
Software Reference 
Manual

HDOS SYSTEM

Chapter 5

HEATH ASSEMBLY LANGUAGE 
ASM

Copyright ©  1980
Heath Company 
All Rights Reserved

H E A T H  C O M P A N Y
B E N T O N  H A R B O R , M IC H IG A N  4 9 0 2 2

595-2478
Printed in the United 

States of America



5-2 CHAPTER FIVE

TABLE OF CONTENTS

WRITING ASSEMBLY LANGUAGE PROGRAMS ........................................  5-3

THE CHARACTER SE T ...................................................................................... 5-4

STATEMENTS.....................................................................................................  5-4
The Label F ie ld ...............................................................................................  5-5
The Opcode F ie ld ............................................................................................ 5-5
The Operand F ie ld .......................................................................................... 5-6
The Comment F ie ld ........................................................................................ 5-6
Format Control.................................................................................................  5-7

OPERAND EXPRESSIONS
Operators........................................................................................................... 5-7
T okens..............................................................................................................  5-8

THE 8080 OPCODES........................................................................................
Terms, Symbols, & Nomenclature .............................................................
Data Transfer G roup......................................................................................
Arithmetic Group ..........................................................................................
Logical Group ...............................................................................................
Branch Group.................................................................................................
Stack, I/O, and Machine Control G ro u p ...................................................

PSEUDO OPCODES/ASSEMBLER DIRECTIVES
Define Byte, D B ..........................................
Define Space, D S......................................
Define Word, D W ......................................
Conditional Assembly Pseudo Operators
End Program, EN D ....................................
Define Label, EQU ..................................
Origin Statement, O R G ...........................
Set Statement, SET..................................
Xtext Statement, XTEXT.........................
Listing Control..........................................

GENERATING THE ASSEMBLER 
Usine the Assembler ...............
Switches ...........................
Command Line Examples 
Errors ................................

5-10
5-11
5-17
5-21
5-28
5-34
5-38

5-44
5-45
5-45
5-46
5-47
5-47
5-48
5-48
5-49
5-50

5-53
5-54
5-56
5-57

APPENDIX A
Assembly Language Interface 5-59

INDEX 5-71



5-3

WRITING ASSEMBLY LANGUAGE PROGRAMS

The Heath Assembly Language program (ASM) lets you use source (symbolic) 
programs using letters, numbers, and symbols that are meaningful as they are 
abbreviated in English statements. These source programs must be generated 
with the Heath Text Editor (EDIT). ASM assembles the source program into a 
listing with an optional cross-reference table and an object program in absolute 
binary format executable by your computer.

This Manual assumes that you are already familiar with the writing of assembly 
language programs. Also, because of the many cross-references in this Section, 
we recommend that you read all of this section to get a good “feel” for ASM.

ASM is designed to produce programs which run in an H8/H89 system; there
fore, it assembles 8080 symbolic assembly code.

This Software Reference Manual presumes that you have read the Operation 
Manual and are familiar with the 8080 instruction set, I/O formats, memory 
formats, and front panel configuration. A thorough knowledge of these facts is 
vital to efficient assembly language programming.



5-4

THE CHARACTER SET

The Heath Assembly Language source program is composed of symbols, num
bers, expressions, symbolic instructions, argument separators, assembly direc
tives, and line terminators, all using ASCII characters. Those characters that are 
acceptable to ASM are listed below.

1. The letters A through Z (lower case letters are acceptable for quoted 
strings and comments).

2. The numerals 0 through 9.

3. The characters period (.) and dollar sign ($), which are considered 
alphabetic.

4. The symbols:

% #  ( ) , ; " ' + - _ ! ?

5. BLANKS and TABS.

STATEMENTS

A source program is composed of a sequence of statements, designed to solve a 
problem. Each statement must be on a single line.

A statement is composed of up to four fields, identified by the order of appear
ance and separated by BLANKS and TABS. The four fields are:

LABEL OPCODE OPERAND COMMENT

The label on comment fields are optional. The opcode and operand fields are 
interdependent; either may be omitted, depending upon the contents of the 
other.



Heath Assembly Language 5-54

The Label Field

The label field always starts in column one. A label is a user-defined symbol 
assigned the current value of the memory location counter. It is a symbolic 
means of referring to a specific memory location within a program. Most state
ments do not require a label. If you do not want a label, column one must be left 
blank or contain a TAB. Although the label is usually used to allow symbolic 
reference to the address of the labeled instruction, the SET and EQU pseudos 
make special use of the label field.

A label must start with an alphabetic character, and it consists entirely of 
alphabetic or numeric characters. The maximum length of a label is 7 characters. 
Note that the characters “$” and are considered alphabetic. Therefore, the 
following are valid labels.

A A3 . C9D4 START . .  ®END END! PGM

For example, if the current location counter is set to 042 200 and the statement

START MOV A,

is the next statement, the assembler assigns the value 042 200 to the label 
START. Subsequent references to START refer to location 042 200.

The Opcode Field

All statements (except the comment statements) must have an opcode field. The 
opcode field need not be located in any particular column. However, it must be 
separated from the label field by at least one blank or TAB. If no label is specified, 
the opcode field may start in or after column 2.

The opcode is either an instruction mnemonic or an assembler directive. When 
the entry in the opcode field is an instruction mnemonic, it specifies a machine 
operation to be performed on any following operands. When it is an assembler 
directive, it specifies certain functions or actions to be performed by the assem
bler during program assembly.

The opcode field is terminated by a blank, a TAB, or the end of a line.



5-61 CHAPTER FIVE

The Operand Field

The operand field follows the opcode field and must be separated from it by at 
least one blank or TAB. Not all opcodes require operands. The operand contains 
information used by a machine instruction or, in the case of assembler directives 
(pseudo opcodes or pseudo ops), it contains information to be used by the 
pseudo op.

Operands may be symbols, expressions, or numbers. When multiple operands 
appear with a statement, each is separated from the next by a comma. An operand 
may be followed by a comment.

The operand field is terminated by a blank or TAB when followed by a comment, 
or by the end of a line when the operand ends the assembly statement. For 
example,

START MOV A ,B T H IS I S  A COMMENT
The TAB between START and MOV terminates the label field; the blank between 
MOV and A,B terminates the opcode field and begins the operand field. The 
comma separates the operands A and B and the TAB terminates the operand field 
and begins the comment field.

The Comment Field

The comment field follows the operand field, or the opcode field if no operand 
field is present. It must be separated from its preceding field by at least one blank 
or TAB. The comment field is not processed by the assembler and it is designed 
to contain documentary information. The comment field is optional and may 
contain any printing ASCII character. All other characters, even those with 
special significance to the assembler, are ignored by the assembler when used in 
the comment field.

A statement with an asterisk (*) in column one is taken as a comment statement 
and is not otherwise processed by the assembler. A totally blank line is also taken 
as a comment.



5-7
*

Format Control

The format of an assembly language program is controlled by the blank and TAB 
characters. Format control is primarily used to produce a program which is 
easily read. Format control has no effect on the assembly process of the source 
p ro g ram  The following two statements are interpreted identically. The first one 
uses blanks and the second uses TABS.

START MOV A ,B  T H IS I S  A COMMENT START MOV A ,B  T H IS I S  A COMMENT
OPERAND EXPRESSIONS

Except when the opcode is a machine instruction requiring that an 8080 register 
be specified as the operand, all operand fields may be coded as operand expres
sions. Such operand expressions are made up of integers, symbols, a special 
origin symbol, and character strings which may be combined, using certain 
operators. The operand may also be the origin symbol. The expressions are said 
to be made up of operators and tokens. No parentheses are allowed nor is any 
operator precedence recognized. Therefore, evaluation is strictly left to right. 
The result of any expression must fall between —32,767 and 65,534.

Operators

ASM recognizes 5 operators. They are:

+

/

Addition of an integer arithmetic expression.
Subtraction of an integer arithmetic expression. 
Multiplication of an integer arithmetic expression.
Division of an integer arithmetic expression.
(unary) negation of a standard integer arithmetic expression.

Note, the unary minus is valid only as the first character in an expression. The 
following are examples of legitimate assembler operand expressions.

3 + 5
—2 (unary)
1 + 2*3

Note that the last example evaluates to 9 rather than 7, as the assembler does not 
recognize any operator precedence. Therefore, it evaluates the expression from 
left to right.



5-81 CHAPTER FIVE

Tokens

Heath Assembly Language recognizes four different tokens: integers, symbols, 
character strings, and the origin symbol. Each of these tokens has the limitations 
described in the following sections.

INTEGERS

Decimal integers ranging from 0 to 65,535 are allowed, but no decimal place may 
be specified. The radix of an integer expressions is assumed to be decimal. 
However, you may specify binary, octal, offset octal, decimal, or hexadecimal. 
Specify them by using a post-radix symbol following the integer expression.

B Binary
O or Q Octal
D
H
A

Decimal 
Hexadecimal 
Offset Octal

For example:

EXPRESSION

000 00011B 
160Q 
3200

77000A
021AH

RADIX

Binary
Octal (also 1600) 
Decimal (also 3200D) 
Offset octal 
Hexadecimal

DECIMAL VALUE

3
112

3200
16128
282

LEGAL INTEGER 
EXPRESSIONS

ILLEGAL INTEGER 
EXPRESSIONS

COMMENTS

232 232.1
10111B 226B
177Q 888
A1FH 21C

Decimals may not be specified 
Not a binary number 
Not an octal number 
No hex radix specified

If an integer expression evaluates to less than -32,767, or greater than 65,534, an 
error code is flagged.



5-9

SYMBOLS

An expression may contain any user defined symbol. Although most symbols do 
not need to be defined sequentially before the referencing statement, some 
pseudo operators require all their operand symbols to be defined in earlier 
statements in the program. Such operators are said to require “pass one evalua
tion” and are documented in “The 8080 Opcodes” (Page 5-10). All symbols must 
consist of legal ASM characters.

The #  Symbol

If the pound sign (#) is the first character in an expression, the expression is 
evaluated as a 16-bit expression. After the expression is evaluated, the resultant 
value is masked to an 8-bit equivalent. Once this is done, a 16-bit operand may be 
referenced in an instruction requiring 8 bits without causing an overflow (V) 
error. For example:

MV I  
MVI

H ,A D D R/256 
L , #ADDR (HL) = 16 b i t  a d d re s s

In this example, the first line of code loads the H and L register pair (16-bit 
register) with the binary value associated with the label “ADDR” divided by 256. 
The second line of code immediately loads the L register (an 8-bit register) with 
the lower 8-bits of the binary value equated to the symbol ADDR in the symbol 
table. This process does not cause an overflow error, as the 16-bit binary equiva
lent of ADDR is masked to the least significant 8-bits before it is moved into the 
8-bit L register.

CHARACTER STRING

A character string consisting of one or two legal characters may be used as a 
token in an ASM expression. Such a character string is enclosed in a single quote 
(apostrophe). For example:

'A '
GL

I If I

The character A (Value 101Q)
The character string GL (Value 107 114A) 
The character quotation mark (Value 042Q)



5-10

THE ORIGIN SYMBOL (*)

The current value of the origin counter may be referenced with the special 
symbol asterisk (*). NOTE: The assembler decides from the expression context 
whether the asterisk (*) represents the origin counter or is the multiplication 
operator. For example, the program

A
ORG

EQU
10
***

defines the symbol A to have the value 100. The first statement, “ORG 10,” 
sets the origin counter to the value 10. In the second statement, the label A is 
equated with the first asterisk, which the assembler presumes to be the symbol 
for the origin counter. This is multiplied by the third symbol, which the assem
bler also presumes to be the origin symbol. However, the middle asterisk is taken 
as the multiplication operator.

THE 808 0  OPCODESt

Heath Assembly Language supports the standard 8080 machine opcodes. A 
review of the 8080 instruction set is presented on the following pages. Included 
in this review is a discussion of instruction and data formats, addressing modes, 
conditions flags, the symbols or abbreviations used in describing the 8080 
instruction set, and the discussion of the format used to describe each instruc
tion.

The 8080 instruction set includes five different types of instructions:

Data Transfer Group — move data between registers or between mem
ory and registers.

•  Arithmetic Group — add, subtract, increment, or decrement data in 
registers or in memory.

•  Logical Group — AND, OR, EXCLUSIVE-OR, compare, rotate, or com
plement data in registers or in memory.

•  Branch Group — conditional and unconditional jump instructions, 
subroutine call instructions, and return instructions.

•  Stack, I/O and Machine Control Group — includes I/O instructions, as 
well as instructions for maintaining the stack and internal control flags.

tPortions of this section are reprinted with the primission of Intel Corporation (Copyright, 1976).



Heath Assembly Language

Terms, Symbols, & Nomenclature

INSTRUCTION AND DATA FORMATS

Memory for the 8080 is organized into 8-bit quantities called bytes. Each byte has 
a unique 16-bit binary address corresponding to its sequential position in mem
ory.

The 8080 can directly address up to 65,535 bytes of memory, which may consist 
of both read-only memory (ROM) elements and random-access memory (RAM) 
elements (read/write memory).

Data in the 8080 is stored in the form of 8-bit binary integers:

DATA WORD

D7 ' D6 ' D5 ' D4 1 D3 ' D2 ' D i ' Do 

MSB LSB

When a register or data word contains a binary number, it is necessary to 
establish the order in which the bits of the number are written. In the Intel 8080, 
BIT 0 is referred to as the Least Significant Bit (LSB), and BIT 7 (of an 8-bit 
number) is referred to as the Most Significant Bit (MSB).

The 8080 program instructions may be one, two, or three bytes in length. 
Multiple byte instructions must be stored in successive memory locations; the 
address of the first byte is always used as the address of the instructions. The 
exact instruction format will depend on the particular operation to be executed.

Single yte Instructions

Op Code

Byte One

Byte Two

Two-Byte Instructions

D?
n  i i— i— n

Do

d7* i i i i
D0

Op Code

Data or I/O 
Address

Three-Byte Instructions

Op Code

(Data 
or

Address



5-12 CHAPTER FIVE

ADDRESSING MODES

Often, the data that is to be operated on is stored in memory. When multi-byte 
numeric data is used, the data, like instructions, is stored in successive memory 
locations with the least significant byte first, followed by increasingly signific
ant bytes. The 8080 has four different modes for addressing data stored in 
memory or in registers:

Direct — Bytes 2 and 3 of the instruction contain the exact memory 
address of the data item (the low-order bits of the address are in byte 2, 
the high-order bits in byte 3).

Register — Specifies the register or register pair in which the data is 
located.

Register Indirect — Specifies a register pair which contains the mem
ory address where the data is located (the high-order bits of the address 
are in the first register of the pair, the low-order bits in the second).

Immediate — Contains the data itself. This is either an 8-bit quantity or 
a 16-bit quantity (least significant byte first, most significant byte 
second).

Unless directed by an interrupt or branch instruction, the execution of instruc
tions proceeds through consecutively increasing memory locations. A branch 
instruction can specify the address of the next instruction to be executed in one 
of two ways:

•  Direct — The branch instruction contains the address of the next 
instruction to be executed. (Except for the “RST” instruction, byte 2 
contains the low-order address and byte 3 the high-order address.)

Register Indirect — The branch instruction indicates a register pair 
which contains the address of the next instruction to be executed. (The 
high-order bits of the address are in the first register of the pair, the 
low-order bits in the second.)

The RST instruction is a special 1-byte call instruction (usually used during 
interrupt sequences). RST includes a 3-bit field; program control is transferred to 
the instruction whose address is eight times the contents of this 3-bit field.



Heath Assembly Language

CONDITION FLAGS

There are five condition flags associated with the execution of instructions on 
the 8080. They are Zero, Sign, Parity, Carry, and Auxiliary Carry, and are each 
represented by a 1-bit register in the CPU. A flag is “set” by forcing the bit to 1; 
and “reset” by forcing the bit to 0.

Unless indicated otherwise, when an instruction affects a flag, it affects it in the 
following manner.

Zero:

Sign:

Parity

Carry:

If the result of an instruction has the value 0, this flag is set. Otherwise 
it is reset.

If the most significant bit of the result of the operation has the value 1, 
this flag is set. Otherwise it is reset.

If the modulo 2 sum of the bits of the result of the operation is 0 (i. e., if 
the result has even parity), this flag is set. Otherwise it is reset (i. e., if 
the result has odd parity).

If the instruction resulted in a carry (from addition), or a borrow (from 
subtraction or a comparison) out of the high-order bit, this flag is set. 
Otherwise it is reset.

Auxiliary If the instruction caused a carry out of bit 3 and into bit 4 of the
Carry: resulting value, the auxiliary carry is set. Otherwise it is reset. This 

flag is affected by single precision additions, subtractions, incre
ments, decrements, comparisons, and logical operations, but is prin
cipally used with additions and increments preceding a DAA (Deci
mal Adjust Accumulator) instruction.



5-14

Symbols and Abbreviations

The following symbols and abbreviations are used in the subsequent description 
of the 8080 instructions:

SYMBOLS MEANING

accumulator

addr

data

data 16

byte 2

byte 3

port

r, r l , r2

DDD, SSS

Reeister A

16-bit address quantity

8-bit data quantity

16-bit data quantity

The second byte of the instruction

The third byte of the instruction

8-bit address of an I/O device

One of the registers A,B,C,D,E,H,L

The bit pattern designating one of the registers A, B, C,
D, E, H, L
(DDD = destination, SSS = source):

DDD or SSS REGISTER NAME

111 A
000 B
001 c
010 D
011 E
100 H
101 L



Heath Assembly Language

rp

RP

One of the register pairs:

B represents the B, C pair with B as the high-order register and C as the 
low-order register;

D represents the D, E pair with D as the high-order register and E as the 
low-order register;

H represents the H, L pair with H as the high-order register and L as the 
low-order register;

SP represents the 16-bit stack pointer register.

The bit pattern designating one of the register pairs B, D, H, SP:

rh

rl

PC

SP

rm

RP REGISTER PAIR

00 B-C
01 D-E
10 H-L
11 SP

3 first (high-order) register of

The second (low-order) register of a designated register pair.

16-bit program counter register (PCH and PCL are used to 
refer to the high-order and low-order 8-bits respectively).

16-bit stack pointer register (SPH and SPL are used to refer to the 
high-order and low-order 8-bits respectively).

Bit m of the register r (bits are numbered 7 through 0 from left to right)

Z, S, P, The condition flags: 
Cy, AC

Zero,
Sign,
Parity,
Carry,
and Auxiliary Carry, 
respectively.



5-16 CHAPTER FIVE

NOTE, ASM recognizes the E as well as the Z defining the zero bit. Therefore, JZ 
(jump zero) or JE (jump equal) are both valid op-codes.

( ) The contents of the memory location or registers enclosed in the parenthe
ses.

“Is transferred to”

A Logical AND

V Exclusive OR

V Inclusive OR

+ Addition

Two’s complement subtraction

Multiplication

“Is exchanged with”

The one’s complement (e. g., A)

n The restart number 0 through 7

NNN The binary representation 000 through 111 
for restart number 0 through 7, respectively.

Description Format

The following pages provide a detailed description of the instruction set of the 
8080. Each instruction is described in the following manner:

1. The ASM format, consisting of the opcode and operand fields, is 
printed in BOLDFACE on the left side of the first line.

2. The name of the instruction is enclosed in parentheses at the center of 
the first line.

3. The next line(s) contain a symbolic description of the operation of the 
instruction.



Heath Assembly Language 5-17

5
4. This is followed by a narrative description of the operation of the 

instruction.

5. The following line(s) contain the binary fields and patterns that com
prise the machine instruction.

6. The last two lines contain incidental information about the execution 
of the instruction. The number of machine cycles and states required 
to execute the instruction are listed first. If the instruction has two 
possible execution times, as in a conditional jump, both times will be 
listed, separated by a slash. Next, any significant data addressing 
modes (see “Addressing Modes,” Page 5-12) are listed. The last line 
lists any of the five Flags that are affected by the execution of the 
instruction.

Data Transfer Group

This group of instructions transfers data to and from registers and memory. 
Condition flags are not affected by any instruction in this group.

MOV rl, r2 (Move Register)

(rl)*— (r2)
The content of register r2 is moved to register rl.

Cycles: 1 
States: 5

Addressing: register 
Flags: none

MOV r, M (Move from memory)

(r) ((H) (L))
The content of the memory location whose address is in registers H and L is 
moved to register r.

0 1 1 D 1 D 1 D 1 1 1 1 0

AddressinCycles: 2 
States: 7 Flags: none

reg. indirect



5-18 CHAPTER FIVE

MOV M, r (Move to memory)

((H) (L)) (r)
The content of register r is moved to the memory location whose address is 
in registers H and L.

Cycles: 2 
States: 7

Addressing:
Flags:

res. indirect
none

MVI r, data (Move to register immediate)

(r) <- (byte 2)
The content of byte 2 of the instruction is moved to register r.

0 1 0 D 1 D 1 D 1 1 1 1 0

da ta b y te

Cycles: 2 
States: 7

Addressing: immediate 
Flags: none

MVI M, data (Move to memory immediate)

((H) (L)) <- (byte 2)
The content of byte 2 of the instruction is moved to the memory location 
whose address is in registers H and L.

0 1 0 *  1 1 1 1 0 1 1 1 0 

d a ta  b y te

Cycles: 3 Addressin

States: 10

immed./reg.
indirect
none



Heath Assembly Language 5-19

LXI rp, data 16 (Load register pair immediate)

(rh) «- (byte 3), 
(rl) <- (byte 2)
Byte 3 of the instruction is moved into the high-order register (rh) of the 
register pair rp. Byte 2 of the instruction is moved into the low-order register 
(rl) of the register pair rp.

0 1 0 R 1 P --------- ---------  10 1 0 ' 0 1

low-order data

high-order data

Cycles: 3 
States: 10

Addressing: immediate 
Flags: none

LDA addr (Load Accumulator direct)

(A) ((byte 3) (byte 2))
The content of the memory location, whose address is specified in byte 2 
and byte 3 of the instruction, is moved to register A.

Addressing:Cycles: 4 
States: 13 Fla s:

direct
none

STA addr (Store accumulator direct)

((byte 3) (byte 2)) <- (A)
The content of the accumulator is moved to the memory location whose 
address is specified in byte 2 and byte 3 of the instruction.

0
r y r 1 ' 1 ' 0 ' 0 1 '1 1 0

low-order addr -

high-order addr

Addressin
Flags:

direct
none

Cycles: 4
States: 13



5-201 CHAPTER FIVE

LHLD addr (Load H and L direct)

(L) <- ((byte 3) (byte 2))
(H) <- ((byte 3) (byte 2) + 1)
The content of the memory location whose address is specified in byte 2 and 
byte 3 of the instruction is moved to register L. The content of the memory 
location at the succeeding address is moved to register H.

Addressing:Cycles: 5 
States: 16 Fla s:

direct
none

SHLD addr (Store H and L direct)

((byte 3) (byte 2))
((byte 3) (byte 2) + 1)

(L)
(H)

The content of register L is moved to the memory location whose address is 
specified in byte 2 and byte 3. The content of register H is moved to the 
succeeding memory location.

o * o ' i I” "o I” o I” o I- i *o
low-order addr

high-order addr

LDAX rp

(A)

Cycles: 5 
States: 16

Addressing: direct 
Flags: none

(Load accumulator indirect)

((rp))
The content of the memory location whose address is in the register pair rp 
is moved to register A. NOTE: Only register pairs rp = B (registers B and C) 
or rp = D (registers D and E) may be specified.

0 1 0 R P 1 1 0 1 1 ' 0

: 2 Addressing: re indirect
Flags: none

Cycles:
States: 7



Heath Assembly Language

STAX rp (Store accumulator indirect)

((rp)) (A)
The content of register A is moved to the memory location whose address is 
in the register pair rp. NOTE: Only register pairs rp = B (registers B and C) or 
rp = D (registers D and E) may be specified.

0 1 0 R 1 P 0 1 0 1 1 1 0

AddressinCycles: 2 
States: 7 Flags: none

reg. indirect

XCHG (Exchange H and L with D and E)

(H) (D)
(L) (E)
The contents of registers H and L are exchanged with the contents of 
registers D and E.

Cycles: 1 
States: 4

Addressing: register 
Flags: none

Arithmetic Group
This group of instructions performs arithmetic operations on data in registers 
and memory.

Unless indicated otherwise, all instructions in this group affect the Zero, Sign, 
Parity, Carry, and Auxiliary Carry flags according to the standard rules.

All subtraction operations are performed via two’s complement arithmetic and 
set the carry flag to one to indicate a borrow and clear it to indicate no borrow.

ADD r (Add Register)

(A) <- (A) + (r)
The content of register r is added to the content of the accumulator. The 
result is placed in the accumulator.

Addressing:
Flags:

register
Z,S,P,CY,AC

Cycles: 1
States: 4



ADD M (Add memory)

(A) (A) + ((H) (L))
The content of the memory location whose address is contained in the H 
and L registers is added to the content of the accumulator. The result is 
placed in the accumulator.

Cycles: 2 
States: 7

Addressing: reg. indirect 
Flags: Z,S,P,CY,AC

ADI DATA (add immediate)

(A) <— (A) + (byte 2)
The content of the second byte of the instruction is added to the content of 
the accumulator. The result is placed in the accumulator.

1 1 0 ' 0 ' 0 ' 1 ' 1 1 0

d a ta b y te

Addressing:Cycles: 2 
States: 7 Fla s:

immediate
Z,S,P,CY,AC

ADC r (Add Register with carry)

(A) (A) + (r) + (CY)
The content of register r and the content of the carry bit are added to the 
content of the accumulator. The result is placed in the accumulator.

1 1 0 1 0 1 0 1 1 s 1 s 1 s

Addressing:Cycles: 1 
States: 4

register
Z,S,P,CY,AC



Heath Assembly Language 5-23

ADC M (Add memory with carry)

(A) (A) + ((H) (L)) + (CY)
The content of the memory location whose address is contained in the H 
and L registers and the content of the CY flag are added to the accumulator. 
The result is placed in the accumulator.

ACI data

(A)

Addressing:Cycles: 2 
States: 7 Fla s:

reg. indirect 
Z,S,P,CY,AC

(Add immediate with carry)

(A) + (byte 2) + (CY)
The content of the second byte of the instruction and the content of the CY 
flag are added to the contents of the accumulator. The result is placed in the 
accumulator.

Cycles: 2 
States: 7

Addressing:
Flaes:

immediate
Z,S,P,CY,AC

SUB r (Subtract Register)

(A) (A) -  (r)
The content of register r is subtracted from the content of the accumulator. 
The result is placed in the accumulator.

1 1 0 1 0 1 1 1 0 s 1 s 1 s

Cycles: 1 
States: 4

Addressing:
Flags:

reeister
Z,S,P,CY,AC



5-241 CHAPTER FIVE

SUB M (Subtract memory)

(A) <—(A) — ((H) (L))
The content of the memory location whose address is contained in the H 
and L registers is subtracted from the content of the accumulator. The result 
is placed in the accumulator.

Cycles: 2 
States: 7

Addressing: reg. indirect 
Flags: Z,S,P,CY,AC

SUI DATA (Subtract immediate)

(A) <- (A) — (byte 2)
The content of the second byte of the instruction is subtracted from the 
content of the accumulator. The result is placed in the accumulator.

1 1 1 ' 0 1 1 0 1 1 0

data bvte

Cycles: 2 
States: 7

Addressing:
Flags:

immediate
Z,S,P,CY,AC

SBB r (Subtract Register with borrow)

*•/

(A) (A) (r) (CY)
The content of register r and the content of the CY flag are both subtracted 
from the accumulator. The result is placed in the accumulator.

1 1 o '  o '  1 ' 1 s ' s ' s

AddressinCycles: 1 
States: 4

register
Flags: Z,S,P,CY,AC



Heath Assembly Language 5-25◄

SBB M (Subtract memory with borrow)

(A) <- (A) -  ((H) (L)) -  (CY)
The content of the memory location whose address is contained in the H 
and I registers and the content of the CY flag are both subtracted from the 
accumulator. The result is placed in the accumulator.

AddressinCycles: 2 
States: 7

ree. indirect
Flags: Z,S,P,CY,AC

SBI data (Subtract immediate with borrow)

(A) (A) (byte 2) (CY)
The contents of the second byte of the instruction and the contents of the CY 
flag are both subtracted from the accumulator. The result is placed in the 
accumulator.

1 0 1 1 0

data byte

INR r

Cycles: 2 
States: 7

Addressing:
Flags:

immediate
Z,S,P,CY,AC

(Increment Register)

(r) (r) + 1
The content of register r is incremented by one. NOTE: All condition flags 
except CY are affected.

0 1 0 D 1 D 1 D
•

1 1 0 1 0

AddressinCycles: 1 
States: 5

register
Flags: Z,S,P,AC



5-261 CHAPTER FIVE

INR M (Increment memory)

((H) (L)) ((H) (L)) + 1
The content of the memory location whose address is contained in the H 
and L registers is incremented by one. NOTE: All condition flags except CY 
are affected.

DCR r

1

Cycles: 3 
States: 10

Addressing:
Flags:

reg. indirect 
Z,S,P,AC

(Decrement Register)

0 0 0

(r) <- (r) — 1
The content of register r is decremented by one. NOTE: All condition flags 
fixr.pnt CY are affected

Cycles: 1 
States: 5

Addressing: register 
Flags: Z,S,P,AC

DCR M (Decrement memory)

((H) (L)) <—((H) (L)) — 1
The content of the memory location whose address is contained in the H 
and L registers is decremented by one. NOTE: All condition flags except CY 
are affected.

Cycles: 3 
States: 10

Addressing: reg. indirect 
Flags: Z, S, P, AC



Heath Assembly Language

INX rp (Increment register pair)

(rh) (rl) <— (rh) (rl) + 1
The content of the register pair rp is incremented by one. NOTE: No
condition flags are affected.

AddressinCycles: 1 
States: 5

register
Flags: none

DCX rp (Decrement register pair)

(rh) (rl) «— (rh) (rl) — 1
The content of register pair rp is decremented by one. NOTE: No condition 
flags are affected.

Cycles: 1 
States: 5

Addressing: register 
Flags: none

DAD rp (Add register pair to H and L)

(H) (L) (H) (L) + (rh) (rl)
The content of register pair rp is added to the content of the register pair H 
and L. The result is placed in register pair H and L. NOTE: Only the CY flag 
is affected. It is set if there is a carry out of the double precision add; 
otherwise it is reset.

0 ' 0 R 1 P 1 1 0 1 0 * 1

Addressin
Flags: CY

Cycles: 3 
States: 10

register



5-281 CHAPTER FIVE

DAA (Decimal Adjust Accumulator)

The eight-bit number in the accumulator is adjusted to form two 4-bit 
Binary-Coded-Decimal digits by the following process:

If the value of the least significant 4 bits of the accumulator is greater 
than 9 or if the AC flag is set, 6 is added to the accumulator.

2. If the value of the most significant 4 bits of the accumulator is now 
greater than 9, or if the CY flag is set, 6 is added to the most significant 
4 bits of the accumulator.

Cycles:
States:
Flags:

1
4
Z,S,P,CY,AC

Logical Group:

This group of instructions performs logical (Boolean) operations on data in 
registers and memory and on condition flags.

Unless indicated otherwise, all instructions in this group affect the Zero, Sign, 
Parity, Auxiliary Carry, and Carry flags according to the standard rules.

ANA r (AND Register)

(A) (A) A (r)
The content of register r is logically anded with the content of the ac
cumulator. The result is placed in the accumulator. The CY flag is cleared.

Addressing: register
Flags: Z,S,P,CY,AC

Cycles: 1
States: 4



Heath Assembly Language 5-29

(A) (A) A ((H) (L))
The contents of the memory location whose address is contained in the H 
and L registers is logically anded with the content of the accumulator. The 
result is placed in the accumulator. The CY flag is cleared.

ANA M (AND memory)

Cycles: 2 
States: 7

Addressing:
Flags:

reg. indirect
Z,S,P,CY,AC

ANI data (AND immediate)

(A) (A) A (byte 2)
The content of the second byte of the instruction is logically anded with the 
contents of the accumulator. The result is placed in the accumulator. The 
CY and AC flags are cleared.

1 11 0 001

data byte

Cycles: 2 
States: 7

Addressing: immediate 
Flags: Z,S,P,CY,AC

XRA r (Exclusive OR Register)

(A) <- (A) -V- (r)
The content of register r is exclusive-OR’d with the content of the ac
cumulator. The result is placed in the accumulator. The CY and AC flags 
are cleared.

Cycles: 1
States: 4

Addressing: register
Flags: Z,S,P,CY,AC



XRA M (Exclusive OR Memory)

(A) (A) ((H) (L))
The content of the memory location whose address is contained in the H 
and L registers is exclusive-OR’d with the content of the accumulator. The 
result is placed in the accumulator. The CY and AC flags are cleared.

Cycles: 2 
States: 7

Addressin ree. indirect
Flags: Z,S,P,CY,AC

XRI data (Exclusive OR immediate)

(A) (A) V (byte 2)
The content of the second byte of the instruction is exclusive-OR’d with the 
content of the accumulator. The result is placed in the accumulator. The CY 
and AC flags are cleared.

ORA r

AddressinCycles: 2 
States: 7

immediate
Flags: Z,S,P,CY,AC

(OR Register)

1 0 0 0

(A) (A) V (r)
The content of register r is inclusive-OR’d with the content of the ac
cumulator. The result is placed in the accumulator. The CY and AC flags 
are cleared.

1 I 0 1 1 1 1 I 0 s 1 s 1 s

AddressinCycles: 1 
States: 4

register
Flags: Z,S,P,CY,AC



5-31

ORA M (OR memory)

(A) (A) V ((H) (L))
The content of the memory location whose address is contained in the H 
and L registers is inclusive-OR’d with the content of the accumulator. The 
result is placed in the accumulator. The CY and AC flags are cleared.

AddressinCycles: 2 
States: 7

ree. indirect
Flags: Z,S,P,CY,AC

ORI data (OR Immediate)

(A) <- (A) V (byte 2)
The content of the second byte of the instruction is inclusive-OR’d with the 
content of the accumulator. The result is placed in the accumulator. The CY 
and AC flags are cleared.

Cycles: 2 
States: 7

Addressing:
Flaes:

immediate
Z,S,P,CY,AC

CMP r (Compare Register)

(A) (r)
The content of register r is subtracted from the accumulator. The ac
cumulator remains unchanged. The condition flags are set as a result of the 
subtraction. The Z flag is set to 1 if (A) = (r). The CY flag is set to 1 if (A)
(r).

1 * 0 * 1  * 1 1 1 s 1 s 1 s

Addressing: register
Flags: Z,S,P,CY,AC

Cycles: 1
States: 4



5-321 CHAPTER FIVE

(A) -  ((H) (L))
The content of the memory location whose address is contained in the H 
and L registers is subtracted from the accumulator. The accumulator re
mains unchanged. The condition flags are set as a result of the subtraction. 
The Z flag is set to 1 if (A) = ((H) (L)). The CY flag is set to 1 if (A) <  ((H) (L)).

CMP M (Compare memory)

Cycles: 2 
States: 7

Addressing: reg. indirect 
Flags: Z,S,P,CY,AC

CPI data (Compare immediate)

(A) (byte 2)
The content of the second byte of the instruction is subtracted from the 
accumulator. The condition flags are set by the result of the subtraction. The 
Z flag is set to 1 if (A) = (byte 2). The CY flag is set to 1 if (A) <  (byte 2).

Addressing:Cycles: 2 
States: 7 Fla s:

immediate
Z,S,P,CY,AC

RLC (Rotate left)

(A„ + J  -  (A„); (A„) «—(A7)
(CY) <- (A7)
The content of the accumulator is rotated left one position. The low order bit 
and the CY flag are both set to the value shifted out of the high order bit 
position. Only the CY flag is affected.

Cycles: 1 
States: 4 
Flags: CY



5-33

RRC (Rotate right)

(An) <- (An_j); (A7) (Ao) 
(CY) (Ao)
The content of the accumulator is rotated right one position. The high order 
bit and the CY flag are both set to the value shifted out of the low order bit 
position. Only the CY flag is affected.

o *  o 1 o l o l i r- i i l i

Cycles: 1 
States: 4 
Flags: CY

RAL (Rotate left through carry)

RAR

(A„+J 
(Ao)

(A„); (CY)
(CY)

(A7)

The content of the accumulator is rotated left one position through the CY 
flag. The low order bit is set equal to the CY flag and the CY flag is set to the 
value shifted out of the high order bit. Only the CY flag is affected.

(A„)
(A7)

Cycles: 1 
States: 4 
Flags: CY

(Rotate right through carry)
(An+1); (CY) 
(CY)

(Ao)

The content of the accumulator is rotated right one position through the CY 
flag. The high order bit is set to the CY flag and the CY flag is set to the value 
shifted out of the low order bit. Only the CY flag is affected.

Cycles: 1 
States: 4 
Flags: CY



5-341 CHAPTER FIVE

CMA (Complement accumulator)

(A) (A)
The contents of the accumulator are complemented (zero bits become 1, one 
bits become 0). No flags are affected.

0 1 0 1 1 * 0  1 1 1 1 1 1 1 1

Cycles: 1 
States: 4 
Flags: none

CMC (Complement carry)

(CY) (CY)
The CY flag is complemented. No other flags are affected.

0 0 1

Cycles:
States:
Fla s:

1
4
CY

STC (Set carry)

(CY) 1
The CY flag is set to 1. No other flags are affected.

Cycles: 1
States:
Flags:

4
CY

Branch Group

This group of instructions alter normal sequential program flow. Condition flags 
are not affected by any instruction in this group.

The two types of branch instructions are unconditional and conditional. Uncon
ditional transfers simply perform the specified operation on register PC (the



Heath Assembly Language 5-35

program counter). Conditional transfers examine the status of one of the four 
processor flags to determine if the specified branch is to be executed. The 
following conditions may be specified:

CONDITION CCC OCTAL

NE or NZ — not zero (Z = 0) 000 0
E or Z — zero (Z = l) 001 1

NC — no carry (CY = 0) 010 2
C — carry (CY = 1) Oil 3

PO — parity odd (P = 0) 100 4
PE — parity even (P = 1) 101 5

P — plus (S = 0) 110 6
M — minus (S = 1) 111 7

JMP addr (Jump)

(PC) <— (byte 3) (byte 2)
Control is transferred to the instruction whose address is specified in byte 3 
and byte 2 of the current instruction.

I ' l ' O ' O  O O I I 

low-order addr 

high-order addr

Cycles: 3 
States: 10

Addressing:
Flaes:

immediate
none

JNE JNC JPO 
JE JC JPE

JP
JM

(Condition jump)

If (CCC),
(PC) <- (byte 3) (byte 2)

If the specified condition is true, control is transferred to the instruction 
whose address is specified in byte 3 and byte 2 of the current instruction. 
Otherwise, control continues sequentially.

low-order addr

high-order addr

Addressing: immediate 
Flags: none

Cycles: 3
States: 10



5-36 CHAPTER FIVE

CALL addr (Call)

((SP) — 1) <- (PCH) 
((SP) — 2) (PCL)
(SP) <- (SP) — 2 
(PC) <— (byte 3) (byte 2)

The high-order eight bits of the next instruction address are moved to the 
memory location whose address is one less than the content of register SP. 
The low-order eight bits of the next instruction address are moved to the 
memory location whose address is two less than the content of register SP. 
The content of register SP is decremented by 2. Control is transferred to the 
instruction whose address is specified in byte 3 and byte 2 of the current 
instruction.

Addressing:Cycles: 5

States: 17

CNE CNC CPO CP
CE CC CPE CM

immediate/re
indirect
none

(Condition call)

If (CCC),
((SP) — 1) <- (PCH) 
((SP) -  2) (PCL)
(SP) <- (SP) — 2 
(PC) <- (byte 3) (byte 2)

If the specified condition is true, the actions specified in the CALL instruc
tion (see above) are performed; otherwise, control continues sequentially.

Cycles: 3/5

States: 11/17

Addressing: immediate/reg. 
indirect 

Flags: none



Heath Assembly Language 5-37

RET (Return)

(PCL) 4- ((SP)): 
(PCH) 4- ((SP)) + 1);
(SP) (SP) + 2;

The content of the memory location whose address is specified in register 
SP is moved to the low-order eight bits of register PC. The content of the 
memory location whose address is one more than the content of register SP 
is moved to the high-order eight bits of register PC. The content of register 
SP is incremented by 2.

1 1 0 0

Cycles: 3 
States: 10

RNE RNC 
RE RC

Addressing: reg. indirect 
Flags: none

(Conditional return)

If (CCC),
(PCL) 4- ((SP)) 
(PCH <- ((SP) + 1) 
(SP) (SP) + 2

If the specified condition is true, the actions specified in the RET instruc
tion (see above) are performed: otherwise, control continues sequentially.

1 I C ' C  C O ' O ' O

Cycles: 1/3 
States: 5/11

AddressinI
Flag

reg. indirect
s: none

RST n (Restart)

((SP) -  1) 4- (PCH)
((SP) -  2) (PCL) 
(SP) 4- (SP) — 2 
(PC) 4- 8 * (NNN)

The high-order eight bits of the next instruction address are moved to the 
memory location whose address is one less than the content of register SP. 
The low-order eight bits of the next instruction address are moved to the
memory location whose address is two less than the content of register SP.



5-381 CHAPTER FIVE ■

The content of register SP is decremented by two. Control is transferred to 
the instruction whose address is eight times the content of NNN.

Cycles: 3 
States: 11

Addressing: reg. indirect 
Flags: none

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 N N N 0 0 0

Program Counter After Restart

PCHL (Jump H and L indirect — move H and L
to PC)

(PCH) (H)
(PCL) (L)

The content of register H is moved to the high-order eight bits of register PC. 
The content of register L is moved to the low-order eight bits of register PC.

Addressin
Flags: none

Cycles: 1 
States: 5

register

Stack, I/O, and Machine Control Group

This group of instructions performs I/O, manipulates the Stack, and alters 
internal control flags. Unless otherwise specified, condition flags are not af
fected by any instructions in this group.

PUSH rp (Push)

((SP) -  1) (rh) 
((SP) -  2) (rl) 
(SP) <- (SP) — 2



Heath Assembly Language

The content of the high-order register of register pair (rp) is moved to the 
memory location whose address is one less than the content of register SP. 
The content of the low-order register of register pair (rp) is moved to the 
memory location whose address is two less than the content of register SP. 
The content of register SP is decremented by 2. NOTE: Register pair (rp) = 
SP may not be specified.

Addressing:Cycles: 3 
States: 11 Fla s:

reg. indirect 
none

PUSH PSW (Push processor status word) 

((SP) — 1) <- (A)
((SP) — 2)0 (CY), ((SP) — 2)j *— 1
((SP) — 2)2 <—(P), ((SP) — 2)3 0
((SP) — 2)4 (AC), ((SP) — 2)5 0
((SP) — 2)6 <—(Z), ((SP) — 2)7 <—(S)
(SP) <- (SP) — 2

The content of register A is moved to the memory location whose address is 
one less than register SP. The contents of the condition flags are assembled 
into a processor status word and the word is moved to the memory location 
whose address is two less than the content of register SP. The content of 
register SP is decremented by two.

Addressing:Cycles: 3 
States: 11 Fla s:

reg. indirect 
none

FLAG WORD

D7 D6 D5 D4 D3 D2 0 ,  Do

s z 0 AC 0 P 1 CY



5-40 CHAPTER FIVE

POP rp (Pop)

(rl) -  ((SP))
(rh) ((SP) + 1 
(SP) <- (SP) + 2

The content of the memory location whose address is specified by the 
content of register SP is moved to the low-order register of register pair (rp). 
The content of the memory location whose address is one more than the 
content of register SP is moved to the high-order register of register pair (rp). 
The content of register SP is incremented by 2. NOTE: Register pair (rp) = 
SP may not be specified.

Cycles: 3 
States: 10

Addressing: reg. indirect 
Flaes: none

POP PSW (Pop processor status word)

(CY) ((SP))0 
(P) «- ((SP))2
(AC) ((SP))4 
(Z) -  ((SP))6 
(S) <- ((SP))7 
(A) <- ((SP) + 1)
(SP) <- (SP) + 2

The content of the memory location whose address is specified by the 
content of register SP is used to restore the condition flags. The content of 
the memory location whose address is one more than the content of register 
SP is moved to register A. The content of register SP is incremented by 2.

I ' l ' I ' l ' O ' O ' O ' l

Cycles: 3 
States: 10

Addressing: reg. indirect 
Z,S,P,CY,AC



Heath Assembly Language

XTHL (Exchange stack top with H and L)

(L) ((SP))
(H) ((SP) + 1)

The content of the L register is exchanged with the content of the memory 
location whose address is specified by the content of register SP. The 
content of the H register is exchanged with the content of the memory 
location whose address is one more than the content of register SP.

AddressinCycles: 5 
States: 18 Flags: none

reg. indirect

SPHL (Move HL to SP)

(SP) (H) (L)

The contents of registers H and L (16 bits) are moved to register SP.

Cycles: 1 
States: 5

Addressin register
Flags: none

1

IN port (Input)

(A) <— (data)

The data placed on the eight bit bidirectional data bus by the specified port

Cycles:
States:

3
10

Addressing:
Flags:

direct
none



5-42 CHAPTER FIVE

OUT port (Output)

(data) <— (A)

The content of register A is placed on the eight bit bidirectional data bus for 
transmission to the specified port.

1 I 1 I 0 I 1 I 0 I 0 I 1 ' 1

o u tp u t  p o r t

Cycles: 3 
States: 10

Addressing:
Flags:

direct
none

El (Enable interrupt)

The interrupt system is enabled following the execution of the next instruc
tion.

Cycles: 1 
States: 4 
Flags: none

DI (Disable interrupt)

The interrupt system is disabled immediately following the execution of 
the DI instruction.

Cycles:
States:
Flags: none

1
4



5-43

HLT (Halt)

The processor is stopped. The registers and flags are unaffected.

0 ' 1 ' 1 ' 1 ' 0 ' 1 ' 1 1 0

Cycles: 1 
States: 7 
Flags: none

NOP (No op)

No operation is performed. The registers and flags are unaffected

Cycles
States
Flags

1
4
none



5-44 [ CHAPTER FIVE

PSEUDO OPCODES/ASSEMBLER DIRECTIVES

The Heath Assembly Language supports several assembler directives or, as they 
are more commonly known, pseudo opcodes or simply pseudo ops. These 
opcodes are called “pseudo” because they are coded as machine operations. But 
as their alternate name (assembler directives) indicates, they represent com
mands to ASM and are not translated as instructions. Some pseudo ops affect the 
operation of the assembler. Others cause the assembler to generate constants into 
the generated object code.

Define Byte, DB
The DB pseudo defines byte contents. The DB pseudo is of the form:

Label D i e x p l , , i e x p n

The integer expressions iexpl through iexpn are expressions which evaluate to 
8-bit values. For the DB pseudo, a long string can be substituted for an expres
sion. The long string is a character string, delimited by single quotes ( ') , contain
ing one or more characters. You can enclose a quote ( ')  within a string by c 
it as two single quotes. Each of the expressions is converted into an 8-bit binary
number and stored in sequential memory locations. A few examples of the DB

’in

pseudo are:

CR EQU 15Q
LF EQU 12Q

DB 1
DB 2 , 3 , 4
DB 1 0 ,C R ,L F , 'H A S I C ',0

In each case, the DB pseudo converts the expression into a single byte and stores 
it in the appropriate memory location. The DB pseudo recognized a character 
string as a series of expressions. Therefore, each character is converted into its 
ASCII binary equivalent and is stored in a sequential memory location.



Heath Assembly Language 5-45

Define Space, DS
The defined space pseudo (DS) reserves a block of memory during assembly.

The form of the DS pseudo is:

LABEL DS i e x p  COMMENT

This pseudo is used, for example, to set up a buffer area or to define any other 
storage area. The DS pseudo causes the assembler to reserve a number of bytes 
specified by the expression (iexp) in the operand. These bytes are not preset to 
any value. Therefore, you should not presume any special original contents. 
Programs using extensive buffer area should use the DS pseudo to declare this 
area. Using the DS pseudo significantly shortens the program load time. In the 
example

LINE DS 80 0 c h a r a c te r  in p u t l i n e  b u f f e r

an 80-character input buffer is reserved by a single statement.

Define Word, DW

The DW pseudo defines word constants. The form of the DW pseudo is:

LABEL DW i e x p l  , , l e x p n

The DW pseudo specifies one or more data words iexp through iexpn. Data 
words are 2-byte values which are placed into memory space, low order byte 
first. NOTE: Strings greater than two characters long are not allowed when you 
are using the DW pseudo.



5-461CHAPTER FIVE

Conditional Assembly Pseudo Operators

Frequently, you may want to write a program with certain portions of it that can 
be turned on or turned off. That is to say, when they are turned on, these portions 
of the program are assembled. If they are turned off, they are not assembled 
during that particular assembly. ASM contains three pseudos to aid in condi
tional assembly. They are:

IF ELSE and ENDIF

IF

The IF pseudo conditionally disables assembly of any statements following the 
IF pseudo operator. The form of the IF pseudo operator is:

IF lex p

IF the expression (iexp) evaluates to zero, the statements following the IF pseudo 
are assembled. If the expression does not evaluate to zero (either negative or 
positive), any statements in the assembly source code following this expression 
are skipped until one of the three following pseudos are encountered. The ELSE, 
ENDIF and END pseudos are not skipped regardless of the value of the expres
sion iexp

ELSE

The ELSE pseudo toggles the state of the assembly conditions. The ELSE pseudo
is of the form:

ELSE

If the conditional assembly flag is set to skip assembling source code, it is 
changed so source code is now assembled. If lines of source code prior to 
encountering the ELSE pseudo are being assembled, those following the ELSE 
pseudo are skipped until an ELSE, ENDIF, or END is encountered. NOTE: The 
ELSE segment must appear after an IF statement, but before the associated ENDIF 
statement.



Heath Assembly Language 5-47

ENDIF

The ENDIF statement indicates the end of a block of source code designated for 
conditional assembly. The form of the ENDIF pseudo is:

ENDIF
Assembly resumes regardless of the current assembly state (assemblin 
ping) when the ENDIF conditional assembly pseudo occurs.

or skip-

End Program, END

The END pseudo indicates the END of a program. The END pseudo takes the 
form:

END ie x p
where iexp is the program entry point. The program entry point is the memory 
address where program execution begins. If the END statement is missing, the 
assembler generates one. If iexp is missing, an error is flagged and ASM uses 042 
200A.

Define Label, EQU

The Equate statement is used to assign an arbitrary value to a symbol. The form of 
the equate statement is:

LABEL ie x p
The equate statement is unique, as it must evaluate on pass one. For this reason, 
any symbols used within the expression “iexp” must be defined before the 
assembler encounters the EQU statements. The label is assigned the value of the 
integer expression “iexp”. This label may not be redefined by subsequent use as 
a label in any other statement. For example,

START EQU
The label START is set equal to the value of the memory location counter, or

START EQU 100
The label START is set equal to 100.

NOTE: If you omit the label, an error is generated.



5-48 CHAPTER FIVE

Origin Statement, ORG

The Origin statement (ORG) sets the initial value of the memory location 
counter. The form of the origin statement is:

LABEL ORG i e x p

The expression iexp must evaluate on pass one. Therefore, any symbols used 
within this expression must be defined before the assembler encounters this 
statement. When the assembler encounters the ORG statement, the memory 
location counter is set to the expression value. All subsequent object code 
generated by the assembler is placed in sequential memory locations, starting at 
the address given by the expression. It is legal to establish a new origin, either 
before or after a previous origin. If a label is present, it is given the value iexp. For 
example:

BEGIN ORG 4 2 2 0 0  A T he p rogram  is started  at lo ca tio n  042 200 (offset octal) 
and  th e  label BEGIN is assigned  th e  offset octal value  040 
200. T h is is th e  low est ad d ress  th e  u se r (program m er) 
sh o u ld  use.

BEGIN ORG START+256 T he m em ory  loca tion  co u n te r is set to the  p rev iously  
defined  value  of th e  label START + 2 56. T he label BEGIN 
also  assum es th is  value.

Set Statement, SET

The SET statement assigns an arbitrary value to a desired symbol. The form of the 
SET statement is:

LABEL SET ie x p

The SET pseudo op differs from the EQU pseudo op in that any label defined in a 
SET statement can be redefined in a following SET statement as many times as 
desired in the course of the program. The expression “iexp” must evaluate 
during pass one. Therefore, any symbols used within the expression *’iexp” must 
be previously defined.



Heath Assembly Language

Xtext Statement, XTEXT

The XTEXT statement is used to include the contents of another file in the 
assembly. The form of the XTEXT statement is:

XTEXT < fn a m e >

When the assembler encounters the XTEXT pseudo operation, it locates the 
specified file <fname>. <fname> must reside upon a disk device and should 
contain assembly language statements. Note that it may not contain an END 
statement, nor another XTEXT statement. The statements in <fname> are as
sembled into the program where the XTEXT statement was encountered. The 
XTEXT statement itself is normally listed, but the included statements from 
<fname> normally are not. The C listing control option is provided to cause 
them to be listed (see LON and LOF pseudo operations).

The file specification <fname> may specify a device code and an extension. If no 
extension is specified, ASM assumes the extension .ACM. The only device codes 
that you may specify are codes for disk devices which have been mounted. If no 
device is specified and XTEXT default devices were specified on the command 
line, ASM will search those default devices for the file in the order that they were 
specified. If it does not find the named file on the default devices, or if no default 
devices were specified, ASM will search for the file on the device where the main 
program resides. If it still can not find the named file, ASM will search for the file 
on device SY0:. If the file still cannot be located, ASM will flag the XTEXT 
statement with a “U” error.

The XTEXT statement is normally used to include files containing symbol 
definitions and commonly used subroutines. For example, Heath provides a file 
intended to be used with XTEXT, “HDOS.ACM.” HDOS.ACM contains symbolic 
definitions for various operating system function requests. For example, the 
symbol .EXIT is defined to have the value of 0 (zero). A program including the 
file HDOS.ACM can use this symbol in generating system requests. This is not 
only self-documenting, but should a future system revision change the system 
function codes, the programmer can convert over by simply changing the defini
tions in HDOS.ACM and reassembling all of his programs, since they all make 
use of the same definition file, HDOS.ACM.

You can also use XTEXT to include commonly used assembly language sub
routines into a program. In this way, a programmer can avoid having to rewrite 
and redebug the same subroutine for each of his programs. An assembly lan
guage programmer will soon build an extensive library of utility subroutines, 
ready to be XTEXTed into any assembly language program.



5-50 CHAPTER FIVE

Listing Control
ASM provides a number of pseudo operators which affect the listing mode. They 
control paging, pagination, titles, and subtitles. The listing control pseudos are 
used to affect easily read documentation; they do not appear in the program 
listing.

TITLE
The pseudo operator TITLE causes a new page title to be used. The form of the 
title pseudo op is:

TITLE ' new t i t l e '

Unless the assembler is already at the top of a page, a new page of the assembly 
listing is generated. This page is given the title contained in the string ‘new title’.

STL

The subtitle pseudo (STL) causes a new page subtitle to be set. The form of the 
subtitle pseudo is:

STL ' new s u b t i t l e '

The subtitle pseudo does not affect pagination. This is to say, it does not generate 
a new page but simply titles a subsection of the program. Subtitles are frequently 
used to indicate subroutines or major program modules.

EJECT

The EJECT pseudo causes a new page to be started. The form of the eject pseudo
is:

EJECT

When ASM processes an EJECT pseudo, the output device is instructed to move 
to the start of a new page during the listing.

SPACE

The SPACE pseudo leaves blank lines in the program listing. The form of the 
space pseudo is:

SPACE i e x p l , i e x p 2



5-51

During the assembly listing, iexpl blank lines are left. If the optional expression 
iexp2 is specified, the assembler checks during a listing to see if the number of 
lines remaining on the page is greater than or less than iexp2. If there are less 
than iexp2 lines remaining on the page, the spacing function is skipped and a 
new page is started, as if an EJECT pseudo was encountered.

LON (Listing on)

The LON pseudo operator is used to turn-on listing options. The form of the LON 
pseudo is:

LON CCC

Each option is represented by a single character. The characters for the desired 
options are supplied as CCC. The options and their default modes (if they are not 
specified) are:

L Master listing

If this option is enabled, all program lines are listed. If it is disabled, only 
lines containing errors are listed.
DEFAULT MODE: All program lines are listed (normally enabled; disable 
using LOF).

I Lists the IF-skipped lines. When this option is enabled, all lines skipped 
due to IF statements are listed (although they are not assembled). 
DEFAULT MODE: The skip lines are not contained in the listing.

G Lists all generated bytes. When this option is enabled, all generated bytes 
appear on the listing. If more than three bytes are generated by a statement, 
new lines are generated in the listing to display these bytes. NOTE: The DB 
pseudo can produce many bytes when you are encoding a string. These are 
not normally listed.
DEFAULT MODE: Lists a maximum of the 3-bytes generated in each 
statement.

C Lists XTEXT-included lines. When this option is enabled, all lines in
cluded via the XTEXT pseudo operator are listed.
DEFAULT MODE: XTEXT lines are not listed.

R Lists referenced labels. When this option is enabled, lines which reference 
labels in the operand field are included in the cross-reference table. 
DEFAULT MODE: Lines which reference labels are included.



5-52 CHAPTER FIVE

LOF (Listing off)

The LOF pseudo is identical to the LON pseudo except that the selected options 
are disabled. The form of the LOF pseudo is:

LOF CCC

See LON, above, for a description of the control character CCC.

NOREF

The NOREF pseudo causes references to the defined symbols to be omitted from 
the cross-reference listing. The form of the NOREF pseudo is:

NOREF symbol 1, symbol 2 , . . .sym bol n

Note that the specified symbols are included in the cross-reference table until the 
NOREF pseudo is encountered.

ERRxx

ASM contains four conditional error pseudo operators. These are of the form:

ERRZR i e x p  
ERRNZ i e x p  
ERRPL i e x p  
ERRMI i e x p

For each of these pseudo operators, the assembler tests the indicated expression. 
If the expression matches the expressed error condition, an error code is flagged 
in the listing. The errors associated with each of the conditional error pseudos
are:

ERRZR tests for zero expression
ERRNZ tests for non-zero  expression
ERRPL tests for positive  expression
ERRMI tests  for negative  expression

These pseudo error tests are particularly useful when you make assumptions 
about the configuration of various program elements or expressions. You can 
encode these assumptions into ERRxx pseudos. Any change which causes the 
code to fail generates an error, flagging the programmer during the listing. For
example,

LXI H.AREA1
MOV B,M (B) = (AREA1)

INX H
ERRNZ AREA2-AREA1-1 A ssum e area 2 fo llow s area 1

MOV C,M (C) = (AREA2)

If, when the program is assembled, AREA 1 and AREA 2 have been defined 
differently, an error flag warns of this mistake.



Heath Assembly Language

GENERATING THE ASSEMBLER

Before you can use the assembler, it must first be copied to your system disk(s). 
You can do this by copying the files ASM.ABS and XREF.ABS from the system 
distribution disk(s). The file ASM.ABS is the assembler, and XREF.ABS is the 
cross-reference table generator. Both files are necessary before you can run the 
assembler. In addition to ASM.ABS and XREF.ABS, you will probably also want 
to copy over all files with the ACM (Assembler Common) extension, which you 
can accomplish via the *. ACM wildcard. The use of these files will be discussed 
later. Copy the files via ONECOPY, or via PIP if you have a multiple-drive 
system. See the HDOS Manual for more information about ONECOPY and PIP.

Using The Assembler

In order to use the assembler, you must prepare a source using a text editor, such 
as EDIT. To get you started, Heath has prepared some short assembly language 
programs which are in Appendix A.

When the source program is ready, type ASM in response to the HDOS prompt 
(>). HDOS interprets this command as RUN SYHiASM. ABS. If the assembler is on 
SYl:, then type RUNaSY1:ASM. In either case, the assembler will type

HDOS A ssem bler I s s u e  # 1 0 4 .0 0 .0 0  
*

Note that the issue number may be different, but an issue will be shown. The ” 
is the assembler’s prompt, asking you to enter a command line in the form

The is the assembler’s prompt, asking you to enter a command line in the 
form

c b in a ry  f n a m e > ,c l is t in g  fname>,cXREF temp fname>=
< so u rce  fname>,cXTEXT devices>[/SW ITC H a. . ./SWITCHn]

The <binary fname> specification tells ASM where to put the generated binary 
program. The default extension is .ABS. If you do not wish to generate a binary 
file, omit the file, but not the following comma.

The clisting fname> specification tells ASM where to put the assembly listing. 
The default extension is .LST. If you specify no listing file, ASM will not 
generate one. In that case, any program statements that contain errors will be 
listed on the system console.



5-541 CHAPTER FIVE

The <XREF temp fname> specification tells ASM where to store a temporary file 
which will contain information used in generating the cross- reference table. The 
default extension is .TMP. If no temp file is specified, ASM will not generate a 
cross-reference table. The temporary file is automatically deleted after the cross- 
reference table has been listed.

The <source fname> specification tells ASM which file contains the assembly 
language source program. The default extension is .ASM. You must specify this 
file; it cannot be omitted. The device specified must be a disk drive.

The <XTEXT devices> specification tells ASM where to search for XTEXT files. 
You may specify from 0 to 5 device names, each separated by a comma. The 
devices must be disk drives and the disks must have been mounted. For further 
information, see XTEXT.

Switches

There are several switches you may specify at the end of the command line. 
These switches are all optional, and you can combine any number of them. The 
legal switches are:

/LARGE

This switch tells ASM that the program you wish to assemble is large, and it 
should use all the available memory. Normally, when assembling, ASM 
speeds itself up by letting the operating system use a portion of RAM. 
However, if your program is so large that the assembler runs out of RAM, 
you will have to reassemble using the /LARGE switch. This switch causes 
ASM to use all the available RAM space for itself, with a slightly slower 
assembly as a result. For systems with only 32K of RAM, ASM will automat
ically use all of available memory; specifying /LARGE will have no effect.

/ERR

This switch causes ASM to write all program lines with errors in them to the 
console. Of course, the lines are also written in the normal fashion to the 
listing file. If no listing file is specified, error lines will be automatically 
written to the console regardless of the /ERR switch.



Heath Assembly Language 5-55◄

/P A G E :n n

ASM writes the source listing file formatted into pages, so that the program 
can be listed neatly on a printer or a hard-copy terminal. The /PAGE switch 
tells the assembler how many lines are to appear on a page. Note that this is 
not the size of the page itself; you will want to leave several lines to form a 
gap between the pages. Thus, for the standard page size of 66 lines, a 
specification of /PAGE:60 is about right. This is the default value, so only 
users with non-standard paper size need specify /PAGE.

/WIDE

The /wide switch informs the cross-reference program that the listing is to 
be printed on 132-column paper. Default paper width is 80 columns.

/FORM : nn

When the assembler wishes to start a new page for the listing file, it writes 
an ASCII form feed character into the listing file. This causes an eject to a 
new page. If your hard copy device will not respond to a form feed in this 
way, you can use the /FORM:nn switch to have the assembler generate the 
proper number of line feeds to cause the page eject. The “nn” field is the size 
of a page (or “form”) for your hard copy device. This must be larger than the 
specified /PAGE value (or default).
The standard size for most computer forms is 66 lines per page; thus, 
/FORM:66 should be specified. If, for example, you had paper that held 40 
lines per page and you wished to print only on the top half of each page, you 
could specify /FORM:40/PAGE:20. This tells ASM that you want to print 20 
lines per page, and that each page is 40 lines long. When the /FORM:nn 
switch is specified, the assembler writes the proper number of carriage- 
return line feeds to the listing file, instead of the form feed character.

/L O N : c c c

The /LON switch is used to override the listing options specified (via the 
LON and LOF pseudo instructions) in the assembly language source code, 
“ccc” represents one or more listing options, discussed in the description of 
the LON pseudo instruction. A listing option selected by the /LON switch 
cannot be deselected by a LOF pseudo instruction in the program.

/L O F : c c c

The /LOF switch is used to override the listing options specifed (via the LOF 
and LOF pseudo instructions) in the assembly language source code, “ccc” 
represents one or more listing options, discussed in the description of the 
‘LOF’ pseudo instruction. A listing option deselected by the /LOF switch 
cannot be selected by a LON pseudo instruction in the program.



5-56 CHAPTER FIVE

Command Line Examples

This section shows several example command causes lines, with a brief discus
sion of each. These lines all show assemblies of a sample program, DEMO. ASM.

DEMO,DEMO=DEMO

This command causes the file SYj0f:DEMO.ASM to be assembled, with the 
listing file written to SYX:DEMO.LST, and the binary file written to 
SYj#:DEMO.ABS. Note that form feed characters will be used to separate the 
pages of the listing file.

* DEMO, DEMO, TEMP=DEMO, S Y 2 : S3

This command causes the file SYj&DEMO.ASM to be assembled, with the 
binary file written to SYj0f:DEMO.ABS. The listing file will be written to file 
SYj0:DEMO.LST, and will include a cross-reference table. The file 
SYZhTEMP.TMP will be used as a temporary work file for generating the 
cross-reference table. Device SY2: will be the first device to be searched for 
any files given on XTEXT lines in the source file which do not specify a 
device.

* DEMO. XXX, T T : =DEM0. ASM/FORM:6 6 33
This command causes the file SYtfcDEMO.ASM to be assembled, with the 
listing file written directly to the console terminal (deviceTT:). The binary 
file will be written to file SY0:DEMO.XXX. This example assumes that the 
console terminal is a Decwriter II, without the form-feed option. Thus, the 
/FORM switch was specified so the assembler would space the paper 
correctly.

, L P : =D EM 0/L0F: L 33

r
This command causes the SYX:DEMO.ASM file to be assembled, with the 
listing file written directly to the line printer (device LP:). Since no /FORM 
switch was specified and the /PAGE switch was defaulted to /PAGE:60, the 
assembler will write pages of 60 lines (or less) to the line printer, separated 
by form feed characters. The user in this case wanted a listing of just the 
errors in his program, without listing all the correct statements. His use of 
the LOF:L switch specified that no lines were to be listed. Since lines 
containing errors are always listed on the listing file, the result will be a 
listing on the printer showing only lines with errors.

* =DEM0

This final exam ple shows the user assem bling the program  
SY0:DEMO.ASM, and producing no binary or listing files. This form is 
useful to check a program for assembly errors since, in the absence of a 
listing file, all assembly errors are printed on the console. Note that no 
binary file will be generated.



Heath Assembly Language

Errors
All errors detected by the Heath Assembly Language are flagged directly on the 
listing in the first three columns. One character is flagged for each error detected. 
If more than one error is detected, the second error character is placed in column 
2 and the third error character is placed in column 3.

CHARACTER ERROR

U An undefined symbol. The symbol name does 
not match any symbol in the symbol assignment 
table. Check for spelling errors or for a com
pletely undefined symbol.

R Illegal register specified. Two different errors 
can cause this message. A non-8080 register may 
have been specified, or the instruction was not 
meaningful for the register. For example, a regis
ter pair instruction which refers to a single regis
ter.

D

A

Label is doubly defined. The symbolic label has 
been defined twice in the source program.

Operand syntax error. The operand expression is 
improper. For example, it may evaluate to a 
number >65535, be a divide by zero, or be 
nonexistent.

V Value exceeds eight bits. The result of an expres
sion is greater than 255. This error is not flagged 
if the op-code called for a 16-bit operand such as 
an LXI instruction.

F Format error. A pseudo-op requires a label that is 
not present in the source code. For example, an 
EQU pseudo-op requires a label. Too many 
characters in a label.

O Unrecognized op-code. The op-code in this 
statement does not belong to the 8080 instruc
tion set, nor does it belong to the ASM pseudo-op 
instruction code set. Check for spelling errors or 
for op-codes used from other microprocessor in
struction sets.



5-581 CHAPTER FIVE

CHARACTER ERROR

P Error generated by ERRxx pseudo or reference to
a doubly defined label. Note the ERRxx pseudos 
are generated to flag the user when a test expres
sion does not evaluate satisfactorily.

NOTE: If an assembly generates a great number of errors, it is best to return to the 
Text Editor, correct as many errors as possible, and reassemble. The reassembly 
will frequently flag additional errors which are then obvious on the second 
assembly. If the errors are few, you may load the program and debug it using 
DBUG. However, this does not result in a correct listing.



5-59

Appendix i

ASSEMBLY LANGUAGE INTERFACE

Introduction

The HDOS operating system offers a powerful and yet simple interface to assem
bly language programs. This section discusses the fundamental system com
mands necessary to execute a simple assembly language program. The advanced 
features and facilities of HDOS will be discussed in the HDOS System Pro
grammer’s Guide.

HDOS provides what is called the “environment” for an assembly language 
program. It loads the program into memory, sets up the stack, handles console 
and disk device I/O, and provides other services for the program. In return, a 
programmer must always remember that his program is not the only one running 
in the computer — the HDOS program is also running in the same machine. A 
programmer must: be careful not to write into memory locations reserved for 
HDOS; be sure his program does not destroy the program stack by loading the 
stack pointer; be sure his program does not turn off interrupts via the DI instruc
tion (except for very short periods of time); and so forth.

Finally, it is important that assembly language programs use the support and 
facilities of HDOS rather than “doing it themselves.” Using HDOS whenever 
possible serves two functions: first, it makes the program much more useful and 
flexible. For example, if your program uses the HDOS console driver rather than 
communicating directly to the console itself (via IN and OUT instructions), your 
program automatically takes advantage of the features of the HDOS console 
system (CTRL-S, CTRL-O, RUBOUT, CTRL-U, etc.) without any extra program
ming effort for you. Later, when Heath issues a new version of HDOS supporting 
new devices and/or new features, your program will automatically be able to take 
advantage of any new feature without having to be modified.

The second reason for using HDOS functions is system compatibility. As men
tioned above, new releases of HDOS will be made available periodically. These 
new versions will fix known bugs, support new devices, and contain powerful 
new features. Programs which properly use HDOS functions will be able to run 
under the new versions of HDOS after being reassembled. Programs that “do it 
themselves” may fail to work under new HDOS releases.



5-60 CHAPTER FIVE

Writing Your Program

In order to successfully run your assembly language program under HDOS, you 
must follow the simple format shown in Figure 1. Your program must start with 
the three lines:

TITLE “ som e d esc rip tiv e  t i t le ” 
XTEXT HDOS 
ORG USERFWA

The TITLE statement causes an appropriate title to be printed on the assembly 
listing. The title you use is not important as long as it is meaningful to you. The 
XTEXT statement prepares the assembler for the HDOS commands you will be 
including in your program. These are discussed later in this section. Finally, the 
ORG statement tells the assembler to assemble your program into the user 
memory area.

After these three lines you will write your program. The last line in the program 
must be

END x x x

where xxx is a label in your program. When you run your program (via the RU? 
command), execution will begin at the label specified in the END statement.

TITLE “ som e m ean in g fu l t i t le ”

XTEXT HDOS

ORG USERFWA

XXX (first lin e  of execu tab le  code)
(your p rogram  goes here, see F ig u res  2, 3, an d  4 for exam ples) 

END xxx

Figure 1

R equired  form at for assem bly  language  program s.



Heath Assembly Language 5-61

Assembling Your Program

The first thing you must do to run an assembly language program is assemble it. 
This process translates the source language statements into the 8080A binary 
object codes. A sample program, DEMO.ASM is shown in Figure 2, Page 5-67. 
You should enter this through the editor. Once you have this program as a source 
file, you can assemble it. In HDOS command mode, type:

> RUNaASM g  
♦DEMO, DEM0=DEM0

Note that you must type the underlined characters; HDOS provides the charac
ters shown without underlining. This command tells the assembler that you 
want to assemble the file SY£f:DEMO.ASM, producing a listing file called 
SYZkDEMO.LST and producing a binary file SYH:DEMO.ABS. It is this binary 
file that contains the executable program. If you have a hard copy device, such as 
a Decwriter, you can copy the file DEMO.LST onto that device for reference 
during the remainder of this discussion. If you do not have a hard-copy device, 
you can refer to the listing of the file DEMO.ASM at the back of this section.

Note that the .ASM, .LST, and .ABS extensions are “defaults” provided by ASM. 
The assembler will use any specified extensions. Since ASM makes use of HDOS 
facilities for I/O, ASM is also device independent. For example, if you are 
assembling a program and want to produce the listing output on your “AT:” 
device, you need not write the listing file to the disk, copy it to “AT:” and then 
delete it. Instead, type:

♦DEMO,AT:=DEMO g

and have the listing written directly to the “AT:” device.

Executing Your Program

You must specify the starting address, or entry point, of your program in the END 
statement. Thus, in the program DEMO.ASM, the END statement says that 
execution is to start at the label ENTRY. When you type:

>R U N a DEM 0 g

HDOS will load the program into memory and start executing it at the label 
ENTRY.



5-621 CHAPTER FIVE

Returning to HDOS

When your program has finished executing, it must return control to HDOS so 
you can continue to use the operating system. Your program can do an orderly 
return to HDOS by executing the two instructions:

XRA A 
SCALL .E X IT

which will cause control to return to HDOS. 
be the last one your program will execute.

The SCALL .EXIT instruction will

The SCALL is a special HDOS assembler operation that generates a special 
two-byte call to the HDOS operating system. The symbol .EXIT indicates the 
particular type of request you want to make. In this case, you are telling HDOS 
that you are done executing.

Another way to return control to HDOS is to process CTRL-Cs within your 
program. In your program initialization, set up CTRL-C processing as follows:

LXI H .E X IT  
MVI A ,0 0 3  
SCALL . CTLC

The end of your program will have the exit routine:

EXIT XRA A 
SCALL .EX IT

A CTRL-C entered while your program is running will cause a return to HDOS.

If you have not dismounted or reset your system volume (see Chapter 2), typing 
CTRL-Z twice will return to HDOS immediately. However, if your program has a 
bug and cannot respond to CTRL-C or CTRL-Z, you should re-boot the entire 
system. This will re-initialize the system. You can then run your program under 
DBUG and isolate the problem in a controlled environment.



5-63

Memory Usage

HDOS uses memory locations both below and above your program. It is impor
tant that HDOS should know how much of the user memory area, starting at 
42200A, your program will be using. In order to be as fast as possible, HDOS will 

ode)RAM
for a work area if the running user program is not using it. Thus, if you are not

that RAM, 
that RAM

itself.

When you type the command

>RUNA<fname> g

HDOS automatically computes the size of your program as it was assembled. 
This means that your program must not write into any memory location that you 
did not declare during the assembly with a DB, DW, or DS statement. For 
example, if your program needs a 500-byte memory area, you should not write 
your program in the form:

WORK EQU
END ENTRY

500 BYTE WORK AREA STARTS HERE

and then use the 500-bytes starting at the label WORK. In this case, HDOS would 
think that your program ended at the label WORK, and have no way of knowing 
that you were going to use 500 more bytes. You should code the program

WORK DS 500
END ENTRY

YTE WORK AREA

In this case, HDOS will know that you will be using the 500 bytes at WORK 
because you declared them in the DS statement.



5-64

Typing Lines and Characters

HDOS provides two commands for writing to the console terminal. These are 
.PRINT and .SCOUT.

.PRINT

The .PRINT SCALL is used to print a line of text on the system console. Before 
you issue the .PRINT SCALL, you must load the address of the first byte of the 
line to be printed in the H and L registers. For example,

LXI H .L IN E
SCALL .PRIN T PRINT THE MESSAGE

LINE D 1 2 Q , 'H I  T H E R ', ’ E ’ +200Q

w o u ld  cause  th e  m essage 
HI THERE
to be p rin te d  on  th e  system  console.

You have probably noticed that the DB statement in the above example contains 
more than just the character string ‘HI THERE’. The first of these additions is the 
12Q. This tells the assembler to start the message with the ASCII character 012 
(octal). This is the ASCII “New Line” character. Instead of using the ASCII 
Carriage Return and Line Feed characters, HDOS uses the New Line character. 
(Note that New Line has the same octal code as Line Feed; since HDOS does not 
allow Line Feed characters, there is no confusion.) The New Line character 
causes a new line to be started on the output device. The rationale behind the use 
of New Line instead of carriage return-line feed is beyond the scope of this 
Manual; suffice it to say that the use of New Line gives HDOS a device
independent way to cause a new line to be started. The carriage return character 
should not be used; the line feed character will be interpreted as a New Line 
(since both are represented by 12Q).

The other item to note about the DB statement is the expression ‘‘ ‘E’+ 200Q”. The 
.PRINT command prints the characters whose address is in the H and L registers 
until it prints a character with the parity (200Q) bit set. This character is the last 
one printed. Thus, in the example the expression “ ‘E’+200Q” was used to set the 
high-order bit on the last ‘E’ in the message so HDOS would stop typing at that 
point.

.SCOUT

Use the .SCOUT to type a single character on the console device. The character in 
the A register is printed on the console terminal. For example,

MVI
SCALL

A, 'X ' 
.SCOUT PRINT THE CHARACTER 'X

The high-order bit (the parity bit) is ignored by .SCOUT.



Heath Assembly Language 5-65

Reading From the Console

HDOS provides the .SCIN command for reading characters from the console 
terminal, and the one command .CONSL to control character echoing, 
backspace, and erase-line handling.

.SCIN

The .SCIN command is used to read a single character from the console device. If 
the 8080 “carry” flag is set after the SCALL instruction, it means that no charac
ter has been typed yet. If the carry flag is clear, then a character has been read and 
is in the A register. It does not matter if the carry flag is set or clear when you 
execute the SCALL .SCIN. For example,

READ SCALL .SC IN  
JC  READ
STA CHAR

READ A CHARACTER, IF  ANY 
NO CHARACTER ENTERED, YET 
STORE CHARACTER READ IN MEMORY

.CONSL

The .CONSL command is used to set the mode of console input. There are two 
modes of input: line mode, and character mode.

When you are inputting in line mode, HDOS saves up the typed characters until 
you type a RETURN. This is done do HDOS can handle RUBOUT (character 
delete) and CTRL-U (line delete) functions. If HDOS were to give you the 
characters one by one as they were typed, it wouldn’t be able to ‘take them away 
again’ if CTRL-U were typed. By saving them all up until you hit the RETURN, 
HDOS can handle any DELETES and CTRL-Us that are typed. For example, if you 
were to type the four keys Y, E, S, and RETURN while your program was 
executing the example shown above, it would not receive any characters until 
you pressed the RETURN. The next four .SCIN commands would each return 
with one of the characters. The RETURN key gives the 012Q (New Line) charac
ter code. Thus, the four values read when you type YES (RETURN) are 131Q (Y), 
105Q (E), 123Q (S) and 012Q (RETURN).

Line mode is very useful when you wish to input a line from the console, since 
HDOS provides the DELETE and CTRL-U functions for you automatically. For 
programs that need to read each character immediately after it is typed, there is 
‘character mode’. Inputting in character mode causes the typed character to be 
passed to your program immediately. If the user types RUBOUT or DELETE, the 
RUBOUT code (177Q) is passed to your program. If the user types CTRL-U, the 
CTRL-U code (02501 is passed to your program. Character mode is more flexible

nd CTRL
keys.



5-66

The .CONSL command also allows you to turn character echoing on and off. If 
echoing is turned on, then each time the user strikes a character it is typed on the 
console automatically by HDOS. If echoing is turned off, the character is not 
typed on the console. If you wish the character to be visible, your program must 
type it itself, via the .SCOUT command.

To use the .CONSL command, code the following lines:

XRA 
MVI 
MV I  
SCALL

A
‘x x x ’ = va lue  d iscu ssed  below

C ,201Q  
. CONSL

w here  ‘x x x ’ is
000Q FOR LINE MODE WITH ECHO 
□01Q FOR CHARACTER MODE WITH ECHO 
2D0Q FOR LINE MODE WITHOUT ECHO 
201Q FOR CHARACTER MODE WITHOUT ECHO

The default mode of HDOS console input is “line mode, with echo”. You only 
need to use the SCALL .CONSL command if you wish some other mode of 
operation. You can change modes of operation as often as you like.

NOTE: The system must be configured to accept tabs in order to 
run a demonstration progam.

See the SET command in the HDOS Manual.



Heath Assembly Language 5-67

0 4 2 .2 0 0 0 0 0 0 2 XTEXT HDOS
0 4 2 .2 0 0 0 0 0 2 0  

0 0 0 2  i
ORG USERFWA

0 0 0 2 3 DEMO.ASM -  HEATH HDDS ASSEMBLY LANGUAGE.
0 0 0 2 4 *
0 0 0 2 5 * DEMO IS : A SHORT AND SIM PLE PROGRAM USED TO DEMONSTRATE THE HDOS
0 0 0 2 6 * ASSEMBLER, AND THE HDOS OPERATING SYSTEM.
0 0 0 2 7
0 0 0 2 8 T H IS  PROGRAM SIM PLY PRINTS TWO CODED L IN E S  ON THE
0 0 0 2 9
0 0 0 3 0
00031

* SYSTEM CONSOLE TERM INAL.

0 4 2 .2 0 0 041 221 0 4 2 0 0 0 3 2 ENTRY L X I H.MESA (H L ) = ADDRESS OF 1ST MESSAGE
0 4 2 .2 0 3 3 7 7 0 0 3 0 0 0 3 3 SCALL .P R IN T P R IN T  F IR S T  MESSAGE
0 4 2 .2 0 5 041 2 5 0 0 4 2 0 0 0 3 4 L X I H , MESB (H L ) «  ADDRESS OF 2ND MESSY}GE
0 4 2 .2 1 0 3 7 7 0 0 3 0 0 0 3 5 SCALL .P R IN T P R IN T  2ND MESSAGE

0 0 0 3 6
0 0 0 3 7
0 0 0 3 3

* SEND A BELL TO THE TERMINAL

0 4 2 .2 1 2 0 7 6 0 0 7 0 0 0 3 9 MV I A ,0 7 Q (A )  = A S C II BELL
0 4 2 .2 1 4 3 7 7 0 0 2 0 0 0 4 0 SCALL . SCOUT RING T E R M IN A L 'S  BELL

00041  
0 0 0 4 2  
0 0 0 4 3

RETURN CONTROL TO HDOS OPERATING SYSTEM

0 4 2 .2 1 6 2 5 7 0 0 0 4 4 XRA A
0 4 2 .2 1 7 3 7 7 0 0 0 0 0 0 4 5

0 0 0 4 6
0 0 0 4 7

SCALL .E X IT E X IT  TO OPERATING SYSTEM

0 0 0 4 8 # MESSAGES FOR .P R IN T  S C A L L 'S
0 0 0 4 9

04 2 .2 2 1 0 1 2 110 111 0 0 0 5 0 MESA DB 1 2 Q , 'H I THERE, SPORTS FANS ' , ' ! '+ 2 0 0 Q
0 0 0 5  i LON G L IS T  THE 3YTES OF THE NEXT MESSAGE

0 4 2 .2 5 0 0 1 2 131 117 0 0 0 5 2 MESB DB 1 2 0 , 'YOUR SYSTEM WORKS F IN E  ' ,  '  • '+ 2 0 0 Q
125 122 0 4 0
123 131 123
124 105 115
0 4 0 127 117
122 113 123
0 4 0 106 111
1 16 105 241

0 0 0 5 3
0 4 2 .3 0 0 0 0 0 0 0 0 5 4 END ENTRY START EXECUTING AT 'E N T R Y ' LABEL

0 0 0 5 4  S ta te m e n ts  A s s e m b le d  
3 2 4 2 0  B y te s  F re e

No E r r o r s  D e te c te d

SYMBOL TABLE

. CONSL 0 0 0 0 0 6 .E X IT 0 0 0 0 0 0 .P R IN T 0 0 0 0 0 3 . SC IN 0 0 0 0 0 1

. SCOUT 
STACK

0 0 0 0 0 2
0 4 2 2 0 0

ENTRY
USERTWA

0 4 2 2 0 0
0 4 2 2 0 0

MESA 0 4 2 2 2 1 MESB 0 4 2 2 5 0

ROSS REFE:rence table

. CONSL 0 0 0 0 0 6 14E

.E X IT 0 0 0 0 0 0 10E 45

.P R IN T 0 0 0 0 0 3 13E 33 35

. SC IN 0 0 0 0 0 1 H E

. SCOUT 0 0 0 0 0 2 12E 40
ENTRY 0 4 2 2 0 0 32L 54
MESA 0 4 2 2 2 1 32 SOL
MESB 0 4 2 2 5 0 34 5 2 L
STACK 0 4 2 2 0 0 18E
USERFWA 0 4 2 2 0 0 19E 20

3 9 5 6 6  B v te s  T re e

Figure 2
DEMO.ASM



5-68

0 4 2 .2 0 0 0 0 0 0 2 XTEXT HD03
0 4 2 .2 0 0 0 0 0 2 0  

00 0 2 1
ORG USERFWA

0 0 0 2 3
0 0 0 2 4 * * * DEM02 .ASM -  CONSOLE INPUT DEMO, IN  L IN E  MODE.
0 0 0 2 5 *
0 0 0 2 6 # T H IS IS  A SIM PLE DEMONSTRATION PROGRAM THAT INPUTS L IN E S FROM
0 0 0 2 7 # THE CONSOLE, AND TYPES THEM BACK A G A IN .
0 0 0 2 8 *
0 0 0 2 9 * IF  THE I.AST L IN E  YOU ENTERED CONTAINED A PERIOD ( ' . ' )  THEN
0 0 0 3 0  
00031  
0 0 0 3 2

* DEM02 E X IT S  TO HDOS AFTER TYPING THE L IN E .

0 0 0 3 3 # ♦ « TO RUN T H IS  PROGRAM, TYPE THE FOLLOWINGS
0 0 0 3 4 * (DO NOT TYPE COMMENTS IN  PARENTHESIS)
0 0 0 3 5 *
0 0 0 3 6 # >RUN ASM
0 0 0 3 7 * #DEMO2 ,T T != D E M 0 2 (W RITES L IS T IN G TO CONSOLE)

• 0 0 0 3 3 * >RUN DEM02
0 0 0 3 9 * H I , I 'M  DEM02! (DEM02 TYPES TH I S )
0 0 0 4 0 # ABCD (YOU TYPE T H IS )
00041 ABCD (DEM02 TYPES TH I S )
0 0 0 4 2 * IS  ANYONE THERE? (YOU TYPE T H IS )
0 0 0 4 3 * IS  ANYONE THERE? (DEM02 TYPES T H I S)
0 0 0 4 4 » BYE BYE. (YOU TYPE T H IS )
0 0 0 4 5 ♦ BYE BYE. (DEM02 TYPES T H IS )
0 0 0 4 6 * > (DEM02 E X IT S  TO THE: OPERATING

0 4 2 .2 0 0 041 2 3 6 04 2 0 0 0 4 9 ENTRY L X I H,DEMOA EXECUTION STARTS HERE
0 4 2 .2 0 3 3 7 7 0 0 3 0 0 0 5 0 SCALL .P R IN T P R IN T ' H I ! '  MESSAGE

00051  
0 0 0 5 2  
0 0 0 5 3

# LOOP ECHOING L IN E S

0 4 2 .2 0 5 3 7 7 001 0 0 0 5 4 ECHO SCALL .S C IN
0 4 2 .2 0 7 3 3 2 205 0 4 2 0 0 0 5 5 JC ECHO NO CHARACTER YET
0 4 2 .2 1 2 3 7 6 0 5 6 0 0 0 5 6 C PI •
0 4 2 .2 1 4 3 0 2 2 2 2 0 4 2 0 0 0 5 7 JNE ECHOl NOT PERIOD CHARACTER
0 4 2 .2 1 7 0 6 2 2 5 6 0 4 2 0 0 0 5 8 STA ENDFLAG MAKE ENDFLAG NON-ZERO (A z ft IN FAC T)
0 4 2 .2 2 2 3 7 7 0 0 2 0 0 0 5 9 ECHO 1 SCALL . SCOUT TYPE CHARACTER BACK-
0 4 2 .2 2 4 0 7 2 2 5 6 0 4 2 0 0 0 6 0 LDA ENDFLAG
0 4 2 .2 2 7 2 4 7 00061 ANA A
0 4 2 .2 3 0 3 1 2 2 0 5 0 4 2 0 0 0 6 2

0 0 0 6 3
JZ ECHO S T IL L  MORE TO GO

0 0 0 6 4
0 0 0 6 5

HAVE SEEN W ILL RETURN TO HDOS

0 4 2 .2 3 3 257 0 0 0 6 6 XRA A
0 4 2 .2 3 4 3 7 7 0 0 0 0 0 0 6 7

0 0 0 6 0
SCALL .E X IT RETURN TO HDOS

0 4 2 .2 3 6 0 1 2 110 111 0 0 0 6 9 DEMOA DB 1 2 0 , 'H I ,  I " K D E M 0 2 !',2 1 2 G !
0 4 2 .2 5 6 0 0 0 0 0 0 7 0  

00071
ENDFLAG DB 0 <>0 IF  TO E X IT

0 4 2 .2 5 7 0 0 0 0 0 0 7 2 END ENTRY

)

0 0 0 7 2  S ta te m e n ts  A s s e m b le d  
□2401  D v te s  F re e

No E r r o r s  D e te c te d

SYMBOL TABLE

. CONSL 0 0 0 0 0 6 • E X IT 0 0 0 0 0 0 .P R IN T 0 0 0 0 0 3 .S C IN 0 0 0 001

. SCOUT 0 0 0 0 0 2 DEMOA 0 4 2 2 3 6 ECHO 0 4 2 2 0 5 ECHOl 0 4 2 2 2 2
ENDFLAG 0 4 2 2 5 6 ENTRY 0 4 2 2 0 0 STACK 0 4 2 2 0 0 USERFWA 0 4 2 2 0 0

DEMG2.ASM -  CONSOLE READ DEMO, L IN E  MODE HEATH XREF # 1 0 4 .0 6 .0 0
CROSS REFERENCE TABLE 2 2 - S e p -8 0  PAGE 4

. CONSL 0 0 0 0 0 6 14E

.E X IT 0 0 0 0 0 0 10E 67

.P R IN T 0 0 0 0 0 3 13E 50

. SC IN 0 0 0 0 0 1 11E 54

. SCOUT 0 0 0 0 0 2 12E 59
DEMOA 0 4 2 2 3 6 49 69L
ECHO 0 4 2 2 0 5 5 4 L 55 62
ECHOl 0 4 2 2 2 2 57 59L
ENDFLAG 0 4 2 2 5 6 53 60 70L.
ENTRY 0 4 2 2 0 0 49L 72
STACK 0 4 2 2 0 0 13E
USERFWA 0 4 2 2 0 0 19E 20

Figure 3
3 9 5 1 3  B y te s  F re e

DEMO2.ASM



Heath Assembly Language<

Note that although this program (DEMO2.ASM) appears to be written to echo 
each character after it is typed, actually it echoes each line after the RETURN has 
been typed. This is because the program reads characters in line mode. HDOS 
holds the characters until you press the RETURN key, and then supplies them to 
the DEMO2 program. Thus, each line typed to this program appears twice: once 
when HDOS echoes it as it is being typed, and once when DEMO2. ASM types it.

Note that the program on Page 5-70 (DEMO3.ASM) is identical to DEMO2.ASM, 
except that this program inputs in character mode rather than line mode. This 
causes a big difference in the response the program makes when you type input 
to it. DEMO3.ASM echoes each character immediately after it is typed. This 
causes each character to be printed twice on the screen: once when HDOS echoes 
it and once when DEMO3.ASM types it. As an exercise, modify this program to 
disable the automatic echoing (done by HDOS).



5-70 CHAPTER FIVE

0 4 2 .2 0 0 0 0 0 0 2 XTEXT HDOS
0 4 2 .2 0 0 0 0 0 2 0 ORG USERTWA

00 0 2 1
0 0 0 2 3
0 0 0 2 4 * * * DEMOS .ASM -  CONSOLE INPUT DEMO, IN  CHARACTER MODE.
0 0 0 2 5 *
0 0 0 2 6 * T H IS IS  A S IM PLE DEMONSTRATION PROGRAM THAT INPUTS CHARACTERS FROM
0 0 0 2 7 # THE CONSOLE, AND TYF’ES THEM BACK A G A IN .
0 0 0 2 8 *
0 0 0 2 9 * IF  THE LAST CHARACTER YOU ENTERED CONTAINED A PERIOD ( ' .  ' )  THEN
0 0 0 3 0
00031
0 0 0 3 2

* DEM03 E X IT S  TO HDOS AFTER TYPING THE CHARACTER.

0 0 0 3 3 TO RUN T H IS  PROGRAM, TYPE THE FOLLOWING:
0 0 0 3 4 # (DO NOT TYPE COMMENTS IN  PARENTHESIS)
0 0 0 3 5 *
0 0 0 3 6 * >RUN ASM

• 0 0 0 3 7 * *DEMO3 ,T T := D E M 0 3 (W RITES L IS T IN G  TO CONSOLE)
0 0 0 3 3 * >RUN DEM03
0 0 0 3 9 * H I , I 'M  DEMOS! (DEM03 TYPES T H IS )
0 0 0 4 0 # AABBCCDD (YOU TYPE ABCD, DEM03 DUPLICATES IT )
00 0 4 1 XXYY. ■ (YOU TYPE ' X Y . ' ,  DEMOS ECHOS IT )
0 0 0 4 2 > (DEM03 E X IT S  TO THE OPERATING SYSTEM)

0 4 2 .2 0 0 041 2 4 5 0 4 2 0 0 0 4 5 ENTRY L X I H,DEMOA EXECUTION STARTS HERE
0 4 2 .2 0 3 3 7 7 0 0 3 0 0 0 4 6 SCALL .P R IN T P R IN T ' H I ! '  MESSAGE

0 0 0 4 7
0 0 0 4 8 * SETUP CHARACTER MODE:. S INCE HDOS W ILL  ECHO
0 0 0 4 9 * THE CHARACTERS, AND THEN DEM03 W ILL  TYPE THEM, CHARACTERS W ILL
0 0 0 5 0 * BE DOUBLED ON THE SCREEN AS THEY ARE TYPED.
00051

0 4 2 .2 0 5 257 0 0 0 5 2 XRA A
0 4 2 .2 0 6 0 0 6 001 0 0 0 5 3 MV I B ,0 0 1 Q CHARACTER MODE WITH ECHO
0 4 2 .2 1 0 0 1 6 201 0 0 0 5 4 MV I C,2 0 1 Q
0 4 2 .2 1 2 3 7 7 0 0 6 0 0 0 5 5 SCALL . CONSL

0 0 0 5 6
0 0 0 5 7
0 0 0 5 0

■» LOOP 1ECHOING L IN E S

0 4 2 .2 1 4 3 7 7 001 0 0 0 5 9 ECHO SCALL . SC IN
0 4 2 .2 1 6 3 3 2 214 0 4 2 0 0 0 6 0 JC ECHO NO CHARACTER YET
0 4 2 .2 2 1 3 7 6 0 5 6 00061 C P I z z•
0 4 2 .2 2 3 3 0 2 231 0 4 2 0 0 0 6 2 JNE EC! 101 NOT PERIOD CHARACTER
0 4 2 .2 2 6 0 6 2 2 6 5 0 4 2 0 0 0 6 3 STA ENDFLAG MAKE ENDFLAG NON--ZERO (A  IN  FACT)
0 4 2 .2 3 1 3 7 7 0 0 2 0 0 0 6 4 ECH01 SCALL . SCOUT TYPE CHARACTER BACK-
0 4 2 .2 3 3 0 7 2 2 6 5 0 4 2 0 0 0 6 5 LDA ENDFLAG
0 4 2 .2 3 6 2 4 7 0 0 0 6 6 ANA A
0 4 2 .2 3 7 3 1 2 2 1 4 0 4 2 0 0 0 6 7 JZ ECHO S T IL L  MORE TO GO

0 0 0 6 8
0 0 0 6 9
0 0 0 7 0

•X HAVE SEEN ' . z . W ILL RETURN TO HDOS

0 4 2 .2 4 2 257 00071 XRA A
0 4 2 .2 4 3 3 7 7 0 0 0 0 0 0 7 2

0 0 0 7 3
SCALL .E X IT RETURN TO HDOS

0 4 2 .2 4 5 0 1 2 110 111 0 0 0 7 4 DEMOA DD 1 2 0 , 'H I ,  I " M DEM OS!' , 2 1 2 0
0 4 2 .2 6 5 0 0 0 0 0 0 7 5

0 0 0 7 6
ENDFLAG DB 0 < > 0  IF  TO E X IT

0 4 2 .2 6 6 0 0 0 0 0 0 7 7 END ENTRY

SYMBOL TABLE

. CONSL 0 0 0 0 0 6 .E X IT 0 0 0 0 0 0 .P R IN T 0 0 0 0 0 3 .S C IN 0 0 0 0 0 1

. SCOUT 0 0 0 0 0 2 DEMOA 0 4 2 2 4 5 EC! 10 0 4 2 2 1 4 ECH01 0 4 2 2 3 1
ENDFLAG 0 4 2 2 6 5 ENTRY 0 4 2 2 0 0 STACK 0 4 2 2 0 0 USERFWA 0 4 2 2 0 0

CROSS REFERENCE TABLE

. CONSL 0 0 0 0 0 6 14E 5 5

.E X IT 0 0 0 0 0 0 10E 72
.P R IN T 0 0 0 0 0 3 13E 46
.S C IN 0 0 0 0 0 1 11E 59
. SCOUT 0 0 0 0 0 2 12E 64
DEMOA 0 4 2 2 4 5 45 74L
ECHO 0 4 2 2 1 4 59L 60 67
ECH01 0 4 2 2 3 1 62 641.
ENDFLAG 0 4 2 2 6 5 63 65 75L
ENTRY 0 4 2 2 0 0 45L 77
STACK 0 4 2 2 0 0 13E
USERFWA 0 4 2 2 0 0 19E 20

3 9 5 0 3  3 v te s  F re e Figure 4
DEMO3.ASM



Heath Assembly Language

INDEX

Addressing Modes, 5-12 
Arithmetic Instructions, 5-21 ff, 
Assembler Directives, 5-44 
Assembler Operations, 5-53

Branch Instructions, 5-34 ff,

Character Set, 5-4
Character Strings, 5-9
Comment Field, 5-4, 5-6 
Condition Flags, 5-13 
Conditional Assembly, 5-45

Data Transfer Instructions, 5-17 ff, 
Define Byte (DB), 5-44 
Define Word (DW), 5-45 
Define Space (DS), 5-45 
Direct, 5-12 
Dollar Sign ($), 5-4 
Doubly Defined Label, 5-57

EDIT, 5-3
ERRxx, 5-52
EQU, 5-47
EJECT, 5-48
ELSE, 5-46
END, 5-46
ENDIF, 5-47
Errors, 5-57
Expressions, 5-7

Format Control, 5-7

I/O Instructions, 5-38 ff,
IF, 5-46
Illegal Register, 5-57
Immediate, 5-12
Integers, 5-8

LOF, 5-52
LON, 5-51
Label Field, 5-5 ff,
Least Significant Bit (LSB), 5-11 
Letters, 5-4 
Listing Control, 5-50 
Logical Instructions, 5-28 ff,

Machine Control Instructions, 5-38 ff 
Most Significant Bit (MSB), 5-11

Numerals, 5-4

Opcode Field, 5-5, ff
OPCODES (8080), 5-10 ff,

Arithmetic Group, 5-21, ff 
Branch Group, 5-34 
Data Transfer Group, 5-17 ff, 
Logical Group, 5-28 ff, 
Machine Group, 5-38 ff,

Operating the Assembler, 5-53 
Operand Field, 5-4, 5-6 
Operator Precedence, 5-7 
Operators, 5-7 
ORG, 5-47
Origin Symbol (*), 5-10, 5-48 
Overflow Error, 5-8

Period, (.), 5-4
Pound symbol, (#), 5-9
Pseudo Opcodes, 5-44

Register, 5-12
Register Indirect, 5-12



5-72

Set, 5-48
Space, 5-50
Stack Instructions, 5-38 ff, 
Statements, 5-4 
STL, 5-48 
Strings, 5-9
Symbolic Programs, 5-3 
Symbols, 5-9 
Syntax Error, 5-57

Text Editor, 5-3 
Title, 5-50 
Tokens, 5-8

Undefined Symbol, 5-57 
Unrecognized Op-Code, 5-57


	Software Reference Manual

	TABLE OF CONTENTS

	5-3

	WRITING ASSEMBLY LANGUAGE PROGRAMS


	5-4

	THE CHARACTER SET

	STATEMENTS

	The Label Field

	The Opcode Field

	The Operand Field

	The Comment Field

	Format Control

	OPERAND EXPRESSIONS

	Operators

	Tokens

	INTEGERS

	SYMBOLS

	The # Symbol

	CHARACTER STRING


	THE 8080 OPCODESt

	Terms, Symbols, & Nomenclature

	INSTRUCTION AND DATA FORMATS

	ADDRESSING MODES

	CONDITION FLAGS



	5-14

	Symbols and Abbreviations

	Description Format

	Data Transfer Group

	MOV rl, r2

	MOV r, M

	MOV M, r

	LDA addr

	LHLD addr

	SHLD addr

	LDAX rp


	Arithmetic Group

	Unless indicated otherwise, all instructions in this group affect the Zero, Sign, Parity, Carry, and Auxiliary Carry flags according to the standard rules.

	ADD r

	ADC M

	ACI data

	1 1 1 ' 0 1 1 0 1 1 0

	INR r

	INR M

	DCR M


	Logical Group:

	ANA r

	ANI data

	XRA r

	ORA r



	5-31

	ORA M

	CMP r

	CPI data


	5-33

	RAR

	Branch Group

	JNE JNC JPO JE JC JPE

	JP

	JM


	Stack, I/O, and Machine Control Group


	5-43

	PSEUDO OPCODES/ASSEMBLER DIRECTIVES

	Define Byte, DB

	Define Space, DS

	Define Word, DW

	Conditional Assembly Pseudo Operators

	IF

	ELSE

	ENDIF


	End Program, END

	Define Label, EQU

	Origin Statement, ORG

	Set Statement, SET

	Xtext Statement, XTEXT

	Listing Control

	TITLE

	STL

	EJECT

	SPACE



	5-51

	LON (Listing on)

	LOF (Listing off)

	NOREF

	ERRxx

	GENERATING THE ASSEMBLER

	Using The Assembler

	Switches

	Command Line Examples

	Errors

	ASSEMBLY LANGUAGE INTERFACE

	Introduction

	Writing Your Program

	Assembling Your Program

	Executing Your Program

	Returning to HDOS

	Memory Usage

	Typing Lines and Characters

	.PRINT

	.SCOUT


	Reading From the Console

	.SCIN

	.CONSL

	Figure 2

	Figure 3


	INDEX


	5-72



