
to the next line. The following examples show use of the IF THEN statement.

i o

20

3 0

4 0

50

6 0

7 0

READ A

B =10

I F A = B a T H E N 50

PR IN T ” A< > B " ,A :E N D

PR IN T "A = B " ,A

DATA 1 0 , 5 , 2 0

END

*RUN g)

A=B 10

END AT L IN E 7 0

^ CONTINUE g)

A< >B 5

END AT L IN E 40

^ CONTINUE g>

A< >B 20

END AT L IN E 4 0

NOTE: The expression can be an arbitrarily complex expression. For example:

I F (A < 3) AND NOT (B >C) THEN 3 3

LET

The LET statement assigns a value to a specific variable. The form of the LET
statement is:

LET v a r = n e x p
LET v a r $ = s e x p

(or)

EXTENDED BENTON HARBOR BASIC 6" 51

The variable “var” may be a numeric variable or a string variable “var$.” The
expression may be either an arithmetic “nexp” or a string expression “sexp.”
However, all items in a statement must be either numeric or string — they cannot
be mixed. If they are mixed, a type conflict error is flagged. NOTE: Unlike
standard BASIC, multiple assignments are not permitted. For example,

LET A=B=3 @

causes A to be set to 65,535 (true) if B is equal to 3, or it causes A to be set to 0
(false) if B is not equal to 3. It does not cause both A and B to be set to 3.

You may omit the keyword LET if you prefer. For example, the following two
statements produce identical results.

10 LET A = 6 (or)

10 A = 6

The LET statement is often referred to as an assignment statement. In this
context, the meaning of the equal (=) symbol should be understood as it is used
in BASIC. In ordinary algebra, the formula Y = Y + 1 is meaningless. However,
in BASIC, the equal sign denotes replacement rather than equality. Thus, the
formula Y - Y + 1 is translated as add 1 to the current value of Y and store the
new result at the location indicated by the variable Y.

Any values previously assigned to Y are combined with 1. An expression such as
D = B + C instructs BASIC to add the values assigned to the variables B and C and
store the resultant value at the location indicated by the variable D. The variable
D is not evaluated in terms of previously assigned values, but only in terms of B
and C. Therefore, if previous assignments gave D a different value, the prior
value is lost when this statement is executed.

LOCK

The LOCK statement protects your program by preventing you from executing of
the following command mode statements:

BUILD CLEAR SCRATCH

BYE DELETE UNFREEZE

CHAIN RUN

6-52 CHAPTER SIX

It also prevents the entry or deletion of program text. Variables can be changed,
but not deleted. The form of the LOCK statement is:

*LOCK €r)

A lock error (LOCK) is generated if you attempt to enter a “locked out’’ command
mode statement, such as RUN. Use the UNLOCK statement to abort the LOCK
mode.
ON . . . GOSUB

The ON . . . GOSUB statement allows you to program a computed GOSUB.
When you use the ON . . . GOSUB statement, use a RETURN at the end of the
subroutine to return program control to the statem ent following the
ON . . . GOSUB statement. The form of the ON . . . GOSUB statement is:

ON i e x p l GOSUB L I N N U M l, LINNUMn g

When it is processing an ON . . . GOSUB statement, BASIC evaluates the
expression “iexpl’’ and uses the result as an index to the list of statement
numbers LINNUMl through LINNUMn. Ifthe expression “iexpl’’ evaluatesto 1,
for example, control is passed to line number “LINNUMl”. If the expression
“iexpl” evaluates to 3, for example, control is passed to line number “LIN-
NUMB”. If the expression “iexpl,” evaluates to 0, or to an index greater than the
number of statement numbers listed, control is passed to the next program
statement.

ON . . . GOTO

The ON . . . GOTO statement allows you to perform a computed GOTO. The form
of the ON . . . GOTO statement is:

ON i e x p l GOTO LIN N U M l, , LINNUMn g

When it is processing an ON . . . GOTO statement, BASIC evaluates the expres
sion “iexpl” and uses the result as an index to the list of statement numbers
LINNUMl thru LINNUMn. If the expression “iexpl” evaluates to 1, for example,
control is passed to the line number given by the expression “LINNUMl”. If the
expression “iexpl” evaluates to 3, for example, control is passed to line number
given by the expression “LINNUM3”. If the expression “iexpl” evaluates to 0, or
to an index greater than the number of statement numbers listed, control is
passed to the next program statement.

EXTENDED BENTON HARBOR BASIC 6’ 53

OPEN

The OPEN command is used to open HDOS files so that they can be read or
written from BASIC. The format of the OPEN command is:

OPEN s e x p FOR READ AS F IL E # i e x p g (or)

OPEN s e x p FOR WRITE AS F IL E # i e x p g

The first form is used to open files for reading via the INPUT command. The
second form is used to open files for writing via the PRINT command.

“sexp” is a string value that contains the HDOS file name. If no device is
specified, BASIC assumes SYU:. If no extension is specified, BASIC assumes
.DAT. Any legal device may be used, “iexp” represents the channel number that
is to be assigned to the file. BASIC has five channels, 1 through 5. This means that
you can have a maximum of five files open at one time. You can close a file and
then re-use its channel for some other file. After the OPEN statement, the only
way to refer to the file is by its channel number; the file name is no longer needed.
For example:

OPEN "TEM P" FOR WRITE AS F IL E # 3
OPEN " S Y 1 : RALPH. WRK" FOR READ AS F IL E # 1
OPEN A$ FOR WRITE AS F IL E # 1
OPEN " T T :" FOR WRITE AS F IL E # 2

To print or output to the “alternate terminal” device:

□ 0 0 1 0 OPEN " A T :” FOR WRITE AS F IL E # 1
0 0 0 2 0 FOR 1= 1 TO 10
0 0 0 3 0 PRIN T # 1 , 1 ,S Q R (I)
0 0 0 4 0 NEXT I
0 0 0 5 0 CLOSE # 1
0 0 0 6 0 STOP
0 0 0 7 0 END

NOTES:

1. Although five channels are available, 1,2, 3,4, and 5, you should use
the lowest-numbered channel available when opening a file to
minimize the amount of memory space required. See the FREE com
mand discussion (Page 6-45) for more information.

6-54 CHAPTER SIX

2. Although files may be opened to any legal device, including the
console terminal (device TT:), you should use the regular INPUT and
PRINT statements for communicating with the console. Due to the
requirements of HDOS device I/O, BASIC saves up the data you write
to a file via PRINT until there are 256 bytes of data, and then writes the
256 bytes all in one group. Likewise, when reading, BASIC reads-
ahead a 256 byte block of data and then supplies it as needed to the
INPUT #chan statements. Thus, if you write to the console via a
channel opened on the device TT:, the lines will not appear on the
console when you PRINT them but when BASIC has accumulated 256
bytes worth (or when the file is closed).

OUT

The OUT statement is used to output binary numbers to an output port. The form
of the OUT statement is:

OUT i e x p l , i e x p 2 cr)

The expression “iexpl” is used as the port address, and “iexp2” is the value to be
placed at that port. Both iexpl and iexp2 are decimal numbers. The low-order
8-bits generated by the decimal numbers in iexpl or iexp2 are used. If you wish

write
write

sion.

PAUSE

The PAUSE statement causes BASIC to delay before executing the next state
ment. The form of the pause statement is:

PAUSE [i e x p]

If the optional expression iexp is omitted, PAUSE suspends execution until you
type a carriage return. If the expression iexp is present, PAUSE delays 2* iexp
milliseconds, and then allows execution to resume. The maximum value for iexp
is 30,000, allowing a maximum delay of about 60 seconds.

The PAUSE statement is particularly useful when you are viewing long outputs
on a CRT display. You can insert a PAUSE at appropriate points in the program,
allowing you to view the information on the CRT before the information scrolls
off the screen.

EXTENDED BENTON HARBOR BASIC 6“55

POKE

WARNING
The POKE function gives an experienced BASIC user direct control of virtually
all of the features of the computer. However, subtle misuse of POKE can interfere
with the operating system and cause it to cease correct functioning. For this
reason, Heath cannot provide consulting support for users who use the POKE
function.

The POKE statement is used to place a value in a particular memory location. The
form of the POKE statement is:

POKE L o c a t i o n , V a lu e

The “Location” is a decimal integer in the range of 0 to 65,535. This references
any individual byte of a memory location. The “Value” is also an integer
expression lying in the range of 0 to 255. You can examine the contents of a
memory location by using the PEEK function described on Page 6-70.

PRINT

The PRINT statement is used to output data to the console terminal or to an
HDOS file. The form of the PRINT statement is:

PRIN T [n e x p l . s e p l , . . [, n e x p n , s e p n]] (o r)
PRIN T # c h a n , [n e x p l . s e p l , . . [, n e x p n , s e p n]]

The first form shown is for writing text and values to the console terminal. The
second form is for writing values and text to an HDOS file, ‘chan’ is the channel
number of a file which must have been opened for WRITE. See the discussion of
the OPEN and CLOSE command for more information. Except for the destination
of the data, both forms of the command are otherwise identical.

6-56 [cf
CHAPTER SIX

The expression and separators contained within the brackets are optional. When
used without these optional expressions and separators, the simple

PRINT (o r)
PRINTa#CHAN,

statement outputs a blank line.

Printing Variables

The PRINT statement can be used to evaluate expressions and to simultaneously
print their results, or to simply print the results of a previously evaluated
expression or evaluations. Any expression contained in the PRINT statement is
evaluated before the result is printed. For example:

10 A = 4 : B = 6 : C=5+A
20 PRIN T
3 0 PRIN T A+B+C
4 0 END

*RUN gj)

19

END AT L IN E 4 0

All numbers are printed with a preceding and following blank. You can use
PRINT statements anywhere in a multiple-statement line. NOTE: The terminal
performs a carriage-return line feed at the end of each PRINT statement unless
you use the separators described in “Use of the , and (Page 6-57). Thus, in the
previous example, the first PRINT statement outputs a carriage-return line feed
and the second print statement outputs the number 19 followed by a carriage-
return line feed.

Printing Strings

The PRINT statement can be used to print a message (a string of characters). The
string may be alone or it may be used together with the evaluation and printing of
a numeric value. Characters to be printed are designated by enclosing them in
quotation marks ("). For example:

10 PRIN T "T H IS I S A HEATH COMPUTER"
♦RUN «)

T H IS I S A HEATH COMPUTER

END AT L IN E 6 5 5 3 5
*

EXTENDED BENTON HARBOR BASIC 6" 57

The string contained in a PRINT statement may be used to document the variable
being printed. For example:

io
20
3 0

*RUN

LET A = 5:L E T
PRINT "A +
END

A + B

B =10
” , A+B

END AT L IN E 30
*

When a character string is printed, only the characters between the quotes
appear. No leading or trailing blanks are added as they are when a numeric value
is printed. Leading and trailing blanks can be added within the quotation marks.

Use of the and

The console terminal is normally initialized with 80 columns divided into five
zones. (See CNTRL 3, n for exception.) Each zone, therefore, consists of 14
spaces. When an expression in the PRINT statement is followed by a comma (,)
the next value to be printed appears in the next available print zone. For
example:

10 A = 5 . 5 5 5 5 5 : B=2
2 0 PRIN T A , B , A +B , A *B , A -B , B-A
3 0 END

*RUN g)
5 .5 5 5 5 4 2 7 .5 5 5 5 4 1 1 .1 1 1 1 3 .5 5 5 5 4
- 3 . 5 5 5 5 4

END AT L IN E 3 0

NOTE: The sixth element in the PRINT list is the first entry on a new line, as the
five print zones of a 72-character line were used.

Using two commas together in a PRINT statement causes a print zone to be
skipped. For example:

10 A = o . o 5 5 o 5
20 PRIN T A ,B
3 0 END

*RUN a

B=2
, A * B .A -B ,B -A

o . d 5 d o 4

2 .5 5 5 5 4
2
- 3 . 5 5 5 5 4

7 .5 5 5 5 4 1 1 .1 1 1 1

END AT L IN E 3 0

6-58

If the last expression in a PRINT statement is followed by a comma, no carriage-
return line feed is given when the last variable is printed. The next value printed
(by a later PRINT statement) appears in the next available print zone. For
example:

10 LET A==1:LET B=2:LET
20 PRINT A,
30 PRINT
40 PRINT C
50 END

*RUN g)
1 2

END AT LINE 50
#

At certain times, it is desirable to use more than the designated five print zones. If
such tighter packing of the numeric values is desired, a semicolon (;) is inserted
in place of the comma. A semicolon does not move the next output to the next
PRINT zone, but simply prints the next variable, including its leading and
trailing blank. For example:

10 LET A=1:LET B=2: LET C=3
20 PRINT A;B;C
30 PRINT A+1;B+1
40 PRINT C+l
50 END

*RUN
1 2 3
2 3
4

END AT LINE 50

NOTE: If either a comma or a semicolon is the final character in a PRINT
statement, no final carriage-return line feed is printed.

EXTENDED BENTON HARBOR BASIC 6" 59

READ AND DATA

The READ and DATA statements are used in conjunction with each other to
enter data into an executing program. One statement is never used without the
other. The form of the statements are:

READ v a r l , . . . , v a r n

DATA v a i l , . . . , v a i n

The READ statement assigns the values listed in the DATA statement to the
specified variables varl through varn. The items in the variable list may be
simple variable names, arrays, or string variable names. Each one is separated by
a comma. For example:

5 DIM A (2 , 3)

10 READ C ,B $, A (1 , 2)

2 0 DATA 1 2 , T H IS I S S I X , 56

3 0 PRIN T C ,B $,A (1 , 2)

* RUN g)

12 T H IS I S S IX 56

END AT L IN E 6 5 5 3 5

Because data must be read before it can be used in the program, READ statements
generally occur in the beginning of a program. You may, however, place a READ
statement anywhere in a multiple-statement line. The type of value in the DATA
statement must match the type of corresponding variable in the READ statement.
When the DATA statement is exhausted, BASIC finds the next sequential DATA
statement in the program. NOTE: BASIC does not automatically go to the next
DATA statement for every READ statement. Therefore, one DATA statement may
supply values for several READ statements if the DATA statement contains more
expressions than the READ statement has variables.

The data values in a DATA statement must be separated by commas. If the value
is to be read into a numeric variable or array, it must be a number. If the value is to
be read into a string variable or array, no specific format is required. If the value is
enclosed in quotes the quoted characters are assigned to the string variable.
If the value is not enclosed in quotes, BASIC uses the characters until a comma or
the end of the line is reached. Thus, if you wish to read a comma as part of the
value, you must enclose the value in quotes.

6-60

You may not include a quote character in the value. For example:

10 READ A $,B $,C $

2 0 PR IN T A $,B $,C $

3 0 DATA H I T H E R E ,” H I , THERE” , YES

*RUN g)

H I THERE H I , THERE YES

A field in DATA statement may be left null by means of two adjacent commas.
This causes the associated variable to retain the old value. For example:

10 A = 1 :B = 1 : C=1

20 READ A ,B ,C

3 0 PRINT A ,B ,C

40 DATA 3 , ,4

50 END

*RUN CR)

3 1 4

END AT L IN E 50

If a DATA statement appears on a line, it must be the only statement on the line.
DATA statements may not follow any other statement on the line. Other state
ments should not follow DATA statements.

DATA statements do not have to be executed to be used. That is, they may be the
last statement in a program, and be used by a READ statement executed earlier in
the program. However, if DATA statements appear in a program in such a place
that they are executed (there are executable statements beyond the DATA state
ment), the executed DATA statement has no effect. Therefore, location of DATA
statements is arbitrary as long as the values contained within the DATA state
ments appear in the correct order. However, good programming practice dictates
all DATA statements occur near the end of the program. This makes it easy for the
programmer to modify the DATA statements when necessary.

If a value contained in a DATA statement is incorrect, the illegal character error
message is printed. All subsequent READ statements also cause the message. If
there is no data available in the data table for the READ statement to use, the no
data error message is printed.

If the number of values in the data list exceed those required by the program
READ statements, they are ignored, and thus not used.

6-61

REM (REMARK)

The REMARK statement lets you insert notes, messages, and other useful infor
mation within your program in such a form that it is not executed. The contents
of the REMARK statement may give such information as the name and purpose of
the program, how the program maybe used, how certain portions of the program
work, etc.. Although the REMARK statement inserts comments into the program
without affecting execution, it does use memory which may be needed in
exceptionally long programs.

REMARK statements must be preceded by a line number when used in the
program. They may be used anywhere in a multiple statement line. The message
itself can contain any printing character on the keyboard and can include blanks.
BASIC ignores anything on a line following the letters REM.

RESTORE

The RESTORE statement causes the program to reuse data starting at the first
DATA statement. It resets the DATA statement pointer to the beginning of the
Droeram. The RESTORE statement is of the form:

RESTORE

For example:

10 READ A.B.C
20 PRINT A .B .C
30 RESTORE
40 READ D .E .F
50 PRINT D .E .F
6 0 DATA 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8
7 0 END

*RUN g>
1 2 3
1 2 3

END AT L IN E 7 0

This program does not utilize the last five elements of the DATA statement. The
RESTORE command resets the DATA statement pointer and the READ D,E,F
statement uses the first three data elements, as does the initial READ statement.

The CLEAR command includes the RESTORE function.

6-621 CHAPTER SIX

STEP

The STEP command permits you to step through a program a single line or a few
lines at a time. The form of the step command is:

STEP i e x p eg)

where the integer expression iexp indicates the number of lines to be executed
before stopping. Execution of the desired lines is indicated by the prompt NXT =
nnnn, where nnnn is the next line number to be executed. A STEP 2 is required to
execute the first program line. All future single-line executions require a STEP or
STEP 1. For example:

*

10 READ A .B .C
2 0 PRIN T A .B .C
3 0 RESTORE
4 0 READ D ,E ,F
50 PR IN T D .E .F
6 0 DATA 1 . 2 , 3 , 4
7 0 END

* CLEAR g)

♦STEP 3 g>
1 2 3
NXT= 30

♦STEP g)
NXT= 4 0

♦STEP cji
NXT= 50

♦STEP cn
1 2 3
NXT= 6 0

♦STEP 2 cn

END AT L IN E 7 0

UNFREEZE

The UNFREEZE command is used to restore a program that has been frozen with
the FREEZE command. See “FREEZE” (Page 6-47) for more information. The
format of the UNFREEZE command is:

UNFREEZE " f n a m e " gi

where “fname” is the name of the previously frozen file. If no device is specified,
BASIC assumes SY0:. If not extension is specified, BASIC assumes .BAS.

EXTENDED BENTON HARBOR BASIC 6"

UNLOCK

The UNLOCK statement aborts the LOCK mode and restores the use of all
command mode statements. The form of the UNLOCK statement is:

UNLOCK @

UNSAVE

The UNSAVE command is used to delete programs and files from the disk. The
form of the UNSAVE command is:

UNSAVE " f n a m e ”

where fname is the name of the file to delete. If no device is specified, BASIC
assumes SY0:. If no extension is specified, BASIC assumes .BAS . Unless the file
or the disk is write-protected, you can use UNSAVE to delete any file: a BASIC
program, a data file, or anything else.

Program Mode Statements

PROGRAM MODE statements are valid only when utilized within a pro£
they are entered in the command mode, an illegal use error is flagged.

DATA

The DATA statement discussed in “Read and Data” (Page 6-59) is a program-
only statement, although it is used in conjunction with a READ statement, which
may be used in either the command or program mode.

DEF FN

The DEF FN statement defines single-line program functions created by the user.
The form of the DEF FN statement is:

DEF FN v a r n a m e (a r g l [, a r g 2 , a r g n]) = e x p r

6-64

The variable name (varname) must be a legal string or numeric variable name
and cannot be previously dimensioned. However, it may be previously defined.
The latest definition takes precedence. The argum ent list
“(argl [,arg2,.... ,arg3])” must be supplied to indicate a function. Note: the
arguments are real, not dummy variables, and do change as evaluation proceeds.

10 REM D EFIN E A SQUARE FUNCTION
2 0 DEF FN S 1 (I) = I * I
3 0 PRIN T FN S 1 (3) , I , F N S I (5) , I
4 0 END

*RUN g
9 3 2 5

END AT LINE 40

END

The END statement causes control to return to the command mode. An END
statement message is typed, giving the line number of the END statement. END
also causes the ‘ ‘next statement” pointer to be set to the beginning of the program
so a CONTINUE resumes execution at the beginning of the program.

An END statement may appear anywhere in the program, as many times as
desired. If a program does not contain an END statement, it “runs off the end.” In
this case, BASIC generates a pseudo end statement at line 65,535.

INPUT AND LINE INPUT

The INPUT and LINE INPUT statements are used when data is to be read from the
console terminal, or from an HDOS file. The form of the INPUT statement is:

INPUT p r o m p t ; v a r l , . . . , v a r n (or)

INPUT # c h a n , p r o m p t ; v a r l , . . . , v a r n

The #chan specification (shown in the second example) is optional, and if
present specifies the channel number of the file (which must have been previ
ously OPENed for INPUT) to read from. An INPUT statement with a file channel
number specified works just like a regular INPUT statement, except that a line is
read from the file rather than the console. Values are read from the line in exactly
the same way as they would be from a line typed at the console. If necessary,
BASIC will read more lines from the file to satisfy the INPUT statement. Any
unused values on the line are discarded.

6-65

If the first element following the INPUT statement is a string, INPUT assumes it
is a prompt and types the string instead of the question mark (?). If you do not
want a prompt string but the first variable is a string variable, a leading semico
lon is required. For example:

INPUT ;S 3 f t (2)

tells BASIC that the data read from the console terminal is to be placed in the
third element of the string array S3$. Note that a prompt is meaningless when
inputting from HDOS files.

The data line input from the console or read from the HDOS file is identical in
format to the DATA statement except that the DATA keyword is omitted. String
values need not be enclosed in quotes unless they contain the comma (,) charac
ter. Multiple data values on the same line must be separated by commas.

As in the DATA statement, null fields (two commas in a row) cause the variable
to retain its previous value. If the user response (or the line read if you are
inputting from an HDOS file) does not supply sufficient data to complete the
INPUT statement, another “?” prompt is issued (if you are inputting from the
console) and another line is read from the console or the data file. CAUTION: If
you supply too much data or there is too much on a line read from a file, it will be
ignored. The next INPUT statement issues a fresh read to the terminal or file.

When there are several values to be entered via the INPUT statement, it is helpful
to print a message explaining the data needed, using the prompt string. For
example:

10 INPUT ’’THE TIME I S ? ” ;T

When this line of the program is executed, BASIC prints

THE TIME I S ?

and then waits for a response.

The LINE INPUT statement is used to input one line of string data from the
console terminal and assign it to a string variable. Its form is identical to the
INPUT form except that the supplied line is read in its entirety into the string
variable, regardless of commas (,) or quotes (“). For example:

L IN E INPUT "YES OR N O ?";A ft
L IN E INPUT # 2 , ;Aft

(or)

6-661 CHAPTER SIX

Note that the channel number in the second example must be followed by a
comma; the following semicolon tells BASIC that A$ is the variable name, not a
prompt.

LINE INPUT, unlike READ and INPUT, allows you to read a string containing a
quote (“) character. Note that you should not enclose your reply in quotes, since
these will be accepted as part of the string.

STOP

The STOP statement causes BASIC to enter the command mode. The message
stating the line number of the STOP is printed. The “next line” pointer is left
after the STOP statement, so a CONTINUE statement causes execution to resume
on the line immediately after the STOP statement. The STOP statement is of the
form:

STOP

The STOP statement can occur several times throughout a single program with
conditional jumps determining the actual end of the program. The following
example uses the STOP statement to examine a variable during execution.

10 A=1:B=2
20 PRINT A
30 END

♦RUN g)

END AT L IN E 3 0
♦ 1 5 S T 0 P g>

♦RUN ?"

STOP AT L IN E 1 5
♦PR IN T A g)

1
* 1 5 @ Stop deleted

*RUN
2 3

END AT L IN E 3 0
*

6-67

PREDEFINED FUNCTIONS

Introduction

There are 31 predefined functions in EX. B.H. BASIC. These funcitons perform
standard mathematical operations such as square roots, logarithms, string man
ipulations, and special features. Each function has an abbreviated three- or
four-letter name, followed by an argument in parentheses. As these functions are
predefined, they may be used throughout a program when required. Predefined
functions use numeric expressions (nexp), integer expressions (iexp), and string
expressions (sexpj.

The abbreviation (narg) is used to indicate a numeric argument, a decimal
number lying in the approximate range of 10“38 to 10+37. Certain functions do not
permit the argument to assume this wide range, as indicated in the function
description.

The predefined functions may be used in either the command or program mode.

Arithmetic and Special Feature Functions

THE ABSOLUTE VALUE FUNCTION, ABS (nexp)

The ABSOLUTE VALUE function gives the absolute value of the argument. The
absolute value is the positive portion of the numeric expression. For example:

*PR IN T A B S (- 5 .5) g
5 ~ 5 (or)

*PR IN T A B S (S I N (3 . 5)) g
.3 5 0 7 8 3

NOTE: The sine of 3.5 radians is —.350783.

6-681 CHAPTER SIX

The ARC TANGENT function returns the arc tangent of the argument. For
example:

♦ PRIN T ATN (1 / 1) * 5 7 .2 9 6 ; "DEGREES" Sj)
4 5 .0 0 0 1 DEGREES

♦ PRIN T 4 * A T N (1) Sj)
3 .1 4 1 5 9

♦ NOTE: tt = 3.14159

THE CHARACTER INPUT FUNCTION, CIN (chan)

The CIN function is used to read a character from any open file, or from the
console terminal (if chan = 0). If the value returned is positive, then it is the next
byte read from the file, or the next character read from the console (if chan = 0). If
the value returned is negative, then an end-of-file has been detected on the file, or
no line has yet been entered on the console (if chan = 0). For example:

♦PR IN T C IN (O) '§!

*

THE ARC TANGENT FUNCTION, ATN (nexp)

THE COSINE FUNCTION, COS (nexp)

The COSINE function returns the COSINE of the argument (nexp) expressed in
radians. For example:

♦PR IN T COS (6 0 / 5 7 . 2 9 6) Sj)
.5 0 0 0 0 3

*

THE EXPONENTIAL FUNCTION EXP (nexp)

The EXPONENTIAL function returns the value en*’J"p. If “nexp” exceeds 88, an
overflow is flagged, as the result exceeds 1038. If “nexp” is less than -88 , an
overflow error occurs. An example of the exponential function is:

♦PR IN T E X P (1) , E X P (2) , E X P (COS(6 0 / 5 7 . 2 9 6)) Sj)
2 .7 1 8 2 8

*
1 .6 4 8 7 37 . 3 8 9 0 5

EXTENDED BENTON HARBOR BASIC 6“69

THE INTEGER FUNCTION, INT (narg)

The INTEGER function returns the value of the greatest integer value, not greater
than “narg”. If the argument is a negative number, the INTEGER function returns
the negative number with the same or smaller absolute value. For example:

♦PR IN T INT (5 8 . 5 5)
3 8

♦PR IN T IN T (- 3 . 5)
- 3

THE LINE NUMBER FUNCTION, LNO (iexp)

BASIC statements that refer to line numbers (such as GOTO, GOSUB, and so
forth) do not allow the line number to be expressed as a numeric expression. The
LNO function is provided to convert an integer expression into a line number.
For example:

GOTO 2 0 g
(a n d)

GOTO LNO(2 * 1 0)

both cause a jump to statement number twenty. You can use the LNO function
anywhere a line number is required; it provides a very powerful “computed
GOTO” facility. A program can compute the line number it wishes to jump to (or
call, via GOSUB) by using the LNO function. Some more examples:

GOSUB L N 0 (2 * Y + 1 0 0)

ON I GOTO 2 0 , 3 0 , LNO(I) , LNO(I * 2)

I F (A =B) THEN GOTO LNO(A)

THE LOGARITHM FUNCTION, LOG (nexp)

The LOGARITHM function returns the natural logarithm (LOG to the base e) of
the argument. You can find the Logarithms of a number N in any other base by
using the formula:

L0Ga N = L0G eN /L 0 G ea

where “a” represents the desired base. Most frequently, “a” is 10 when you are
converting to common logarithms. For example:

♦ PRINT "A POWER RATIO OF 2 I S " ; 1 0 * (LOG(2) /L O G (1 0)) ; "D E C IB E L S " g
A POWER RATIO OF 2 I S 3 . 0 1 0 3 DECIBELS

*

6-701 CHAPTER SIX

THE PAD FUNCTION, PAD (0)

The PAD function returns the value of the keypad pressed on the H8 front panel.
For example:

* PR IN T PAD(O) g)
6 The #6 key was pressed.

The PAD function uses all the front panel debounce and repeat software con
tained in PAM-8. (See “The Segment Function,’’ Page 6-72, for an additional
example.)

NOTE: The PAD function must be completely executed before any other function
will respond. Therefore, CTRL-C, etc., will not work until you press an H8 front
panel key.

The PAD function is intended for use on an H8 computer, where front panel
access is necessary. On an H89 computer, there is no front panel. If a BASIC
program using the PAD function is run on an H89, a zero (0) will be returned as
soon as the PAD(O) is executed. CTRL-C is not disabled on the H89.

THE PEEK FUNCTION, PEEK (iexp)

The PEEK function returns the numeric value of the byte at memory location
iexp. iexp is in decimal.

THE PIN FUNCTION, PIN (iexp)

The PIN function returns the value input from port “iexp” where iexp is a
decimal expression ranging from 0-255. For example:

* A = P IN (3 8) 0

Where “A” now contains the data that was at port #38 (46 octal).

THE POSITION FUNCTION, POS (chan)

The POSITION function returns the current terminal printhead (cursor) posi
tion. The argument “chan” specifies the I/O channel number (see the OPEN
statement) you wish to interrogate. BASIC maintains a separate cursor address
for each I/O channel in use. Channel 0 is always the console channel, and is
always considered “open.” Thus, use POS(O) to read the position of the console
cursor. The value returned is a decimal number indicating the column number of
the printhead (cursor) position. For example:

*PR IN T P O S (D) , P O S (O) , P O S (O) ; P O S (O) ; P O S (O) g)
1 14 2 8 3 2 3 6

EXTENDED BENTON HARBOR BASIC 6“71

THE RANDOM FUNCTION, RND (narg)

The RANDOM number function returns the next element in a pseudo-random
series. The RANDOM number generator is not truly random, and may be man
ipulated by controlling the argument. If narg>0, the random number generator
returns the next random number in the series. If narg = 0, the random number
generator returns the previously returned random number. If narg<0, the value
“narg” is used as a new seed for a random number, thus starting an entire new
series. Using these three inputs to the random number series, the program may
continuously return the same number while de-bugging the program, determine
what the series of numbers will be when the program is run, or start a series of
new random numbers each time BASIC is loaded. For example:

10 RUN FOR A=0 t o 2
2 0 PR IN T R N D (l)
3 0 NEXT
4 0 END

♦RUN cr

.9 3 6 7 7

.5 6 6 6 8 1

.5 3 1 2 8

END AT L IN E 4 0

*2Q PR IN T RND(O) g)

*RUN cr)

.3 3 2 3 0 6

.3 3 2 3 0 6

.3 3 2 3 0 6

END AT L IN E 4 0
* 2Q PRIN T R N D (- l) g)

*RUN §)
6 .2 5 3 0 5 E —0 2
6 .2 5 3 0 5 E - 0 2
6 .2 5 3 0 5 E - Q 2

END AT L IN E 40
* 2 0 P R IN T RND(- 5) cr

RUN g)
.4 6 0 9 6 8
.4 6 0 9 6 8
.4 6 0 9 6 8

END AT L IN E 4 0
*

6-72 CHAPTER SIX

THE SEGMENT FUNCTION, SEG (narg)

The SEG function returns a numeric value which is the correct 8-bit binary
number to display the digit on the H8 front panel LED’s. The argument must be
an integer between 0 and 9. The following program demonstrates the use of PAD,
POKE, and SEG in EX. B.H. BASIC.

10 REM A PROGRAM TO USE THE FRONT PANEL LED S. CNTRL 2 . 1 TURNS
2 0 REM ON THE LEDS WITHOUT UPDATE. THE KEYPAD NOW DRIVES THE
3 0 REM DISPLAY THRU B A S IC . !
4 0 CNTRL 2 . 1
50 A = 8 2 0 3
6 0 FOR I = A a T 0 A+8
7 0 POKE I ,S E G (PAD(0))
8 0 NEXT I
90 GOTO 60
*RUN cr)

2 0 3 I S THE F IR S T LED MEM LOCATION

When the program is executed, the H8 front panel LEDs respond to the H8
keypad numeric entries. To escape from the program, you would type CTRL-C
and then press a key on the H8 front panel.

The SEG function is not useful on an H89 computer. Running this sample
program on your H89 will produce no results. Type CTRL-C to exit.

THE SIGN FUNCTION, SGN (narg)

The SIGN function returns the value -Hl if “narg” is a positive value, 0 if “narg”
is 0, and —1 if “narg” is negative. For example:

*PR IN T SGN (5 . 6) cr;

T

*PR IN T SG N (—5 0 0) eg)
- 1

*PR IN T SGN(1 2 - 1 2)
0

THE SINE FUNCTION SIN (nexp)

The SIN function returns the sine of the argument (nexp) expressed in radians.
For example:

*PR IN T S I N (3 0 / 5 7 . 2 9 6) g)
.4 9 9 9 9 9

EXTENDED BENTON HARBOR BASIC 6"73

SQUARE ROOT FUNCTION, SQR (narg)

The SQUARE ROOT function returns the square root of “narg”. The argument
“narg” must be greater than or equal to 0 (for example, positive).

* F0R A=D TO 5 : PRIN T A , SQ R (A) , A* * A : NEXT cr)

0 0 0
1
2
3
4

1
1 .4 1 4 2 1
1 .7 3 2 0 5
2

1
4
9
16

5 2 .2 3 6 0 7 2 5

THE MAXIMUM FUNCTION, MAX (nexpl,,nexpn)

The MAXIMUM function returns the maximum value of all the expressions
which are arguments of the function. For example:

10 LET A=1
2 0 PRIN T MAX(COS(A) , S I N (A) /C O S (A))
3 0 END

*RUN cr?■— r —
1 .5 5 7 4 1
END AT L IN E 3 0

The expression containing the maximum value is the expression for the tangent
of 1 radian, (1.55741).

THE MINIMUM FUNCTION, MIN (nexpl,. . . ,nexpn)

The MINIMUM function returns the lowest value of all expressions contained in
the argument. For example:

*PR IN T M I N (1 , 2 , 3 , 4 , . 5) cr)

.5
*

THE TANGENT FUNCTION, TAN (nexp)

TheTANGFNT function returns the TANGENT of the argument “nexp” expres
sed in radians. For example:

* PRINT TAN (4 5 / 5 7 . 2 9 6) cr)

.9 9 9 9 9 6

6-74 CHAPTER SIX

THE SPACE FUNCTION, SPC (iexp)

The SPACE function spaces the printhead (cursor) iexp spaces to the right of its
present position. For example:

* PRIN T 1 2 . 1 4 , S P C (2 0) ; 6 0 0 g)
12 14 6 0 0

*

THE TAB FUNCTION TAB (iexp)

The TAB function moves the printhead (cursor) to the iexp th column. NOTE: If
the printhead is at or past the iexp th column, the function is ignored. For
example:

♦PR IN T TAB(2 0) ; 6 0 , 7 0 g
6 0 7 0

*

String Functions

BASIC contains various functions for processing character strings in addition to
the functions used for mathematical operations. These functions allow the
program to concatenate two strings, access a part of string, generate a character
string corresponding to a given number, or generate a number for a given string.

THE CHARACTER FUNCTION, CHR$ (iexp)

The CHARACTER function returns a string that consists of a single character.
The character generated has the ASCII code “iexp”. NOTE: “iexp” is a decimal
number and must be converted to octal for comparison with most ASCII charac
ter tables. See “Appendix B” on Page 6-97. For example:

♦PR IN T C H R $ (6 5) g
A
♦PR IN T C H R $ (7 0) g
F

NOTE: If iexp = 0, the generated string is null.

EXTENDED BENTON HARBOR BASIC 6-75

THE STRING FUNCTION, STR$ (narg)

The STRING function encodes the argument (narg) into ASCII in the same format
used by the PRINT statement for numbers. These characters are returned as a
string, with leading and trailing blanks. For example:

♦ PRIN T S T R S (IO O) g ,
100 | STR$ function

♦PR IN T " 1 0 0 " g))J Normal string printing

*

THE ASCII FUNCTION, ASC (sexp)

The ASCII function returns the ASCII code for the first character in the string
expression (sexp). If the string is a null, the ASCII function returns a zero. The
return is a decimal number and must be converted to octal for comparison to
most ASCII tables. See “Appendix B” on Page 6-97. For example:

♦ PRIN T A S C ("A B C ") g>
6 5

♦PR IN T C H R $ (6 5) g
A

THE LEFT STRING FUNCTION, LEFTS (sexp, iexp)

The LEFT STRING function returns the “iexp” left-most characters of the string
expression (sexp). If “iexp” equals 0, the null string is returned. For example:

♦ PRIN T L E F T S ("H E L L O , T H IS I S A T E S T " ,1 0) g

HELLO. THI

THE RIGHT STRING FUNCTION, RIGHTS (sexp, iexp)

The RIGHT STRING function returns the right-most “iexp” characters of the
string expression (sexp). If “iexp” equals 0, the null string is returned. For
example:

♦PRINT RIGHTS("HELLO, THIS IS A TEST",1 0)
IS A TEST

THE LEN FUNCTION, LEN (sexp)

The LEN function returns the length of the string expression “sexp”. For exam-
pie:

* PRIN T LEN("H0W LONG I S THE S T R IN G ?") 6j)

23

6-761 CHAPTER SIX

The MATCH function searches the string sexpl for any substrings matching
sexp2. The search starts with character iexp in the string sexpl. If iexp = 1, the
search starts at the first character in sexpl. If iexp = 2, the search starts at the
second character in sexpl, and so forth. MATCH returns the character number of
the start of the substring in sexpl, if one was found, and a 0 if it was not found.
For example:

♦PR IN T M A TCH)"TH IS I S A RATHER LONG S T R IN G " , " T H " , 2) g
13

*

THE MATCH STRING FUNCTION, MATCH (sexpl,sexp2,iexp)

Note that MATCH found the TH in RATHER, not in THIS. Since the MATCH call
specified a search to start with the second character, BASIC started searching at
the “HIS IS . . .“ , thereby ignoring the T in “THIS”.

THE MIDDLE STRING FUNCTION, MID$ (sexp, iexpl [,iexp2])

The MIDDLE STRING function returns the right-hand substring of the string
expression “sexp” starting with the “iexpl” th character from the left-hand side
(the first character is 1). The return continues for “iexp2” characters or to the end
of the string if the optional terminating expression “iexp2” is omitted. For
example:

♦PR IN T M ID $ ("H E L L 0 , T H IS I S A T E S T " ,1 0 ,1 0) g
I S I S ’ A TE

THE NUMERIC VALUE FUNCTION, VAL (sexp)

The NUMERIC VALUE function returns the numeric value of the number en
coded in the string expression (sexp). For example:

♦PR IN T VAL (" . 0 0 3 2 E - 1 ") g

3 .0 0 0 0 0 E -0 4

EXTENDED BENTON HARBOR BASIC 6“77

GENERAL TEXT RULES

BLANKS AND TABS

BASIC programs are generally “free format.” That is, blanks (spaces and TABS)
may be included freely with the following restrictions.

1. Variable names, keywords, and numeric constants may not contain
imbedded blanks or tabs.

2. Blanks or tabs may not appear before a statement number.

LINE INSERTION

You can insert lines into a BASIC program by simply typing an appropriate line
number followed by the desired line of text. This is done in response to the
command mode prompt (an asterisk). Except when it it running a program,
BASIC remains in the command mode, showing a single asterisk (*) as a prompt.
NOTE: The text should immediately follow the last digit of the line number.
Although intervening blanks are allowable, they waste memory. BASIC au
tomatically inserts a blank when listing the text. For example:

*1OOPRINT "HEATH B A SIC "

L IS T g)

100 PR IN T "HEATH B A SIC "

Each time you type a statement with a line number, BASIC performs some simple
syntactical checks before inserting the line into your program. BASIC checks to
see if all the keywords are spelled correctly, and translates them to upper case. It
makes sure that all function calls are immediately followed by an open paren
thesis “(”. BASIC makes several other checks of the line to check for simple
syntax errors. If the line is determined to be incorrect, the message

SYNTAX ERROR

will be typed, and the line will not be inserted into your program. Note that this
preliminary syntax check will not detect all possible errors; BASIC may accept
the line when you type it and then detect an error later when you execute your
program.

-78 CHAPTER SIX

LINE LENGTH

A line in Extended BENTON HARBOR BASIC is restricted to 100 characters.

LINE REPLACEMENT

Replace existing program lines by simply typing the line number and the new
text. This is the same process you use to insert a new line. The old line is
completely lost once the new line is entered.

LINE DELETION

Delete lines by typing the line number immediately followed by a carriage-
return. You can leave blank lines by typing the single space before typing the
carriage-return.

USING A LINE PRINTER WITH BASIC

You can access device LP: from within BASIC in order to obtain program listings
or printed program output. For example, if you wanted computations or other
such results of programs to be listed on the line printer instead of the console
terminal, you would use the command OPEN “LP:” FOR WRITE AS FILE #. The
general format of this command is underlined in the sample application below:

10 OPEN " L P : " FOR WRITE AS F IL E # 1
2 0 FOR 1= 1 TO 10
30 PRINT#1, I
4 0 NEXT I
50 CLOSE#1
6 0 END

This program will print the numbers 1

To obtain a listing of a BASIC program that is currently in memory, type
REPLACE “LP:”.

EXTENDED BENTON HARBOR BASIC 6“79

ERRORS

BASIC detects many different error conditions. When an error is detected, a
message of the form:

! ERROR-(ERROR MESSAGE) [a t l i n e NNNNN]

is typed. BASIC returns to the command mode (if it is not already in the
command mode), ringing the console terminal bell. If BASIC is in the command
mode, the “at line NNNN” portion of the error message is omitted. For example:

! PRIN T 1 / 0 Sj)
! ERROR - ATTEMPTED D IV ID E BY ZERO
* 1 0 P R IN T I /O cS)
*RUN cgi

! ERROR - ATTEMPTED D IV ID E BY ZERO AT L IN E 10
*

NOTE: If a line of BASIC contains an error, you can correct it by retyping the
entire line. Once the line number is typed, the contents of the old line are lost. To
delete a line, type the line number and follow it with a carriage-return.

Error Messages

The following error table describes the Error Messages generated by Extended
BENTON HARBOR BASIC. This error table discusses only those errors which are
detected directly by BASIC. When you are dealing with HDOS files, there are
many errors which are detected by HDOS. They are printed in the BASIC error
message format described above, but their meanings are discussed in Chapter 1,
the HDOS Manual.

Recovering from Errors

When it detects an error, BASIC enters the command mode with the variables
and stacks as they were at the time of the error. Thus, the user can use PRINT and
LET statements to examine and alter variable contents. Likewise, a GOTO state
ment can be used to set the “next statement’’ pointer to any desired statement
number. Often, a combination of these techniques allows the user to continue a
program with the error corrected.

NOTE: If the program text is modified in any way, the GOSUB and FOR stacks are
purged. If an error occurred in a GOSUB routine for a FOR-loop, the entire
program must be restarted.

6-80

EXTENDED BENTON HARBOR BASIC 6"81

ERROR MESSAGES

AN ILLEGAL CHARACTER WAS ENCOUNTERED

This message indicates a syntax error in the line. BASIC saw a character that
was not legal in a BASIC statement.

ATTEMPTED D IV ID E BY ZERO

Your program tried to divide a number by 0.

CAN'T FIND VARIABLE NAME MENTIONED IN NEXT STATEMENT

BASIC has not seen a matching FOR-loop for the variable named in the
NEXT statement. This error can be caused by improper FOR-loop nesting.

STRUCK

The CTRL-B key was struck and no CTRL-B line number had been set up.
See the CNTRL 0,n command for more information.

CTL-C STRUCK

The CTRL-C key was struck, interrupting the program.

DATA EXHAUSTED

A READ statement was executed when there was no data remaining in
DATA statements to satisfy the READ. You either have too many READ
requests or too few DATA statements.

DATA LOCK ENGAGED.

This operation is illegal when BASIC is in the LOCKed state. See the LOCK
and UNLOCK commands for more information.

END

Your program executed an END statement. This is a normal way of terminat
ing execution, and not an error. If your program has no END statement,
BASIC will invent one at line 65535.

F IL E ALREADY E X IST S

You tried to SAVE to a file name which is already present on that device.
Either SAVE to a different file name, UNSAVE (delete) the existing file
name, or use the REPLACE command.

F IL E I S NOT OPEN

You tried to do file I/O (PRINT #chan, or INPUT #chan) to a channel which
has no open file associated with it. You must OPEN a file before it can be
used for INPUT or PRINTing.

6-82

FLOATING POINT OVERFLOW (N u m b e r t o o l a r g e)

An arithmetic calculation produced a number larger than 1 x 10t37.

ILLEGAL FORMAT FOR F IL E NAME

A file name specified in an OPEN statement contained too many characters
to be valid. There should be no blanks or extraneous characters in a file
name string.

ILLEGAL NUMBER VALUE

A number appeared in an illegal format or syntax. If this error occurs during
a READ or INPUT statement, check the value being READ or INPUTted to
see if it is valid.

ILLEGAL OR UNKNOWN STATEMENT NUMBER

A reference was made to a statement that does not exist, or to an ille
statement number. Statement numbers must be between 1 and 65534.

al

ILLEGAL USAGE

This statement may not be used in this mode. You have tried to use an
“execution mode only’’ command in immediate mode, or an “immediate
mode only” command in an executing program.

NO CORRESPONDING GOSUB FOR T H IS RETURN STATEMENT

A RETURN statement was encountered when the GOSUB stack was empty

OUT OF RAM SPACE

There is insufficient free RAM space to continue with this program. This
error usually occurs when you DIMension a large array. If you cannot
determine the cause of the memory overflow, use the FREE command to
display the amounts being used by the various tables. If you have specified
CNTRL 4,1, you can free up some RAM space by specifying CNTRL 4,0.

STOP

A STOP statement was encountered. This is a normal condition, and not an
error.

STRING LENGTH EXCEEDS 2 5 5 CHARACTERS

The maximum length of a string in BASIC is 255 characters

SU BSCRIPT OUT OF RANGE

The program specified a subscript value larger than the declared limit for
that dimension. Either your array was declared too small or your program
incorrectly computed the subscript.

EXTENDED BENTON HARBOR BASIC 6-83

SYNTAX ERROR

There is an error in the statement’s syntax.

TOO MANY OR TOO FEW ARGUMENTS S P E C IF IE D

An incorrect number of arguments was specified for a call to a built-in
function or a user-defined function.

TOO MANY OR TOO FEW SU B SC R IPTS SU PPLIED

The number of subscripts in the array reference do not match the number of
dimensions declared.

TYPE CONFLICT (I l l e g a l m ix o f s t r i n g a n d n u m b e r v a l u e s)

The program attempted an operation illegally mixing string and number
values, or supplied a numeric argument to a function requiring a string
argument, or vice versa. This error can also occur if you try to INPUT or
READ a string value into a numeric variable.

UNDEFINED FUNCTION

This user-defined function has not been defined. Your program must exe
cute the DEF FN statement before you attempt to call that function.

6-841 CHAPTER SIX

EXTENDED BENTON HARBOR BASIC 6-85

APPENDIX A

A Summary of BASIC

given with each of the following topics.

See Page

Numeric Data 6-9

Numbers may be real or integer with the following characteristics:

Ranee
Accuracy
Decimal range
Exponential format

IO”38 to 10+37.
6.9 digits.
0.1 to 999999.
(±) X.XXXXXE (±) NN.

Boolean Data 6-10

Integer numbers from 0 to 65535 represent two byte binary data from
00000000 00000000 to 11111111 11111111. Fractional parts of numbers be
tween 0 and 65535 are discarded.

String Data 6-10

Data is all printed in ASCII characters plus the BELL, BLANK, TAB, and FORM
FEED, with the following characteristics:

Maximum strin
Enclosure.......
Multiple lines .

length 255 characters.
Quotation marks (“) on both ends.
N o t a l l o w e d f o r a s i n e l a s t r i n p

Variables 6-11

Variables are named by a single letter (A through Z), or a single letter followed by
a single number (0 through 9). For example: A or A6.

6-861 CHAPTER SIX

See Page

Subscripted Variables 6-12

Subscripted variables are named like variables, but are followed by dimensions
in parentheses. Subscripted variables are of the form:

An(N,,N2.....................NJ F o r e x a m p l e : A (l , 2 . 7) o r A 6 (l , 5) .

You must use a DIMENSION statement to define the range and number of
allowable subscripts for a variable.

Arithmetic Operators 6-14

Listed in order of priority. Operators on the same line have equal precedence.
Parenthetical operations are performed first. Precedence is left to right if all other
factors are equal.

SYMBOL EXPLANATION

t
* /
+ -

Unary negation logical complement
Exponentiation.
Multiplication division
Addition subtraction

Relational Operators 6-18

SYMBOL EXPLANATION

Equal to
Less than
Less than or equal to
Greater than
Greater than or equal to
Not equal to

EXTENDED BENTON HARBOR BASIC 6“87

Boolean Operators
See Page

6-19

Boolean operators perform the Boolean (logical) operations on two integer
operands. The operands must evaluate to integers in the range of 0 to 65535. The
operators are:

NOT
OR

AND

String Variables

Logical complement, bit by bit
Logical OR, bit by bit
Logical AND, bit by bit

6-21

String variables may be either subscripted or nonsubscripted. They take the
same form as numeric or Boolean variables but are followed by a dollar sign ($) to
indicate a string variable. For example: A$ A6$ A$(l,2,7) or A6$(l,5).

String Operators 6-22

String expressions may be operated on by the relational operators as well as the
plus (+) symbol. The plus symbol is used to perform string concatenation.

The Command Mode 6-23

The command mode does not use line numbers. Statements are executed when a
carriage-return is typed.

Line Numbers 6-25

When it is used in the program mode, BASIC requires that each line be preceded
by an integer line number in the range 1 to 65534.

Multiple Statements on One Line 6 -2 5 ^

BASIC permits multiple statements on one line. Each statement is separated
from the others by a colon (:). DATA statements may not appear on lines with
other statements.

*See “Basic Statements.”

6-881 CHAPTER SIX

Command Mode Statements
COMMAND FORM DESCRIPTION

BUILD BUILD iexpl, iexp2 Automatically generates program
line numbers starting at iexpl in
steps of iexp2.

BYE BYE Exits BASIC, returns to HDOS
command mode.

CONTINUE CONTINUE Resumes program execution.

DELETE DELETE
[iexpl, iexp2]

Deletes program lines between
iexpl and iexp2

LIST LIST
[iexpl] [,iexp2]

Lists the entire program on the
console terminal. Lists the line iexpl
or the range of lines iexpl
through iexp2.

OLD OLD “fname” Loads file “fname” into BASIC
Clears variables.

REPLACE REPLACE “fname” Saves current program as file “fname.”
Replaces “fname” if it already exists.

RUN RUN

SAVE SAVE “fname”

Start execution of current program
Preclears all variables, stacks, etc..

Saves current program as file
“fname”. Will not replace any
pre-existing “fname”.

SCRATCH SCRATCH
SURETY @

Clears all program and data
storage area. Any response to
SURE but Y cancels SCRATCH.

SEE PAGE

6-27

6-28

6-28

6-29

6-29

6-30

6-31

6-31

6-32

6-32

EXTENDED BENTON HARBOR BASIC I 6"89

Command and Program Mode Statements
COMMAND FORM DESCRIPTION

CHAIN CHAIN
“fname”[,linnum]

Loads new program “fname” into
BASIC and continues execution at
linnum. If no line number is
specified, start execution at
first line number. Does not
affect variables or open files.

CLEAR CLEAR [varname] Clears all variables, arrays, string
buffers, etc. Optionally clears
named variable (varname).
Specifies functions and arrays as
V(.

CLOSE CLOSE #chan 1
I.,#chan n]

CONTROL CNTRL iexpl, iexp2

*

Close an HDOS file. “#chan” is the
number assigned to the opened file.

CNTRL 0 sets a GOSUB to line iexp2
when a CTRL-B is typed.
CNTRL 1 sets iexp2 digits before
exponential format is used.

CNTRL 2 controls the H8 front
panel. If iexp2: = 0, display off; if
iexp2 = 1, display on without up
date; if iexp2 = 2, display on with up
date. (NOTE: has no effect on the
H89).

CNTRL 3 sets the width of a print
zone to iexp2 columns.

CNTRL 4 controls the state of the
HDOS system overlay. iexp2 = 0,
swap overlay, iexp = 1, keep over
lay in memory. (Command Mode
only).

DIMENSION DIMvarnamefiexpl [,........ iexpn]) (,varname2(....)]

SEE PAGE

6-33

6-34

6-35

6-37

6-38

6-38

6-39

6-39

6-40

Defines the maximum size
of variable arrays.

6 -901 CHAPTER SIX

COMMAND

FOR/NEXT

FORM DESCRIPTION

FOR var = nexpl TO nexp2 [STEP nexp3]

NEXT var Defines a program loop. Var is ini
tially set to nexpl. Loop cycles
until NEXT is executed; then var
is incremented by nexp3 (default
is +1). Looping continues until
var > nexp2 (or less then nexp2 if
STEP is negative). The statement
after NEXT is then executed.

SEE PAGE

6-41

FREE

FREEZE

GOSUB/
RETURN

GOTO

IF/THEN

FREE Displays the amount of memory
assigned to tables and text.

FREEZE “fname” Saves BASIC interpreter, current
program, and data values on file
“fname”. All files must be closed
before FREEZE.

GOSUB iexp
RETURN

GOTO iexp

IF expression THEN
iexp IF expression
THEN statement

LET

6-45

6-47

6-47
Transfers execution sequence
of program to line iexp (the
beginning of a subroutine). RETURN
returns execution sequence to
the statement following the
calling GOSUB.

Unconditionally transfers the
program execution sequence to
the line iexp.

If the expression is true,
control passes to iexp line
or to “statement.” If the
relation is false, control
passes to the next independent
statement.

LET var = nexp Assigns the value nexp (or sexp in the
LET var$ = sexp case of strings) to the variable var (or

var$). LET keyword is optional.

6-49

6-49

6-50

EXTENDED BENTON HARBOR BASIC 6” 91

COMMAND FORM DESCRIPTION
» I I I - I I I .

LOCK LOCK Protects your program by prevent
ing you from executing the
BUILD, BYE, CHAIN, UN

SEE PAGE

6-51

FREEZE, DELETE, RUN,
SCRATCH, and CLEAR command
mode statements. Also prevents
the entry or deletion of program
text.

ON/GOSUB ON iexpl GOSUB
iexp2.... iexpn.

ON/GOTO ON iexpl GOTO
iexp2,....iexpn

Permits a computed GOSUB. Iexpl
is evaluated and acts as an index
to line numbers iexp2 thru iexpn,
each pointing to a different
subroutine.

Permits a computed GOTO. Iexpl
is evaluated and acts as an index
to line numbers iexp2 thru iexpn.

OPEN OPEN sexp FOR
READ AS FILE
#iexp
OPEN sexp FOR
WRITE AS FILE
#iexp

OUT OUT iexpl, iexp2

PAUSE PAUSE (iexp)

Opens file for read or write
operations, “sexp” is a string
expression for the file name.
“#iexp” is the channel number
assigned to the file to be opened.

POKE POKE iexpl, iexp2

Outputs a number iexp2
to output port iexpl.

Ceases program execution until a
console terminal key is typed.
Ceases program execution for 2 X
iexp mS.

Writes a number iexp2 into
memory location iexpl.

6-52

6-52

6-52

6-54

6-54

6-55

6-92

COMMAND FORM DESCRIPTION SEE PAGE

PRINT PRINT [#chan,]
(nexpl sepl . . .
nexpn (sepn)

Prints the value of the expres
sion^) exp with a leading and
trailing space. Expressions may
be numeric or string. If the
separator is a comma, the next
print zone is used. If the separator
is a semicolon, no print zones are
used. No separator prints each
expression on a new line. #chan
specifies channel to write line to
HDOS file. If no #chan is
specified, line goes to console
terminal.

6-55

READ/DATA READ varl, . . . ,varn The READ statement assigns the
DATA expl . . ,expn values expl thru expn in the

data to the variables varl thru varn.

6-59

REMARK REM Text following the REM is not
executed and is used for
commentary only.

6-61

RESTORE RESTORE Causes the program to reset the
DATA pointer, thus reusing data
at the first DATA statement.

6-61

STEP STEP iexp Executes iexp lines of the
program. Then returns BASIC to
the command mode.

6-62

UNFREEZE UNFREEZE “fname” Restores BASIC program and
variables from previously
created FREEZE file.

6-62

UNLOCK UNLOCK Aborts the LOCK mode and restores the
use of all command mode statements.

UNSAVE UNSAVE “fname” Deletes programs or files from the disk. 6-63

6-63

6-93

Program Mode Statements

COMMAND FORM DESCRIPTION SEE PAGE

DEF

END

DEF FN varname
(arg list) = exp

END

INPUT INPUT [#chan,]
prompt;varl,...,varn

Defines a single-line program
function created by the user.

Causes control to return to
the command mode.

6-63

6-64

6-64
Reads data from the console ter
minal, or from the HDOS file open
on channel “chan”, if #chan is
specified. String data must be en
closed in quotes if it contains any
commas (,).

LINE INPUT LINE INPUT [#chan,]
prompt;stringvar Reads string data from the console

terminal, or from the HDOS file
open on channel “chan, if #chan,
is specified. Data should not be
enclosed in quotes; entire line is
read into string variable.

6-64

STOP STOP Causes BASIC to enter the command mode
when the statement containing STOP
is executed.

6-66

Predefined Functions

FUNCTION DEFINITION SEE PAGE

ABS (nexp) Returns the absolute value of nexp. 6-67

ASC (sexp) Returns the ASCII code for the first
character in the string sexp.

6-75

ATN (nexp) Return the arctangent of nexp (radians). 6-68

CHR$ (iexp) Returns the ASCII character iexp. 6-74

CIN (chan) Reads a character from any open
file, or from the console terminal
(if chan = 0). If the value returned
is positive, a character was read. If
the value was negative, an end-
of-file or no line was read.

6-68

COS (nexp) Returns the cosine of nexp (radians). 6-68

EXP (nexp) Returns enext>. 6-68

INT (narg) Returns the integer value of narg. 6-69

LEFT$(sexp, iexp) Returns the left iexp characters of the
string sexp.

6-75

LEN (sexp) Returns length of string expression sexp. 6-75

LNO (iexp) Converts iexp to a line number. 6-69

LOG (nexp) Returns the natural logarithm of nexp. 6-69

MATCH
(sexpl, sexp2, iexp)

Finds the first occurrence of the substring sexp 2 in
sexpl starting at the iexp th character in sexpl.
Returns index of start of substring if found, 0 if not
found.

6-76

MAX (nexpl,...,nexpn) Returns the maximum value of expressions
nexpl thru nexpn.

6-73

EXTENDED BENTON HARBOR BASIC 6"95

COMMAND FORM DESCRIPTION SEE PAGE

MID$ (sexp, iexpl) [,iexp2j Returns the substring of the string sexp
starting with the iexpl th character
and ending with the iexp2 th character
if iexp2 is specified. If not specified,
returns iexpl th character to the end.

6-76

MIN (nexpl,...,nexpn) Returns the minimum value of
expressions nexpl thru nexpn.

PAD (0) Returns the value of the H8 front
panel key pressed. Includes key de
bounce. Returns a 0 on an H89.

*
PEEK (iexp) Returns the numeric value at memory

location iexp.

PIN (iexp) Returns the data input from port iexp.

POS (chan) Retuns the current file or console printhead
(cursor) position (by column number).

RND (narg) Returns a random number. If narg >0,
RND is next in the series. If narge = 0
RND is the previous random number. If
narg <0, RND algorithm uses narg as a new seed

RIGHTS (sexp, iexp) Returns the right iexp characters of
the string sexp.

SEG (narg) Returns the correct eight-bit number
to display narg (0-9) on the H8 LEDs.
Has no effect on an H89.

SGN (narg) Returns +1 if narg is positive
Returns -1 if narg is negative.
Returns 0 if narg is zero.

SIN (nexp)

SPC (iexp)

Returns the sine of nexp (radians).

Positions printhead (cursor) iexp
columns to the right.

SQR (narg) Returns the square root of narg.

6-73

6-70

6-70

6-70

6-70

6-71

6-75

6-72

6-72

6-72

6-74

6-73

6 -9 6 1 CHAPTER SIX

COMMAND FORM DESCRIPTION

STR$ (narg)

TAB (iexp)

Returns narg encoded into ASCII with
leading and trailing blanks as in the
print statement.

Position printhead (cursor) to the
iexp th column.

TAN (nexp) Returns the tangent of nexp (radians).

VAL (sexp) Returns the numeric value of the
number encoded in the string.

SEE PAGE

6-75

6-74

6-73

6-76

EXTENDED BENTON HARBOR BASIC 6-97

Appendix B

ASCII CODES

Decimal to Octal to HEX to ASCII Conversion

DEC OCT HEX A S C II DEC OCT HEX A S C II

0 . 0 0 0 00 . NUL 3 2 . 0 4 0 . 20 . SPACE
1 . 001 01 . SOH 33 . 0 4 1 , 21 . i•
2 . 0 0 2 02 . STX 3 4 . 0 4 2 22 . VI

3 . 003 03 . ETX 3 5 . 0 4 3 23 .
4 . 0 0 4 0 4 . EOT 3 6 . 0 4 4 2 4 . $
5 . 0 0 5 0 5 . ENQ 3 7 . 0 4 5 2 5 . %
6 . 0 0 6 0 6 . ACK 3 8 . 0 4 6 2 6 . &
7 . 0 0 7 0 7 . BEL 3 9 , 0 4 7 2 7 . 1

DEC OCT HEX A S C II DEC OCT HEX A S C II

6 4 . 100 40 . @ 96 . 140 60 . •

6 5 . 101 41 . A 97 . 141 61 . a
6 6 . 102 4 2 . B 98 . 142 62 . b
6 7 . 103 4 3 . C 99 . 143 63 . c
68 . 104 4 4 . D 100 . 144 6 4 . d •
69 . 105 4 5 . E 101 . 145 6 5 . e
70 . 106 . 4 6 . F 102 . 146 6 6 . f
71 . 107 . 4 7 . G 103 . 147 6 7 . g

150
9

10
11
12
13
14
15

0 1 0
O i l
0 1 2
0 1 3
0 1 4
0 1 5
0 1 6
0 1 7

08
09
0A
0B
0C
0D
0E
OF

BS
HT
LF
VT
FF
CR
50
51

40
41
42
43
4 4
4 5
4 6
4 7

0 5 0
0 5 1
0 5 2
0 5 3
0 5 4
0 5 5
0 5 6
0 5 7

28
29
2A
2B
2C
2D
2E
2F

(
)
*

+

16
17
18
19
20
21
22
23

020
021
0 2 2
0 2 3
0 2 4
0 2 5
0 2 6
0 2 7

10
11
12
13
14
15
16
17

DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB

4 8
4 9
50
51
52
53
54
55

0 6 0
0 6 1
0 6 2
0 6 3
0 6 4
0 6 5
0 6 6
0 6 7

30
31
32
33
3 4
3 5
3 6
3 7

PERIOD
/

0
1
2
3
4
5
6
7

72
73
7 4
75
7 6
7 7
7 8
7 9

110
111
112
113
114
115
116
117

48
4 9
4A
4B
4C
4D
4E
4F

24
25
26
27
28
29
30
31

030
031
032
0 3 3
0 3 4
0 3 5
0 3 6
0 3 7

18
19
1A
IB
1C
ID
IE
IF

CAN
EM
SUB
ESC
FS
GS
RS
US

56
57
58
59
60
61
62
63

0 7 0
071
0 7 2
0 7 3
0 7 4
0 7 5
0 7 6
0 7 7

38
3 9
3A
3B
3C
3D
3E
3F

I

0
1
2
3
4
5
6
7

8 9
90
91
92
93
94
95

120
121
122
123
124
125
126
127

130
131
132
133
134
135
136
137

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

H 104
I 105 . 151 . 6 9 . •1
J 106 . 152 . 6A . •

J
K 107 . 153 . 6B . k
L 108 . 154 . 6C . 1
M 109 . 155 . 6D . m
N 110 . 156 . 6E . n
0 I l l . 157 . 6F . 0

P 112 . 160 . 7 0 . P
Q 113 . 161 . 7 1 . q
R 114 . 162 . 7 2 . r
S 115 . 163 . 7 3 . s
T 116 . 164 . 7 4 . t
U 117 . 165 . 7 5 . u
V 118 . 166 . 7 6 . V
W 119 . 167 . 7 7 . w

X 120 . 170 . 7 8 . X
Y
Z
[
\
]

A

121
122
123
124
125
126
127

171
172
173
174
175
176
177

7 9
7A
7B
7C
7D
7E
7F

y
z
{
I
}

DELETE

6-981 CHAPTER SIX

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
50
51
DLE
DCi
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

N u l l , T a p e F e e d ,
S t a r t o f H e a d in g ; S t a r t o f M e s s a g e
S t a r t o f T e x t ; End o f A d d r e s s
End o f T e x t ; End o f M e s s a g e
End o f T r a n s m i s s i o n ; S h u t s o f f TWX m a c h in e s
E n q u i r y ; WRU
A c k n o w le d g e ; RU
R in g s B e l l
B a c k s p a c e ; F o r a t E f f e c t o r
H o r i z o n t a l TAB
L in e F e e d o r S p a c e (New L in e)
V e r t i c a l TAB
Form F e e d (PAGE)
C a r r i a g e R e t u r n
S h i f t O ut
S h i f t I n
D a ta L in k E s c a p e
D e v ic e C o n t r o l 1 ; R e a d e r on
D e v ic e C o n t r o l 2 ; P u n c h on
D e v ic e C o n t r o l 3 ; R e a d e r o f f
D e v ic e C o n t r o l 4 ; P u n c h o f f
N e g a t i v e A c k n o w le d g e ; E r r o r
S y n c h r o n o u s I d l e (SYNC)
End o f T r a n s m i s s i o n B lo c k ; L o g i c a l End o f M edium
C a n c e l (CANCL)
End o f M edium
S u b s t i t u t e
E s c a p e
F i l e S e p a r a t o r
G ro u p S e p a r a t o r
R e c o r d S e p a r a t o r
U n i t S e p a r a t o r

N o te t h a t t h e s e c h a r a c t e r s (O c t a l 0 0 0 t h r o u g h 0 3 7) , c a n b e g e n e r a t e d fro m t h e
c o m b i n a t i o n CTRL a n d t h e c h a r a c t e r i n t h e sam e ro w , b u t i n t h e t h i r d o r f o u r t h c o lu m n
(O c t a l 100 t h r o u g h 137 o r 140 t h r o u g h 1 7 7) .
T h a t i s , BEL i s C o n t r o l / G o r / g , a n d CAN i s C o n t r o l / X o r / x .

EXTENDED BENTON HARBOR BASIC 6‘ 99

INDEX

ASCII Function, 6-75
Absolute Value, 6-67
Addition, 6-16, 6-17
AND, 6-19
Arc Tangent Function, 6-68
Arithmetic, 6-9
Arithmetic, Functions, 6-67 ff
Arithmetic Operators, 6-14
Arithmetic Priority, 6-14
Arrays, 6-12 ff, 6-21, 6-35
Assignment Statement, 6-11
Asterisk, 6-7, 6-14

BASIC File, 6-29, 6-30, 6-32, 6-35,
6-52, 6-55

Basic Statements, 6-25
Blanks (spaces) 6-25
Boolean Values, 6-10
Brackets, 6-26
BUILD, 6-27

Character Input Function, CIN, 6-68
CHR$, 6-74
CLEAR, 6-34
Clear Varname, 6-34
Colon, 6-25
Comma, 6-57
Command Mode, 6-23 ff, 6-33
Comments, 6-61
Concatenation, 6-22
Continue, 6-23, 6-28
CTRL-B, 6-37
CTRL-C, 6-27
CNTRL, 6-37 ff
Cosine Function, 6-68

DATA, 6-59
Data Exhausted, 6-81
Data Only Statement,

One Line, 6-60
Decimal Notation, 6-10
DEF FN, 6-63
DELETE, 6-29
DIM (Dimension), 6-12, 6-13, 6-40
Displays Control, 6-38
Divide by Zero, 6-79
Division, 6-14
Dollar Sign ($), 6-21
Double Commas, 6-57

END, 6-53
Equal Sign, 6-18, 6-22, 6-46
Errors, 6-79 ff
Error Recovery, 6-79
ERROR Table, 6-79
Exponential Format, 6-9
Exponential Function, 6-68
Exponential Notation, 6-9
Exponentiation, 6-15 ff
Expressions, 6-14
Extended B. H. Basic, 6-7

False, 6-18
FOR, 6-24, 6-37, 6-39, 6-39 ff
FREE, 6-45
Functions, Predefined, 6-67 ff

GOSUB, 6-47
GOTO, 6-48

6-100 CHAPTER SIX

iexp, 6-26
IF GOTO, 6-49
IF THEN, 6-18, 6-49
Immediate Execution, 6-23
Input and Line Input, 6-64
Integer Function, 6-68
Integer Numbers, 6-9

Left String Function, 6-75
LEN Function, 6-75
LET, 6-50
Lexical Rules, 6-77
Line Deletion, 6-78
Line Input, 6-64
Line Insertion, 6-77
Line Length, 6-78
Line Numbers, 6-25
Line Printer, 6-52, 6-78
Line Replacement, 6-78
Linnum, 6-48, 6-60, 6-52
LIST, 6-50
LNO, 6-69
Loading Basic, 6-7
LOCK, 6-51
Logarithm Function, 6-69
Loop, 6-24, 6-41 ff

MATCH String Function, 6-76
Maximum Function, 6-73
Memory, 6-6
Middle String Function, 6-76
Minimum Function, 6-73
Multiple Statements, 6-24
Multiplication, 6-14 ff

“Name”, 6-27
Negation, 6-14, 6-15
Nesting, 6-44 ff
Nesting Depth, 6-44
nexp, 6-26 ff
NEXT, 6-24, 6-37
NOT, 6-15, 6-19

Numeric Data, 6-9
Numeric Value Function, 6-76
NXT, 6-62

OLD, 6-30
ON . . . GOSUB, 6-52
ON . . . GOTO, 6-52
OPEN, 6-52
Operators, 6-14
OR, 6-19
OUT, 6-54
Output Port, 6-54

PAD Function, 6-70
Parentheses, 6-15
PAUSE, 6-54
PEEK, 6-70
PIN, 6-70
POKE, Position Function, 6-55
POS, Position Function, 6-70
Predefined Functions, 6-67 ff
PRINT, 6-55 ff
Printing Strings, 6-56
Printing variables, 6-56
Print Zone, 6-57
Priority, Arithmetic, 6-14 ff
Program Loop, 6-24, 6-37
Program Mode, 6-25 ff, 6-33
Prompt,

Basic, 6-7
Input, 6-64

Quotes,
Input, 6-64
Line Input, 6-64
Strings, 6-56
Data, 6-59

1
EXTENDED BENTON HARBOR BASIC 6-101

Random Function RND, 6-70
READ, 6-59
Real Numbers, 6-9
Relational Operators, 6-18, 6-22
REM (Remark), 6-61
RESTORE, 6-61
RETURN, 6-47 ff
Right String Function, 6-75
RUN, 6-31

STOP, 6-66
String Data, 6-10
String Functions, 6-74 ff
String Operators, 6-22
Strings, 6-21
String Variables, 6-21
Subroutines, 6-47 ff
Subscripted Variables, 6-12
Subtraction, 6-14, 6-16
SURE, 6-28, 6-32

SCRATCH, 6-32
Segment Function, 6-72
Semicolon, 6-57
sexp, 6-26
Sign Function SGN, 6-72
Sine Function, 6-72
Single Statements, 6-23 ff
Single Step Execution, 6-62
Space Function, 6-74
Spaces, see “Blanks”, 6-77
Special Feature Functions, 6-67 ff
SQUARE (Example), 6-24, 6-37
Square Root Function, 6-73
Statement Length, 6-25
Statements, 6-25 ff
Statement Types, 6-26
Step, FOR/NEXT, 6-41 ff
STEP, 6-62

TAB Function, 6-74
Tangent Function, 6-73
Text Rules, 6-77
Trailing blanks, 6-56
T rue,6-18
Truncation, 6-10

Unary Operators, 6-14 ff
UNLOCK, 6-62
USE Error, 6-27
User-Defined Function,

Single Line (DEF-FN), 6-63

VAL, 6-76
Var, 6-27
Variables, 6-11

I
4

	Software Reference Manual

	TABLE OF CONTENTS

	TAB GUIDE

	INTRODUCTION

	Manual Scope

	Hardware Requirements

	BASIC ARITHMETIC

	Data Types

	NUMERIC DATA

	BOOLEAN DATA

	STRING DATA

	Variables

	Subscripted Variables

	Expressions

	Arithmetic Operators

	THE PRIORITY OF ARITHMETIC OPERATIONS

	(Unary)

	division)

	subtraction)

	UNARY OPERATORS

	EXPONENTIATION

	MULTIPLICATION AND DIVISION

	ADDITION AND SUBTRACTION

	SUMMARY

	Relational Operators

	Boolean Operators

	OR

	AND

	NOT

	STRING MANIPULATION

	String Variables

	String Operators

	CONCATENATION

	RELATIONAL OPERATORS FOR STRINGS

	THE COMMAND MODE

	Using the Command Mode for Statement Execution

	BASIC STATEMENTS

	Line Numbers

	Statement Types

	Command Mode Statements

	BUILD

	BYE

	CONTINUE

	DELETE

	LIST

	OLD

	REPLACE

	RUN

	SAVE

	SCRATCH

	Statements Valid in the Command or Program Mode

	CHAIN

	CLEAR

	CLOSE

	CNTRL (CONTROL)

	DIM (DIMENSION)

	FOR AND NEXT

	FREE

	FREEZE

	GOSUB AND RETURN

	GOTO

	IF THEN (IF GOTO)

	LET

	LOCK

	ON . . . GOSUB

	ON . . .GOTO

	OPEN

	PAUSE

	POKE

	PRINT

	Printing Variables

	Printing Strings

	Use of the and

	READ AND DATA

	REM (REMARK)

	RESTORE

	STEP

	UNFREEZE

	UNLOCK

	UNSAVE

	Program Mode Statements

	DATA

	DEF FN

	END

	INPUT AND LINE INPUT

	STOP

	PREDEFINED FUNCTIONS

	Introduction

	Arithmetic and Special Feature Functions

	THE ABSOLUTE VALUE FUNCTION, ABS (nexp)

	THE CHARACTER INPUT FUNCTION, CIN (chan)

	THE COSINE FUNCTION, COS (nexp)

	THE EXPONENTIAL FUNCTION EXP (nexp)

	THE INTEGER FUNCTION, INT (narg)

	THE LINE NUMBER FUNCTION, LNO (iexp)

	THE LOGARITHM FUNCTION, LOG (nexp)

	THE PAD FUNCTION, PAD (0)

	THE PEEK FUNCTION, PEEK (iexp)

	THE PIN FUNCTION, PIN (iexp)

	THE POSITION FUNCTION, POS (chan)

	THE RANDOM FUNCTION, RND (narg)

	THE SEGMENT FUNCTION, SEG (narg)

	THE SIGN FUNCTION, SGN (narg)

	THE SINE FUNCTION SIN (nexp)

	SQUARE ROOT FUNCTION, SQR (narg)

	THE MAXIMUM FUNCTION, MAX (nexpl,,nexpn)

	THE MINIMUM FUNCTION, MIN (nexpl,. . . ,nexpn)

	THE SPACE FUNCTION, SPC (iexp)

	THE TAB FUNCTION TAB (iexp)

	String Functions

	THE CHARACTER FUNCTION, CHR$ (iexp)

	THE STRING FUNCTION, STR$ (narg)

	THE ASCII FUNCTION, ASC (sexp)

	THE LEFT STRING FUNCTION, LEFTS (sexp, iexp)

	THE RIGHT STRING FUNCTION, RIGHTS (sexp, iexp)

	THE LEN FUNCTION, LEN (sexp)

	THE MIDDLE STRING FUNCTION, MID$ (sexp, iexpl [,iexp2])

	THE NUMERIC VALUE FUNCTION, VAL (sexp)

	GENERAL TEXT RULES

	BLANKS AND TABS

	LINE INSERTION

	LINE LENGTH

	LINE REPLACEMENT

	LINE DELETION

	USING A LINE PRINTER WITH BASIC

	ERRORS

	Error Messages

	Recovering from Errors

	ERROR MESSAGES

	APPENDIX A

	See Page

	Numeric Data

	6-9

	Boolean Data

	6-10

	String Data

	6-10

	Variables

	6-11

	See Page

	Subscripted Variables

	6-12

	Arithmetic Operators

	6-14

	Relational Operators

	6-18

	Boolean Operators

	See Page 6-19

	String Variables

	6-21

	String Operators	6-22

	The Command Mode

	6-23

	Line Numbers	6-25

	Multiple Statements on One Line

	Command Mode Statements

	Command and Program Mode Statements

	Program Mode Statements

	Appendix B

	ASCII CODES

	Decimal to Octal to HEX to ASCII Conversion

	INDEX

