
Issue #26/27 ™E STAUNCH 8/89’er Sep-Dec 1991

THE ADDRESS BUS

PORT TO PORTAL..Below
THE 8-BIT R/W..1, 4
SOFTWARE LIST.. 2
Multitasking for Real-Time Response

...Under HDOS, Part 1.......................................7
by David A. Shaw

CONTACTS...10
Connecting the Dots............................... 10

by Paul Flexman
THE LINKAGE LOADER... 14
Pete on CP/M..15

by Peter Shkabara
Troubleshooting the *89, Pt. 3...........................16

by Dan Jerome
This 'N' That...20

by Hank Lotz
MISCELLANY..23

PORT TO PORTAL — Editorial

Preparing this issue has been quite interesting. I
think you'll find reading it to be intriguing as
well. From my point of view, the fascinating feature
was preparing and integrating the graphic elements
that appear here. Indeed, I've got more graphics in
this one issue than have appeared all year long! Not
all, of course, are like the paste-ins for David
Shaw's first installment of his HDOS multitasking
series or the seasonal labels done by Paul Flexman
with Tiny Pascal that you'll see later. Some are
simply computer-printed line drawings or tables. But
for me, deciding what and how to prepare the
material furnished by this issue's writers was the
chai 1enge.

However, one writer you won't find on this
issue's pages—at least in a formal sense—is me.
The compressed schedule required to bring this issue
to you before the end of the year meant that I had
to set aside preparation of the second installment
in the hardware troubleshoot series. In fact, my
schedule looks just as busy through about the end of
January. So, even though it'll be slightly out of
sequence, you'll find Dan Jerome's traversal of mods
and repair of the '89's power supply here instead of
my Part two.

Another thing I must bring to your attention is
one item in the Software Listing. Trio Company,
mentioned in the last issue (p. 11) as a distributor
of WordStar 4.0, had a wholesale, stock-reduction
sale on that product aimed specifically at CP/M
dealers, user groups, and (amazingly) newsletters.
Hence, I picked up seven copies on the cheap. And
I'm passing the savings along to you. Moreover, I'm
enhancing the package with a set of installable
patches to bring up the H-19/89's function keys and
cursor keypad. These packages won’t last and I will
take orders only on a first-come, first-served
basis. So if you were thinking about getting WS 4.0
but didn't like the price, now's the time to do it.
If there's a continuing interest, I'll stock WS 4.0,
but the price will be higher!

Finally, you probably don't need it, but I
should remind you that this issue may well be your

last! Compare the issue number above with the one
on the envelope. If both equal "27“, it's time to
mail a check. And don't forget that the rate goes up
to $15/yr. as of New Years Day. So get your check to
me before you get "socked" with the rate rise!

Kirk L. Thompson

THE EIGHT-BIT R/W -- Letters

Commentary on the Last Issue. [From Lee Hart,
323 West 19th St., Holland, MI 49423; more from this
letter appears in the THE LINKAGE LOADER] “Congratu
lations on obtaining a permanent position. Being a
temporary is a very insecure feeling. Like comedian
Steven Wright says, 'You know how it feels to lean
back in a chair until you almost fall, but then you
catch yourself, almost? Well, it feels like that all
the time'...

"TO TOM SLAVIK CMOS chips are LESS sensitive
to heat than -LS. They normally work from -40 to +85
degrees C instead of 0 to 70 degrees C. Your video
fade-out problem is something else. I'd look for an
IC that's making a bad connection 1n its socket.

"On internal heating; the hotter the part, the
higher the failure rate. Any reliability text will
tell you that every 10 degrees C cuts the life of a
semiconductor in half. Therefore the goal of point
ing the fan downward 1s to reduce the temperature of
the hottest parts, which are those on the power sup
ply heatsink. If this 1s not done, those parts will
run over 70 degrees C, and are the ones that will
fail first. ICs on the logic board do run a little
hotter with the fan blowing down, but still don't
even reach 40 degrees C (at which their life
expectancy is over 50,000 hours).

"To put this in perspective, how long would YOU
last at 70 degrees C (158 degrees F) versus 40 de
grees C (104 degrees F)?

"ON A PORTABLE H-89 I've received a number of
positive comments on a portable H-89. The basic goal
seems to be a machine that can run existing H-89
software (CP/M and HDOS) with no modification. Here
is a summary of the features people seem to want.

1. LCD screen
- 80x25 characters
- 640 x 200 dot graphics (8x8 dots per charac

ter)
- optional backl ight
- same character set as H-19
- 25th line like H-19
- optional dot-addressable graphics
- optional downloadable fonts

2. CPU
- CMOS Z80, 4 MHz

3. Memory
- static CMOS, battery backed up
- 128K minimum, expandable to 1 meg (at $15 per

128K)
- memory beyond 64K is configured as RAM disk

4. 1/0
- 2 serial ports, same as H-89

[Continued on p. 4]

Page 2. THE STAUNCH 8/89'er Issue #26/27

SOFTWARE LISTING
>--- <

General Software Catalog

A catalog of Staunch software is available.
Initially prepared by Ralph Money, the disk files
include listings for both HDOS and CP/M. The files
are "squeezed" to conserve disk space and an
unsqueezer is provided to recover them. This catalog
requires only one (1) disk in any format. See the
"Placing an Order" section, below, for information
on formats.

Source Code In this Issue

If this issue includes any source code, be it BASIC,
Pascal, C, assembler, or whatever, you may obtain it
at no charge! Merely send a formatted disk with a
postage-prepaid mailer and 1*11 transfer it for
you. Please clearly indicate the format you are
supplying. See below for supported formats.

FOR BOTH CP/M AND HDOS

Dual-Format Disks
(Source disk provided by Charles Horn)

This offering includes both standard hard- and
single-sided, single-density soft-sector dual-format
(CP/M and HDOS) disks. The hard-sector source disk
was prepared by Charles Horn and discussed in the
last issue (p. 1). The soft-sector conversion was
performed with ZUG's MAN37 utility on its 885-1217
utility disk. The original hard-sector disk was pre
pared with HDOS 1.6. This approach maximizes
usable storage for both CP/M and HDOS because this
old version of Heath's proprietary system placed the
directory files at the center of the disk. Capacity
for either CP/M or HDOS on both disks is 45K.
Charles Horn has "tweeked" the HDOS directory files
to cut their size to a minimum. At Pete Shkabara's
suggestion in his letter in this issue, I have
patched the CP/M directory to put the CP/M files
protecting the HDOS area in User 31. The hard-sector
version is read/write-compatible with HDOS 2.0/3.Ox
and CP/M 2.2.03/04; it should even be compatible
with CP/M 2.2.02, though I have not tested that. The
soft-sector version is, with three exceptions,
read/write-compatible with HDOS (2.0/3.Ox) and CP/M
(2.2.03/04). It is not compatible with 2.2.02 since
that version never supported soft-sector; the same
applies to HDOS 1.6. It is also not compatible with
Extended Technology’s SUPER37 soft-sector driver for
HDOS 2.0; see my cautionary note at the end of this
issue. When ordering, please indicate whether you
wish the hard- or soft-sector version or both.

FOR CP/M ONLY

WordStar 4.0
(Copyright WordStar International)

(Obtained from Trio Company)

I’ve obtained seven (7) copies of WordStar 4.0, the
last version for CP/M-80, at stock-reduction, whole
sale prices. This latest edition of the classic word
processor includes everything you've learned to love

(or hate) in earlier editions. However, WordStar
(formerly MicroPro) International has enhanced it
with some very nice features. These include: print
ing multiple columns per page, boilerplating without
the need for a separate "mailmerge" package. The
WORD Plus spelling checker with automatic correction
and hyphenation, macros, a built-in calculator with
the standard (+-*/) operators, indexing, and
extensive printer and terminal support. The list of
supported printers numbers over 100 and includes all
types from TTYs through lasers; you may also
customize your own driver. The terminals supported
include the H-19/89, but that option does not bring
up the function keys or keypad. WS 4.0 supports
ZCPR's named directories and user numbers of 0
through 31, but directory names are not displayed;
the word processor may also not work if your ZCPR
system requires a lot of memory.

As enhancements, I will move the files from the
original Osborne 1 disks to your choice of media and
include a set of patches to implement function keys
and cursor keypad. If you already have an earlier
version with installed patches, this package In
cludes a utility to move most of those patches to
4.0. However, to use this word processor you need
64K of RAM with maximum possible TPA and high-capac
ity media. A minimal, no-frills system requires 89K
of disk space, leaving no room for even essential
CP/M system files like PIP! You will need either a
harddrive or a minimum of two high-capacity floppy
drives. The latter may be any soft-sector configu
ration or double-sided and/or 96-tpi hard-sector.

The documentation that comes with the package
includes WordStar's 400-page spiral-bound manual, a
list of supported printers and their features, a
quick-reference card, a booklet describing changes
from earlier versions, warranty registration card,
and on-disk files describing my add-on patches and
how to install them. The (usual) limited warranty
for the core package is provided by Trio Company
(Cheektowaga, NY).

The cost of this package is $60, shipped U.P.S.
in the contiguous 48 states, parcel post elsewhere.
Shipping is included in the former price; Hawaii,
Alaska, Puerto Rico, and Canada, please add $5 for
postage; overseas, please add $15. I will ship on a
first-come, first-served basis. If there is suffi
cient interest, I will continue providing this pack
age beyond the seven copies I presently have.
However, the cost will be higher (roughly $100)!

Public Domain Utilities
- Primarily for the Programmer

(Selected by Peter Shkabara)
(Provided by Terry Hall)

Here's a collection of programs intended mainly for
programmers. Some of this material has appeared
elsewhere in Staunch's library, some is new. The
files included are:
COMPARE - compares two files.
CP - a fast copy program, good for long files

or long lists of files; both CP/M- and
MSDOS-style command-lines acceptable, but
PIP'S switches are not supported.

CREATE - creates a library or archive file for use
with LU or LBRDSK.

D - directory display program, listing files

Sep-Dec 1991 THE STAUNCH 8/89'er Page 3

in alphabetical order with file sizes on
an ASCII terminal.

DU - CP/M User's Group Disk Utility for dis
playing and modifying disk sectors.

FIND - search for ASCII string in a file; file
names may be wildcards.

FINDBAD - CP/M User's Group program that locates
bad data blocks on the disk and creates a
file with those blocks in it.

LBRDSK - allows access to library files as if they
were a disk drive.

LOIR - shows contents of a library.
NULU - the ubiquitous library utility which al

lows saving many files under one
directory entry.

NULUTERM - an assembler patch overlay for NULU; re
quires MLOAD.COM.

MAKE -utility for directory manipulation
including unerasing and changing user
areas; has built-in help instructions.

NEAT - assembler source code formatter.
SD - another sorted directory program;

requires the H-19/89.
SETDRU - a very useful program, particularly on a

harddrive, that allows use of the ZCPR
default drive and USET function with
programs that have overlays.

UNSETDRU - removes SETDRU patches.
SWEEP - this is NSWP207 which allows file trans

fers, squeezing and many other opera
tions.

SZAP - a file and disk dump utility, similar to
Software Toolworks SUPERZAP, but with
different features.

T - strips control characters and parity bits
from a document, such as WordStar files.

UNLOAD - reverse of LOAD; makes a HEX file from a
COM.

ZZSOURCS - a program disassembler.
This package occupies 176K of disk-space.

FOR HDOS ONLY

TINY PASCAL Version 4.1
(Enhanced by Mark Kroska)

(From OMAHUG's Library)
(With supplemental materials)

This package is constructed around an enhancement of
Tiny Pascal that is also offered by ZUG as its
885-1086. However, a large assortment of supple
mental material from OMAHUG's library and other
sources is provided that go beyond ZUG's release;
this additional material is described below. Tiny
Pascal is a subset of the Pascal language created by
Niklaus Wirth. Like the parent language, programs
are compiled from your source code. That means that
they are much, much faster executing than those
written for interpreted BASIC and may even be faster
than other compiled languages, such as FORTRAN.
Pascal emphasizes the writing of programs in a
series of small modules and was originally conceived
by Wirth as a first computer language to teach good
programming practice.

Tiny Pascal can be an excellent low-cost intro
duction to the Pascal language. The compiler incor
porates most of the commands from the parent used in
the flow-decision process and includes extensions to

allow disk read and write of both sequential and
random files (the latter not standard for Pascal) in
addition to direct line-printer output. Tiny Pascal
uses split-octal and decimal notation. In many
applications the additional speed obtained by
running the compiled program directly instead of
interpreted p-code (as with Lucidata or UCSD Pascal)
is worth the effort to learn the language. For some
applications, such as word processing utilities, the
advantages of direct .ABS execution, minimal program
development time, and low run-time overhead outweigh
the limitations of the subset. The language uses a
two-pass compile process, directly producing an .ABS
file that will run from the HDOS command prompt.

Limitations include primitive mathematical
operations, storage as integer values only, limited
file handling, and very limited string operations.
Like most Pascals, the compiler tends to appear un
forgiving of the slightest syntax error and usually
does not provide precise indications as to where the
error may be. Even successful compilation does not
necessarily guarantee a bug-free program and the
provision for tracing the program flow or providing
break-points does not exist.

This package includes the two-module compiler, a
configuring utility with both object (.ABS) and
source (.TPS) code, Mark Kroska's original documen
tation, Mark's discussion of handling multi-dimen
sional arrays in Tiny Pascal, a huge (323 sector)
file by Frank Christel and Frank Adams describing in
greater detail the elements of the language, and a
large selection of utilities (most written in the
language) and example Tiny Pascal source code
gleaned from OMAHUG's library. Among the executable
utilities are: DIRSIZE (to reduce the size of
DIRECT.SYS on hard-sector disks), STATX and STATS
(for displaying system statistics), DUMP (a disk
dump utility), PTSET (to set codes on a Paper Tiger
printer), and DIRMAP (displays the linkages of files
in DIRECT.SYS and GRT.SYS). Another program package
in Staunch's collection, UTILITY ONE (by Frank
Adams and announced in issue #9), was written
entirely in Tiny Pascal. This compiler package
requires 1168 sectors on-disk.

Placing an Order

With the exception of WordStar 4.0, your cost
for this software depends on what you supply:

Formatted disk(s) and self-addressed, stamped return
mailer $2.00 per disk

Formatted disk(s) without mailer $4.00 per disk
No disk(s) or mailer $6.00 per disk

Disk formats available are standard (SS/SD) or
double-sided (DS/SD), 48-tpi hard-sector and
single- or double-sided, 48- or 96-tpi soft-sector
for both HDOS and CP/M. (Staunch now supports
96-tpi soft-sector if you provide a formatted disk;
if this is a problem, let me know.) Please clearly
indicate the format you are supplying or require. If
you desire DS hard- or any soft-sector format, I
will pack multiple items onto one disk. I will not
subdivide a disk. Send mailorders to:

Kirk L Thompson / The Staunch 8/89'er /
P.O. Box 548 / West Branch, IA 52358

>--- -

MLOAD.COM

Page 4 THE STAUNCH 8/89'er Issue #26/27

THE EIGHT-BIT R/W [Continued from p. 1]

- 1 parallel port, same as Z89-11
- real time clock/cal end ar

5. Floppy disks
- one H-89 I/O expansion slot
- can plug in H—17 or H-37 controller board and

disk drive
6. SCSI port

- NCR 83C50 chip, talks to hard disks, etc.
- similar, but not identical to H-47/H-67 I/O

board
7. Console

- separate Z80 to handle LCD screen and keyboard
(like H-89)

- PC clone keyboard
8. Physical

- one PC board, approximately 9* x 11’
- LCD screen and keyboard on separate boards
- battery life, approx 18 hours with 5 nicad C

cells (less disk drives)
- weight approximately 4 lbs
- cost would be about $250 for a complete kit

PC board about $1000 to lay out and tool, then
$25 apiece

Parts cost (128K RAM) about $100.
Supertwist LCD displays are $30 w/o backlight,

$60 with
PC keyboards are $30 and up

Basically, this is the same basic circuit as an
H-89, updated with CMOS logic and static RAM in
place of dynamic RAM. Some unnecessary features like
single-step, on-board serial port, and all but one
expansion slot would be left out. The Z89-11 3-port
board and H-47/67 SCSI interface would be built-in.

"The H-89's 2-CPU design would be retained. LCD
screens require that you plot every character dot-
by-dot, which is very slow. To get the equivalent of
9600 baud performance, we need an expensive LCD
controller, a very fast main CPU, or a separate CPU
dedicated to the LCD. The latter is the approach
chosen here. It's easier to model the H-19 terminal
while remaining compatible with existing H-89
software. The TLB is not a separate board, but just
a few more chips on the main board, and communicates
with the main CPU via a parallel port.

"The design is optimized for low power, low
cost, easy construction, and to use standard parts.
Note that it is half the weight of most DOS porta
bles, and the batteries last 5-10 times longer.

"It's certainly possible to use a Z180 CPU, 8
MHz clock speeds, etc. But it will became a power
hog and get expensive fast. You might as well buy a
PC clone. Also, this forces you into surface mount
ICs, which can't be used by any normal hobbyist.

"Remember, this is a 4 MHz machine with a big
RAM disk. Most 8-bit software is disk-bound, not
CPU-bound. The nonvolatile RAM disk will make this
machine much faster than any normal H-89, even with
out fire-breathing clock speeds.

"The design of such a project is too large for
any one individual to tackle. If enough people are
interested, we could divide up the tasks as the
available talent allows. I encourage your readers to
contact me with comments and suggestions. Obviously,
if I don't hear from anyone, the idea dies!

"PUBLIC DOMAIN CP/M Getting CP/M for an H-89

is no problem. I have them 1n stock, brand new, for
$25 for the complete Heath 2.204 package (all disks
and manuals). Specify disk format.

"I don't quite understand Mr. Gilmore's re
sponse. He says that Heath can't release CP/M be
cause it was licensed from DRI, and because they've
lost the source code anyway.

"CP/M is a whole collection of programs, with
many authors. Obviously, Heath cannot release the
programs that DRI wrote; the CCP, BDOS, MOVCPMxx,
PIP, STAT, DDT, etc. But Heath CAN release the
programs that THEY wrote; FORMAT, CONFIGUR, SETLP,
BIOS, MAKEBIOS, and SETUP.

"I've found that Heath responds with 'no' to any
question. So try the negative option. Ask Mr.
Gilmore if Heath would object to distributing the
FORMAT, CONFIGUR, SETLP, BIOS, MAKEBIOS, SETUP, and
boot loader programs (without BDOS and CCP) in the
public domain, exactly as they appear on a Heath
CP/M distribution disk. They are all pure Heath pro
perty. We don't need source code for any of these
except the BIOS, and that's already provided.

"These programs let you buy CP/M for any comput
er, and reconfigure it to run on an H-89. CP/M is
available for obsolete computers like the Osborne
and Kaypro for $10 or less. It came free with these
machines, so sellers perceive it to have zero value.

"P.S. Mac Heath [a custom machine Lee is
building for Mark Hunt that runs CP/M, HDOS, PC, and
Macintosh software from an H-89 case] is ... the
name of the ghoulish murderer in the Three Penny
Opera, made famous in the song 'Mack the Knife'. The
realization that I had created a monster prompted
the following bit of whimsey.

•The Monster Mac'
mutilated by Lee Hart

(sung to the tune of 'The Monster Mash’)

I was working in the lab, late one night,
when my eyes beheld an awesome sight.
I flipped on my Heath to process a byte,
but when 1t warmed up, to my delight...

(Refrain:) (It's now a Mac)
It's now a monster Mac.

(A monster Mac)
Must be the ultimate hack.

(The greatest hack)
Apple's sure to attack,

(The monster Mac)
Because the saving's a fact!

Once it was a Heathkit, square and gray,
but my trusty tools took its mind away.
In its place I installed a Mac motherboard
from a flea market bargain that Igor scored.

(refrain)

Instead of that "beep" that I've heard so long
It now powers up with a Macintosh 'bong*.
Its great glowing eye is twelve inches, not nine.
And that cavernous case makes expansion divine.

(refrain)

Now the graphics and fonts have gone to my head.

Sep-Dec 1991 THE STAUNCH 8/89'er Page 5

I put Mickey Mouse pictures in my letterhead.
And its voice synthesis is the joy of my life;
My computer talks back, like my kids and my wife.

(refrain)

Now the mouse and the games are all such fun.
But at last comes the time to get real work done.
Then I have to go back to my old CP/M,
which I run with the Mac's emulation program!

(refrain)

More on WS Customizing. [From A.E. Thornton,
Kirkland, WA] "...In regard to patching WordStar in
general I can highly recommend the following book
which I obtained in one of our local 'Half Price
Books' stores. (Half Price Books sells second-hand
or 'pre-owned' books, and has been a never-ending
source of information on CP/M, dBASE II, MBASIC and
you name it!)

“The recommended book:

The New WordStar Customizing Guide by Stuart E.
Bonney, published in 1988 by Wordware Publishing,
Inc.

The subtitle to the book is: "A Complete Guide to
Customizing WordStar for the IBM and Compatibles,
For All Versions Including Release 4.0." Don't be
put off by that subtitle, it contains Appendix C
which is the supplement for CP/M-80. The [earlier]
versions of WS covered are 3.0 4 3.3 and in any
event a large portion of the information given
throughout is applicable to all versions...."
[Thanks for the reference. This appears to be an
update to the book Joe Mendez recommends in his WS
patch article in issue #24. Used bookstores are,
indeed, a good source for out-of-print titles.
Others are many of the mailorder booksellers. If
you're not sure exactly what to look for, check the
"CP/M" subject listing in Books 1n Print at your
favorite bookstore. Many of those titles are now
actually out-of-print, but are still ones to keep
your eye out for. -Ed.]

Request for Direction. [From Peter Shkabara, P.O.
Box 1987, Blythe, CA 92226] "As you might have
noticed, my response time is delayed and sporadic.
Seems that there is so much to fill in the apparent
'free time' here...

"CP/M information is scarce. Although CP/M is
still in fairly wide use worldwide, its popularity
in the US has faded severely. If your publishing en
terprise is economically justified, you may indeed
seek to expand your horizons to provide some support
to CP/M users in general. I may suggest providing
reviews of generic public domain software. There is
so much of it out there, that without a reduced list
of recommended titles, a newcomer may be thoroughly
overwhelmed. For that matter, even experienced users
may find it difficult to go through. There is some
info to that end that I will be sending to you...

"At this point, I am a bit perplexed as to which
direction to take in further submissions to you.
Could you analyze your goals and directions and help
guide me towards what you wish to see? There are
ideas on articles relating to the MS-DOS transition

to a CP/M environment. All CP/M users will have to
face this step at some point as their machines reach
the point of unprofitable repair state. Opinions on
the state of CP/M or views back on its history are
some other options. Or, I could continue with the
theme of how to program and tutorials of what goes
into the soul of a CP/M machine!

"In reading your issue #25, I found it curious
that 'the replacement of a furnace...; that article
will appear next time.' I was not aware that you
have expanded the 89'er to include furnace repair
articles! On a serious note, the dual-format disks
info from Charles Horn states that dummy CP/M files
are hidden away in User 15. User 15 is not a hidden
area from CP/M users. It is just not a common area
for non-Z-System users. CP/M does include the abil
ity to specify user areas up to 31. CP/M has no
access to such areas, but such files would not be
bothered by CP/M either. Z-System can access User
31, but not conveniently without utilities. This
would seem to be a better place to stick the dummy
files." [Thanks for your comments, Pete. I think
Staunch readers would find parts of my response to
your letter of Interest, so I excerpt it here:

"...[T]hanks for your comments about broadening
Staunch's support for CP/M. Reviews of p.d. soft
ware is a good idea and one I'll present to the
readership by excerpting your letter in the coming
issue...

"Thanks[, too,] for your Interest in continuing
to submit material to Staunch. I am certainly
more than Interested in publishing same. You ask
for directions to guide future articles by
suggesting the following as potential topics:

Transition from CP/M to MSOOS environments
The current state of CP/M
Retrospectives
How to program under CP/M
Tutorials on the 'soul' of the CP/M machine

Actually, I like all of your suggestions! And the
first, without intending any disloyalty toward the
*89, HDOS, or CP/M, is something which I
specifically encourage you to discuss. A number of
(former) subscribers have already made the tran
sition, sometimes (based on their correspondence
to me) with a great deal of trepidation, prompted
by catastrophic failure of their 8-bit hardware,
or because the tasks they needed done couldn't be
handled by the dear, old '89. Hence, I think some
discussion of the transition to current technology
is worth pursuing simply because many subscribers
will, indeed, face it at some point as you say. As
for the rest of your suggestions, I've been
pleased with your past contributions and would
actually like to see a mix of topics. In that
regard, I'm giving you something like 'carte
blanche*. In a way, I realize that this makes
selecting subject matter somewhat more difficult
for you!

"As for 'mini-'series on specific topics, that
would also be at your discretion. Two- or three-
parters on certain subjects, or even longer ones
(on assembly language, for instance), are no
problem as far as I'm concerned...

"Finally, thanks for your cautionary note,

Page 6 THE STAUNCH 8/89'er Issue #26/27

regarding Charles Horn's dual-format disk, on user
areas for dummy CP/M files......... "

I encourage you readers to go through the p.d.
software you have, select the ones most useful to
you, and write reviews of them. Remember that I pay
for articles in excess of 1,000 words, so you can
even make some money this way! (In today's economy,
that's not a bad idea!) And I'd also like you to see
my "author's guide," so call or write for one. It
describes how I'd like your contribution to be
formatted and the constraints on article size I
generally apply. Further, write to Pete or me and
tell us what you'd like to see in Pete's column.
His expertise is an important resource both to you
and to this newsletter. -Ed.]

SCAN Patch. [From William S. Derby, P.O. Box 2041,
Livermore, CA 94550; readers should know that I had
to send Bill his copy of #25 twice—the first time,
the Postal Service returned it to me for "Addressee
Unknown"!] "Thanks for sending recent Staunch #25
(twice). My box 1s still paid for; I will call their
mistake to the attention of my local post office.
You can use my home address for any Staunch corre
spondence to avoid confusion in case the post office
continues to mess up. I prefer to use the P.O. box
address [given above] for orders and any corre
spondence from users of my CP/M programs.

"As always I enjoyed reading Staunch #25, espe
cially Hank's 'This 'N' That' discussing his
experiences with CLE and KEYMAP. I belong to the
ranks of those applauding you for keeping the Heath
8-b 11 spirit al 1ve...

"I want to give you a simple patch to correct a
minor problem in the SCAN program from my Enhanced
Utilities. Without the patch the program fails to
find an ASCII symbol (with the S command) when it
occurs at the end of a
ASCII symbols delimited
alphanumeric characters.
follows[; enter the
periods]:

A>ODT SCAN.COM
DDT VERS 2.2
NEXT PC
1100 0100
-SCB5
0CB5 0B FC
0CB6 0D 10
0CB7 FE .
■

-SCBA
OCBA 0B FC
OCBB 0D 10
OCBC FE .

-S10FC
10FC 00 12
10FD 00 C3
10FE 00 OB
10FF 00 00
1100 xx .
-■c
A>SAVE 16 SCAN.COM

line. The S command finds
by spaces or other non-
The patch can be made as
boldfaced material and

This changes the SCAN.COM checksum from 36E5/F965 to
73B8/87CC.

“It will soon be three years since I last
updated my Enhanced CP/M Utility Programs. Since
their new-user base has fallen to zero, I am
inclined to follow Pete's example and release them
to your Staunch Software Listings. I would need to
collect the programs and documentation, probably in
a LBR file with a (very) modest suggestion of a
shareware contribution. Let me know if you are
interested in offering the programs to Staunch
readers." [Thanks for the patch, Bill. And, of
course I would be interested in distributing your
utilities. -Ed.]

Sun and Snow!. [A letter from Corky Kirk, Hilo,
HI, to Hank Lotz, Pittsburgh, PA] "Believe 1t or
not, I was halfway thru your article 'Square One for
Computerphiles, Part 3 - H-89 Terminal Config
uration' when I realized it looked familiar and your
correspondent was me!...

"Anyway, finished the article & will now go
after the H-89 and [set] TLB, S402 #3 from the left
down. (Bet it's up!) Thanks again for all the good
dope.

"Have another problem w/H-90. Was Down Under for
3 wks & when I got back to this high humidity and
warm climate of Hilo, Hawaii (65-75% ave./75-85 de
grees ave.), I found my terminal CRT sez 'H:' on the
top line, and then the bottom 11-1/2 lines were full
of exclamation points "!". (Let's see, 66 wide by
11-1/2 lines—egad, that's about 729 of those little
'animals', right?) Anyway, haven't tackled this
problem yet—suspect a 2114 on the TLB as I had a
similar problem with an ADM-3A dumb terminal a
couple of years ago, & that was the problem. Went
looking for my repair manual & no find! Musta took
'em up to the cabin where the H-89 1s. Will be going
up this Sunday, so will get the wrap-around problem
& retrieve the manual & schematics to bring back to
Hilo. (The cabin is up at Volcano, HI, about a mile
from Kilauea Caldera, the active volcano—no danger
though.)

"Again Hank, thanks for taking the time to try
to keep us guys (who still love our H-89/90’s)
learning new things (to us). I for one, do apprec
iate it."

[From Dan Jerome, Burnsville, MN] "...Having read
your last newsletter [#25] from cover to cover, I am
alarmed to see so many people abandoning their
H-89's. This leads me to think that you may be the
captain of the Titanic, standing on the bridge and
watching the ship go down. I suppose eventually it
may happen, but I was not prepared for it to begin
happening quite yet. I think there is still a nice
mother-lode of gold in them thar hills. In other
words, I still like the H-89 quite well.

"If you want, in the next issue you can include
a note from me addressed to those who are planning
to abandon their H-89s. It should read to the effect
that instead of giving them to the junk man, they
could do a good deed and find some single-parent
family who would enjoy using them for years to come.
One easy place to find a single-parent family would
be to call a local church and talk to the church
secretary. Or even some old folks home. It would
give the old people something to keep their mind
occupied and thus enhance their last days.

SCAN.COM
SCAN.COM
SCAN.COM

Sep-Dec 1991 THE STAUNCH 8/89'er Page 7.

Well, here it is l-Nov-91 and I have been
watching it blizzarding outside since before sunup.
By now we have over 20 inches of snow, and travel in
the Twin Cities has virtually come to a screeching
halt. There are hundreds of accidents and many
18-wheelers are in the ditch—some of them plugging
up the freeway exit ramps. Same for the cars. The
police have called up the reserves, but there aren't
enough squad cars to go around. The wreckers are
having a heyday.

"P.S. 2-Nov-91: We just got whacked with
[another] 30 inches of snow! Most of the traffic
stayed home. Those who ventured out either hit the
ditch or became involved in a fender bender. I
stayed home and watched Channel 5." [Thanks for your
comments and the weather reports. Corky and Dan. (My
thanks, too, to Hank for sending a copy of Corky’s
letter.) As for going down with a "sinking ship," I
knew when I took over this rag from Hank that I was
engaged in a "losing" battle insofar as potential
and actual readership would decline as time went by.
There are some good reasons for switching to
higher-powered, modern technology as I observed
above in my reply to Pete Shkabara's letter. There
are things the '8 and ’89 simply can't do, no
matter how much we hold-outs may balk at the idea.
Examples include instances where high-resolution
graphics and color are required or in monsterous
database applications. Many of these are business
applications, where the PC and Macintosh were
originally targetted anyway. But I'm not
particularly impressed with the new where the old
and the new share common ground.

[One example is word processing. Even speed
typists can only move their fingers so fast over the
keyboard. And the current generation of commercial
word processors for the PC strike me as over-endowed
dinosaurs. They would be consigned to California's
Le Brea tar pits if it weren't for the expensive,
high-speed machines needed to get any reasonable
performance out of them.

[Another example is database systems. For most
home and hobbyist applications, the power of a dBASE
IV+ or Paradox simply isn't needed. In fact, in sim
pler situations, an '89 will consistently outperform
a PC any day of the week!

[Further, we don't have to worry about such
things as viruses and Trojan horses that currently
infest the PC and Mac environments. True, you can
obtain anti-viral software, but you also have to be
extremely wary of software you obtain from p.d.
sources. (You know about that, Dan!) It actually
doesn't take much to spread the most virulent
strains of these things, either. They're like
something the kids bring home from school! And
actually, the continuing emphasis on standard
hardware and software platforms, such as that
recently agreed upon by Apple and IBM, will only
aggravate this situation. In my own humble opinion,
the one sure way to eliminate the threat of viruses
is to diversify the platforms. Viruses for the PC
are no threat to the Mac and those for the Mac are
no threat to the PC. Neither of these will run on
the Z80! See my report on PC viruses in the next
issue.

[But I should step off of my soapbox. Most of
this you already know! The H-8 and H/Z-89/90 are
about as "dead" as CP/M is, which means, not much.

But to keep things going, we have to support each
other. That is the bottom line to survival of any
out-of-production machine. -Ed.]

snaa

Multitasking for Real-Time Response...
Under HDOS?
Part 1 of 4

By David A. Shaw

Introduction. Over the last ten years or so, I've
been called on to develop several data communica
tions systems on 8080- and Z80-based microcomputers,
including H-8‘s and H-89's. All delivered good
real-time performance, and were built around a
simple but very effective multitasking system of my
own design. The purpose of this article is to
describe the set of tools that I've developed over
the years in the hope that they will inspire new
applications for Heath 8-bit equipment.

Assembler programming experience is really
needed to get the full impact of this article. Also,
in the interest of space, I'll try to be brief.
There is example code available on disk from Kirk,
called EXAMPLE. ASM. EXAMPLE is a trivial and
otherwise useless program that demonstrates the use
of many of the tools I'll describe in this article.
To get the full benefit of this article, you should
order the disk. Many of the code examples in this
article came from EXAMPLE. [Though written for HDOS,
this material could be adapted to CP/M. If you would
like this material, merely send me a preformatted
diskette and a self-addressed, postage prepaid
mailer; I'll transfer it for you. The files only
require 68K, so will fit on standard hard-sector.
-Ed.]

First, two quick definitions. By "real-time," I
am referring to systems that must react to events in
the real world, such as the arrival of characters at
an I/O port, and take some action in time to have
some effect on those real world events. This is
programming to meet externally-imposed deadlines.
If, for example, you don't read a character at an
I/O port before the next one arrives, you will lose
a character.

The term "multitasking" has been used and abused
enough that almost no one knows what it means
anymore. I am not referring to the ability of a
computer to run several different programs at one
time, such as a spreadsheet and a word processor.
This is really "multiprogramming," although multi
tasking is usually also present. Multitasking as I
am using the term is the ability to break a program
into two or more subprograms, each of which is
executed independently and concurrently, and work
together cooperatively to accomplish the job at
hand.

The processors we are using, the 80 80 and Z80,
do not have the ability to do more than one thing at
a time. In a real-time multitasking system, you give
each task periodic access to the processor,
switching from task to task quickly enough and often
enough that it appears from the viewpoint of the
outside world that the computer is doing several
things at once.

I should point out that while interrupts are

Page 8 THE STAUNCH 8/89'er Issue #26/27

critical to real-time programs, the coding of inter
rupt service routines is beyond the scope of this
art id e.

Multitasking. Multitasking is often an inherent
function of the operating system. OS/2, for example,
offers multitasking along with a rich set of tools
to support the interaction of the various tasks.
Obviously, with the exception of hardware interrupt

standard variations on this technique. You code each
Independent task or process as a subroutine. Each
subroutine is called in turn by the main polling
loop, which looks like this:

support, neither HDOS nor CP/M offer any form of
multitasking support. We have to develop our own
tools.

There are any number of approaches to
multitasking that have been used to good effect. The
most common is the " polling loop"' or one of the

EQU
CALL
CALL

*

TASK.l
TASK.2

Top of polling loop

• • •
CALL TASK.n
JMP LOOP Loop around and do it again

If the tasks are simple and don't take much time to
complete, this can work well. The problem is that
all the tasks share one common system stack. They
cannot keep track of any state information from call
to call by pushing it on the stack, and they can't
hold data in the registers. This seriously
complicates program logic.

Let's assume that TASK.l is responsible for
reading keystrokes from a terminal and sending them
to the modem. This simple task can be handled by the
polling loop approach. But let's say TASK.l now has
to recognize PF (programmable function) keys by
looking for the leading ESC character and the
following character and take some action on the key.
Let's say PF1 commands the program to accept a file
name, open the file, and send the contents to the
modem one character at a time. Now TASK.l has three
different modes: pass characters to the modem, save
characters in a file name, or read a file and pass
the characters to the modem. Imagine having to code
this as a subroutine that has to return to the
caller quite often, keeping track of what it is
supposed to do on the next call, with no stack and
lacking the simple ability to save data in the
registers!

TASK.l needs to allow the other independent
routines to run so that we maintain the appearance
of doing several things at once. It might be easier
if TASK.l could simply CALL each of the other tasks
from time to time, perhaps from one of it's own
subroutines, getting control back after they run so
that it can continue to do whatever it was doing.

Actually, if the other tasks were very simple,
we could do just that. Then TASK.l becomes the main
task and the others become subroutines. But this is
rarely the case; usually, the other tasks have their
own complications and could use the ability to have
their own stack, keep data in registers, and call
TASK.l from time to time.

Independently-written routines that call each
other like this are called coroutines. TASK.l calls

TASK.2 to allow it to do some job, and when TASK.2
is done, it calls TASK.l, which resumes at the point
immediately following it's call to TASK.2. When
TASK.l again calls TASK.2, TASK.2 resumes immediate
ly following it's call to TASK.l!

Obviously, this can't work on a stack-based ma
chine. We need to assign a separate program stack to
each coroutine, then call the other tasks through an
intermediary subroutine that I call SWAP.

SWAP, shown in Figure 1 [on the facing page],
does the following when called:

1. Push all the registers.
2. Save the current stack pointer in a save area

dedicated to the current task.
3. Load the stack pointer with the value previously

saved for the next task to be run, changing
stacks.

4. Pop all the registers and RETurn to the new
current task.

SWAP changes from stack to stack, invoking each task
in order in round-robin fashion. After a task calls
SWAP, SWAP will eventually return to the task
immediately after the call, leaving all the calling
task's register values and it's stack pointer
intact, almost as if nothing happened. In fact, a
lot has happened: all the other tasks in the system
have executed! The only effect on the calling task
is the amount of time it takes to run the other
tasks.

Each task in the system treats the set of other
tasks in the system as one trivial subroutine that
can be called at any time from anywhere. Each task
can be as complex as it needs to be. It can use any
of the features of the underlying microprocessor,
including the stack. It's only responsibility is to
call SWAP often enough that all tasks can meet their
various deadlines.

SWAP requires that you define several fields:

♦

Hr
Stacks for three of the four tasks

STKSIZE EQU ??? Stack size (up to programmer)
OS STKSIZE First stack

STK.TO EQU * Terminal output stack
OS STKSIZE

STK.PT EQU * Printer stack
DS STKSIZE

STK.ST EQU ★ Status task stack

(Remember that all stacks grow "down" toward low
menory. Also, one of your tasks can use the system
stack at 42.200A.)

You need to

*
*

Stack management table

STAKTAB EQU
STB.TI DS 2 Term input task SP
STB.TO DS 2 Term output task SP
ST8.ST DS 2 Status task SP
STB.PT
It

DS 2 Printer task SP

STAKADR DW STB.TI Current stack is Tl
STAXNDX 38 0 Current index is Tl
TASK.CT EQU 4 There are four tasks

initialize each stack before starting

Sep-Dec 1991 THE STAUNCH 8/89’er Page 9.

the multitasking system:

LXI SP.STK.TCi Init terminal output task
LXI O.TT.OUT Task starting address
PUSH D Return address
PUSH D Dummy PSW
PUSH D Dummy BC
PUSH D Dummy DE

★

PUSH 0 Dummy HL

LXI H,0
DAD SP (HL) - (SP)
SHLD STB.TO Save in table

This is repeated for each stack. Then, to start the
multitasking system, you simply "return" to the
first task:

POP
POP
POP

H
D
B

Clean the stack...

Figure
* SWAP - Change to next task.
★
*

Saves all registers on stack.

* ENTRY - (SP) - Current task stack pointer
* EXIT - (SP) = Next task stack pointer
*
♦

USES - SP

SWAP EQU *
PUSH PSW Save all registers
PUSH B
PUSH 0
PUSH H
LXI H,0
DAD SP
XCHG (DE) ■ Current (SP)
LHLD STAKADR
MOV M,E
INX H
MOV M,D Put SP in the table
LXI H,STAKNDX
MOV A.M

POP PSW
RET ...and "return" to the first task

To exit to HDOS, have the task that decides to quit
do any required clean up, reload the system's SP
value, and exit as usual.

Figure 2 [below] shows what the stacks look like
when EXAMPLE is running. Using DBUG, I stopped the
program while it was in the status task. The STAKTAB
entries for the terminal input, terminal output, and
printer tasks point to the top of their respective
stacks. STB.ST will hold an old, invalid value.
Notice that STAKAOR holds the address of the current
STAKTAB entry, STB.ST, so that SWAP can easily save
SP when it is next called, and that the index,
STAKNOX, also refers to the STB.ST.

SWAP can handle any reasonable number of tasks,
as long as you can get to each quickly enough to
meet their various response time requirements. The
real trick in designing a multitasking system is
figuring out what tasks you need and what goes into
each task. How do you know when to make a task

1: SWAP

INR A
CPI TASK.CT Too big?
JC SWAP.l No
XRA A Else, wrap to zero

SWAP.l EQU *
MOV M.A Update STAKNDX
ADO A * 2
LXI H,STAKTAB
CALL $DADA. (HL) = Stack table address
SHLD STAKADR Update STAKADR
MOV E.M
INX H
MOV D,M
XCHG (HL) • New (SP)
SPHL Update (SP)
POP H Restore all registers
POP 0
POP B
POP PSW
RET Start next task

Figure 2: TASK STACKS

STAKTAB
STB.TI:
STB.TO:
STB.ST:
STB.PT:

42 164
71.035
-live-
72.065

HL
DE
BC

PSW
74.200
BUFFER

— HL
DE
BC

PSW
74 331

■

-live-

HL
DE
BC

PSW
75.204

42.200
System
Stack

71.047
STK.TO

73.127
STK.ST

72.077
STK.PT

STAKAOR: 73.133 (PointstoSTB.ST)
STAKNDX. 002 (ReferstoSTB.ST)

Page 10 THE STAUNCH 8/89'er Issue #26/27

versus when to code a new function in an existing
task? Since independence is the goal, assign a
different task to each independent activity or data
flow. I usually start out assigning a task to handle
every major input, and a task to handle every major
device, and especially any device (beside the disk
system) that is shared by more than one task.

In the case of a simple communications system,
you might have the following tasks:

o one task to handle all character input from the
terminal, decode and process PF keys and any
other commands, and send data to the modem;

o one task to handle all characters received from
the moden, sending them to the terminal, writing
them to a file if desired, and queuing them for
printer output if desired;

o one task to send output to the printer;
o perhaps a task to send status to terminal line 25

periodically;
o and, depending on how you decide to share the

terminal, another task just to output to the
terminal.

The need for the last three may not be obvious at
first glance. I generally use a separate task to
write to the printer because printers frequently run
slower than the typical modem. My Diablo 630 prints
at around 45 characters per second (cps), while my
modem runs at 120 cps. It’s easier to keep
everything running smoothly if you put a buffer
between the character receiver task and the printer
task, then let both of them run at their own pace.
More on this later.

It's very helpful in a communications system to
maintain user-visible status, such as modem signals
and free buffer space, on terminal line 25. However,
you don't want to send status so often that there is
no time left to send data to the terminal! The
handling of timed tasks is covered in the next
instalIment.

Finally, there are any number of ways to handle
output to a shared. dev ice, such as the terminal
being used to display both live data and periodic
status received from two or more tasks. A couple of
approaches are discussed in future installments.

BIOS listing for CP/M 2.2.04
SEBHC Journal (assorted issues)

All of the above are in two boxes (40 and 44 lbs).
Free to the first person who comes and gets them or
sends me money for shipping...

"I think this is a good deal for someone still in
the 8-bit world and the PRICE IS RIGHT!*

Terry Hall (516 East Wakeman Ave., Wheaton, IL
60187-3670 , 708/665-4594) "I finally got around to
sorting and organizing all my 8-bit stuff I'm now
willing to part with. I'm not abandoning the H-89/90
world altogether, as I'll keep one system, and I
have many MB of data accumulated on 8* disks. But
I've had to get heavily into the PC and Mac worlds
for my work of creating hundreds of professional
crossword puzzles. I have [a] Z-386/33E and a high-
end Macintosh networked together on my desk. But
right beside them on the same desk is my trusty
H-89, which was my sole computer system from 1980
till last year.

“All those who responded to me earlier have
received copies of all this. But I'd be grateful if
you'd mention in your next issue that I have all
this stuff and anyone interested call or send me a
#10 SASE for a complete list...." [Terry sent me a
massive, four-page, two-column inventory, most of it
for the '89/90. It includes a wide selection of
hardware (circuit boards, third-party add-ons, flop
py drives, cabling, a Z—19 terminal, and spare
*89s), HDOS software (device drivers; diagnostic
disks; games; system distribution for 1.5, 2.0, 3.0,
3.02, and OMDOS/SMALLDOS; and software from Hoyle &
Hoyle, Quikdata, ZUG, Interactive Micro, Keyboard
Studio, Microsoft, Newline, Softshop, Softstuff,
Software Toolworks, Software Wizardry, Sunflower,
public domain, and miscellaneous), CP/M software
(various compilers, dBASE II, WordStar, DESPOOL,
Anapro's EMULATE, Magic Wand, Multiplan, QUERY12,
various spelling checkers, utilities, and public
domain materials), books and manuals, Heath's
continuing ed. courses for assembler and MBASIC,
magazines, and a small selection of software, books,
and hardware for PC's. I've only been able to
scratch the surface in my description above! -Ed.]

CONTACTS
(A Wanted/For Sale/Swap Column)

Hike Byrd (11 Japonica Lane, Shalimar, FL 32579,
904/651-9771) "I've since moved on to the DOS world
(just too much good software out there), but still
have lots of info on CP/M. I would appreciate it if
you could put the following ad in the next Staunch
8/89'er. I think there is excellent reference mate
rial in the magazines and hate to see them thrown
away.

FOR SALE (plus shipping) to CP/M User: The following
magazines (the wife said they or I must go):

RENark (all issues from # 1 to 1989)
User's Guide (The Magazine for CP/M and MS-DOS

Computer Users) (all issues)
Sextant (all issues)

Connecting the Dots
By Paul Flexman

At one time or another, we all have probably
tried the dot-addressable graphics on our dot matrix
printers. What an experience!! I can remember think
ing this is something to do when you are really
bored. Counting those dots and trying to type them
into a program without mistakes is enough to make a
grown man cry. Well, I finally got bored enough and
adventurous enough to try to develop a system to
create graphics with little stress. I have used this
method extensively and effectively on my Epson MX-80
and 1t should work equally well on similar printers
that are equipped with dot addressable graphics.

The following Items will be needed to create
your printer graphic:

o Pattern (see pattern discussion below)

Sep-Dec 1991 THE STAUNCH 8/89'er Page 11

o Graph paper (I use graph paper that has 10 sq to
the inch)

o 3x5 card
o Scratch paper
o Computer program (optional - discussed later)

Pattern. Many items can be used for patterns. If
you can find a design you want in a cross-stitch
pattern, these work well. Those of you that have
artistic talent (I'm jealous) can draw your own. All
of my designs are first put on graph paper to judge
size. Forty-nine lines will produce a graphic that
is 11/16 of an inch high.

row of dots will make

Learn by Doing. I find I
can understand easier if I
try someone else’s way
myself instead of reading
about it. The following
paragraphs will walk you
through a simple graphic
figure.

MAKING A PATTERN.
Starting on the lower
left, go up 49 squares and
draw a line horizontally 3
to 4 inches in length.
Place an empty soda can
upside down 1n the lower
left hand corner so that
when you draw a line
around it the line falls
in the leftmost column and
bottommost squares. Draw
that circle. Move the can
up to where the next
circle will fall in the
squares below the line
drawn at 49. Draw that
circle (neatness doesn't
count). You should have
ended up with two circles
touching or overlapping at
the center (a number 8).

CHANGING LINES INTO
DOTS. When creating a
graphic to be printed on a
printer, you need some
idea as to the result you
want to achieve. A single

a line finer than the line
from a #2 pencil. For this example, every square
that a line passes through will have a dot placed
into it. Any side that does not have two dots
together horizontally—use your best guess—add one.

On most printer graphics I have done, the rule ■
that I use is that if 50% or more of the square
(looking inside out) is on the Inside, the square
gets a dot. Viewing your work from 8-10 ft. will
give you some idea how the finished work will appear
when printed. Counting up from the last row of
squares, draw a horizontal line every seven rows.
Now, you should have seven rows of seven squares.
Number the rows from the top down. Row #1, rowf2,...
row 17.

CHANGING THE ROWS INTO PIN NUMBERS FOR THE
PRINTER. Place your 3x5 card to the right of Rowfl
Column #1. In very small numbers (to line up with

the squares) write the pin numbers along the edge of
the card. Starting from the bottom, the numbers are
1, 2, 4, 8, 16, 32, 64. These numbers (or a
combination) are the numbers that we will send to
the printer to generate the dot pattern. On a piece
of scratch paper, write line #1.

Starting with the left most column of row #1, we
total the squares that have a dot in them and write
them down in order. The 1st column will probably be
0 (no dots in any squares in that column). Note: I
have found that if I have several columns in a row
with the same number, it is easier for me when I
type if I write the number of consecutive columns
the number appears in followed by a dash and then
the number, i.e., 3-0 (three columns of zeros),
4-127 (four columns with all seven dots used). Using
the number to the right (on your 3x5 card) and
adding the numbers together that are next to a dot,
produces the number for that column. When you get to
the last column with a dot in 1t, you can stop. It
is not necessary to right justify all of the
columns. Now check for any columns we might have
missed. Count the numbers you have written down
(3-60 counts as 3, 5-80 counts as 5, etc). Write
this number over the top of Line *1. Counting the
columns from left to right should give you the same
number. I know it’s boring, but for the next six
rows do the same things:

1. Write down 11ne f
2. Write down pin totals
3. Write down total number of numbers
4. Check against column used

Program. I have found Tiny Pascal for HDOS (ZUG pn
885-1086 [and in this issue's Software List -Ed.])
to be the easiest way to print my graphics. I
created a base file that consists of these four
lines duplicated seven times in order

PRINT (27,75,7? ,0);
PRINT (
PRINT (
PRINT (10);

To use this program, the line "PRINT (27,75,??,0)
should have the "??" replaced with the column count
(the number written over the line #). The lines
"Print(" should have the numbers after the line f
typed in them tn order with a comma separating them.
Do this seven times (one set for each line). Precede
the entire program with BEGIN and, of course, finish
with END.

TROUBLESHOOTING. The program can be run now but
the results will not be the finished results. The
reason to run it now is to check for missing or
incorrect pin codes. It is fairly easy to correct
mistakes in this form (extra space between lines).
If your printer beeps at you or gives you extra
characters, check the number of characters in each
1 ine.

CLEANING UP. Once you are satisfied with the
results, add the following two lines under BEGIN

PRINT(27,85,10); ! unid irectional printing!
PRINT(27,49,10); !set line spacing to 7/72!

If you followed these instructions, you should now

Page 12 THE STAUNCH 8/89'er Issue #26/27

have the knowledge to create graphics of your own.
Adding a monogram to stationery, creating distinc
tive labels, and even signing your name, are all
possible by using printer graphics.

LISTING
(This listing has been edited for column width)

(PROGRAM CHRISTMAS LABELS BY PAUL FLEXMAN!

CONST CR-10;
VAR X,T;INTEGER;

PROCEDURE WREATH;
BEGIN

PRINT(27,75,77,0); ISEND 0 LINE GRAPHIC INFO!
PRINTtO,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
PRINTtO,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
PRINTtO,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
PRINTtO,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
PR INTt2,4,8,8,8,7,7,8,8,8,4,2,0,0,0,3,3,CR);
PRINT(27,75,77,0); !SEND 1ST LINE GRAPHIC INFO!
PRINTtO,0,0,0,0,0,0,1,3,3,7,15);
PRINTt15,15,31,31,63,63,63,63,63,127,127,127);
PRINT(127,127,127,63,63,63,63,63);
PRINT(31,31,15,15,7,7,3,1);
PRINT(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
PRINTtO,0,0,0,33,94,94,33,0);
PRINT(30,33,33,30,0,0,12,12,CR);
PRINT(27,75,47,0); !SEND 2ND LINE GRAPHIC INFO!
PRINTtO,0,1,7,15,63,127,127,127,127);
PR INT(127,127,127,127,127,126,126,124,124);
PRINT(124,124,120,120,120,120,120,120);
PRINT(124,124,124,126,126,127,127,127);
PRINT(127,127,127,127,127,127,127,63);
PRINT(31,15,3,1,CR);
PRINTC27,75,49,0); (SEND 3RD LINE GRAPHIC INFO!
PR INT(7,63,127,127,127,127,127,127,127);
PRINTt124,112,96,64,0,0,0,0,0,0,0,0);
PRINTtO,0,0,0,0,0,0,0,0,0,0,64,96,112);
PRINT(124,127,127,127,127,127,127,127);
PRINT(127,127,127,63,7,CR);
PRINT(27,75,48,0); !SEND 4TH LINE GRAPHIC INFO!
PRINTt127,127,127,127,127,127,127,127,127);
PRINTtO,0,0,0,0,0,0,0,0,0,0,0,0,0);
PRINTtO,0,0,0,0,0,0,0,0,0,0,0,0,0);
PRINTtl27,127,127,127,127,127,127,127,127);
PRINTt127,127,CR);
PRINT(27,75,48,0); ISEND 5TH LINE GRAPHIC INFO!
PRINT(96,124,127,127,127,127,127,124,124,124);
PRINTt14,2,0,0,0,0,0,0,0,0,0,0);
PRINTtO,0,0,0,0,0,0,0,0,0,0,1,2,14,60);
PRINTt125,124,127,127,127,127,127,127);
PRINT(127,126.112.CR);
PRINT(27,75,86,0); !SEND 6TH LINE GRAPHIC INFO!
PRINTtO,0,0,96,112,124,126,0,127,127,127);
PRINT(63,63,31,31,15,15,7,0,31,31);
PRINTt 31,31 ,31 ,31,31,31,0,15,31,31,31,63,63);
PRINT(127,127,127,127,0,127,127);
PRINTt126,124,120,96,64,0,0,0,0);
PRINTtO,0,0,0,0,0,0,0,0,0);
PRINTtS,7,7,8,8,8,10,4,2,0,0,0,0);
PRINT(0,0,0,0,0,0,0,0,0,0,0,3,3,CR);
PRINT127,75,87,0); !SEND 7TH LINE GRAPHIC INFO!
PRINTtO,0,0,0,0,0,0,0,127,126,126,124);
PRINTt124,124,124,120,120,113,113,3);
PRINTt127,127,126,124,120,124,126,127);
PRINT(7,115,113,113,120,120,124,124);

PRINTt126,126,127,0,0,0,0,0,0,0.0,0,0);
PRINTtO,0,0,0,0,0,0,0,0,0,0,0);
PRINT(33,94,94,33,32,32,0,31,32,32,16);
PRINTt0,30,33,33,30,0,31,32,31);
PRINT(32,31,0,0,12,12,CR);

END;

PROCEDURE STOCKING;
BEGIN

PRINT(27,75,57,0); !SEND 0 LINE GRAPHIC INFO!
PRINTtO,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
PRINTtO,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
PRINTtO,0,0,0,0,0,0,0,0,0,2,4,8,8,8);
PRINT(7,7,8,8,8,4,2,0,0,0,3,3,CR);
PRINTt27,75,57,0); !SEND 1ST LINE!
PRINTtO,0,0,0,0,0,0,0,0,127,64,95,72);
PRINT{68,66,65,64,95,64,64,64,64,64,64);
PRINT(64,64,64,64,64,64,64,64,64,64);
PRINT(64,127,0,0,0,0);
PRINTtO,0,0,0,33,94,94,33,0,30,33);
PRINT(33,30,0,0,12,12,CR);
PRINT(27,75,36,0); !SEND 2ND LINE!
PRINTtO,0,0,0,0,0,0,0,0,127,0,96,0,0,0,0);
PRINT(64,99,4,8,8,8,8,4,3,0,0,0,0,0);
PRINTtO,0,0,0,0,127,CR);
PRINT(27,75,36,0); (SEND 3TH LINE!
PRINT(0,0,0,0,0,0,0,0,0,127,0,0,0,0,0,0,0);
PRINTt96,16,8,8,8,8,16,99,2,2,2,2);
PRINT(2,0,0,0,0,0,127,CR);
PRINT(27,75,36,0); !SEND 4TH LINE!
PRINTtO,0,0,0,0,0,0,0,0,127,0,0,0,0,0,0);
PRINTtO,0,0,0,0,0,0,0,127,17,17,1,1);
PRINTtl,0,0,0,0,0,127,CR);
PRINT(27,75,36,0); ISEND 5TH LINE!
PRINTtO,0,0,1,2,4,8,16,32,64,0,0,0,0,0);
PRINTtO,0,0,0,0,0,0,0,0,0,0,0,0,0,63);
PRINTtO,0,0,0,0,127,CR);
PRINT(27,75,66,0); 1SENT 6TH LINE!
PRINT(63,64,64,0,0,0,0,0,0,0,0,0,0,0,0);
PRINTtO,0,0,0,0,0,0,0,0,0,0,0,0,0,64);
PRINT(64,64,65,66,4,120,0,0,0,0);
PRINTtS,7,7,8,8,8,10,4,2,0,0,0,0,0,0);
PRINTtO,0,0,0,0,0,0,0,0,3,3,CR);
PRINT127,75,66,0); !SENT 7TH LINE!
PRINTC96,16,8,4,2,1,1,1,1,1,1,1,1,1,1);
PRINTtl,1,1,1,1,1,1,1,1,1,2,4,8,16,32);
PRINT(64,64,0,0,0,0,0,0,0,0);
PRINT(33,94,94,33,32,32,0,31,32,32,16);
PRINTtO,30,33,33,30,0,31,32,31);
PRINT(32,31,0,0,12,12,CR);

END;

PROCEDURE CANDLE;
BEGIN

PRINT(27,75,61,0); ISEND 0 LINE GRAPHIC INFO!
PRINTtO,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
PRINTtO,0,0,0,0,0,0,0,0,0,0,0,0,0);
PRINTtO,0,0,0,0,0,0,0,0,0,0,0,2,4,8,8,8,7);
PRINT(7,8,8,8,4,2,0,0,0,3,3,CR);
PRINT{27,75,61,0); ISEND 1ST LINE GRAPHIC INFO!
PRINTtO,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
PRINTtO,0,0,6,31,127,31,6);
PRINTtO,0);
PRINTtO,0,0,0,33,94,94,33,0,30);
PRINT(33,33,30,0,0,12,12,CR);
PRINT{27,75,23,0); !SENO 2ND LINE GRAPHIC INFO!
PRINTtO,0,0,0,0,0,0,0,0,0,0,0,0);
PRINT(0,0,0,0,0,15,79,127,79,15,CR);

Sep-Dec 1991 THE STAUNCH 8/89'er Page 13.

PRINT(27,75,23,0); 'SEND 3RD LINE GRAPHIC INFO!
PRINT(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
PR INT(127,127,127,127,127 ,CR);
PRINT(27,75,23,0); ! SEND 4TH LINE GRAPHIC INFO!
PRINT(O,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
PR INT(127,127,127,127,127,CR);
PRINT(27,75,26,0); !SEND 5TH LINE GRAPHIC INFO!
PRINT(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1);
PRINT(127,127,127,127,127,1,1,1,CR);
PRINT(27,75,70,0); ! SEND 6TH LINE GRAPHIC INFO!
PRINT(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,64);
PRINT(96,127,127,127,127,127,96,64);
PRINT(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
PRINT(8,7,7,8,8,8,10,4,2,0,0,0,0,0);
PRINT(0,0,0,0,0,0,0,0,0,0,3,3,CR);
PRINT(27,75,70,0); 'SEND 7TH LINE GRAPHIC INFO!
PRINT(12,30,63,63,63,63,63,63,63,63,63);
PRINT(63,63,63,63,63,63,63,127,127);
PRINT(127,127,127,63,63,63,63,63,63,63);
PRINT(63,63,63,63,63,63,63,63,63,30,12);
PRINT(O.O.O);
PRINT(33,94,94,33,32,32,0,31,32,32,16);
PRINT(0,30,33,33,30,0,31,32,31);
PRINT(32,31,0,0,12,12,CR);

END;

PROCEDURE TREE;
3EGIN

PRINT(27,75,51,0); 1 SEND 0 LINE GRAPHIC INFO!
PRINT(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
PRINT(0,0,0,0,0,0,0,0,0,0,0,0,0,0);
PRINT(0,0,0,0,2,4,8,8,8,7,7);
PRINT(8,8,8,4,2,0,0,0,3,3,CR);
PRINT(27,75,51 ,0); !SEND 1ST LINE GRAPHIC INFO!
PRINT(0,0,0,0,0,0,0,16,8,4,1,3,3,1,4,8);
PRINT(16,0,0,0,0,0,0,0,0,0,0,0,0,0);
PRINT(O,0,0,0,0,0,0,0,33,94,94,33,0);
PRINT(30,33,33,30,0,0,12,12,CR);
PRINT(27,75,18,0); !SEND 2ND LINE GRAPHIC INFO!
PRINT(0,0,0,0,0,0,4,8,16,1);
PRINT(67,119,U9,67,1,16,8,4,CR);
PRINT(27,75,18,0)I; 'SEND 3RD LINE GRAPHIC INFO!
PRINT(0,0,0,0,0,0,2,38,95,127,127);
PRINT(127,127,127,127,95,38,2,CR);
PRINT(27,75,20,0); !SEND 4TH LINE GRAPHIC INFO!
PRINT(0,0,0,0,1,19,55,127,127,127,127);
PRINT(127,127,127,127,127,127,55,19,1,CR);
PRINT(27,75,21,0); !SEND 5TH LINE GRAPHIC INFO!
PRINT(0,0,0,9,27,63,127,127,127,127,127);
PRINT(127,127,127,127,127,127,127,63);
PRINT(27,9,CR);
PRINT(27,75,60,0); !SEND 6TH LINE GRAPHIC INFO!
PRINT(0,4,77,95,127,127 ,127 ,127,127,127);
PRINT(127,127,127,127,127,127,127,127);
PRINT(127,127,95,77,4,0,0,0,0,0,0,0,0,0,0,0);
PRINT(8,7,7,8,8,8,10,4,2,0,0,0,0,0);
PRINT(O,0,0,0,0,0,0,0,0,0,3,3,CR);
PRINT(27,75 ,60 ,0); '.SEND 7TH LINE GRAPHIC INFO!
PRINT(32,96,96,96,96,97,97,97,97,97,97);
PRINT(127,127,97,97,97,97,97,97,96,96);
PRINT(96,96,32,0,0,0,0,0,0,0,0,0,0);
PRINT(33,94,94,33,32,32,0,31,32,32,16);
PRINT(O,30,33,33,30,0,31,32,31);
PRINT(32,31,0,0,12,12,CR);

END;

PRINT(27,75,47,0); !SEND 0 LINE GRAPHIC INFO!
PRINT(O,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
PRINT(O,0,0,0,0,0,0,0,0,0,0,0,0,0);
PRINT(2,4,8,8,8,7,7,8,8,8,4,2,0,0,0,3,3,CR);
PRINT(27,75,47,0); !SEND 1ST LINE GRAPHIC INFO!
PRINT(0,0,0,0,0,0,0,0,0,0,12,19,16);
PRINT(8,4,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
PRINT(0,0,0,0,33,94,94,33,0);
PRINT(30,33,33,30,0,0,12,12,CR);
PRINT(27,75,28,0); !SEND 2ND LINE GRAPHIC INFO!
PRINT(0,0,63,48,107,68,66,65,65,65,33);
PRINT(97 ,51,31,15,13,124,36,102,69);
PRINT(69,69,69,37,57,5,3,1,CR);
PRINT(27,75,28,0); !SEND 3RD LINE GRAPHIC INFO!
PRINT(O,0,127,0,0,0,0,127,0,0,0);
PR INT(0,0,0,0,64,63,31,15,8,72,54);
PR INT(0,0,0,0,0,127,CR);
PRINT(27,75,28,0); !SEND 4TH LINE GRAPHIC INFO!
PRINT(63,24,U6,19,18,26,30);
PRINT(116,19,18,10,6,3,0,0,127);
PRINT(127,127,0,0,0,0,0,0,0,0,127,127,CR);
PRINT(27,75,30,0); !SEND 5TH LINE GRAPHIC INFO!
PRINT(127 ,0,0,127,0,0,0,127,127,0,0,0);
PRINT{63,31,24,20,114,113,113,25,29,23);
PRINT(19,17,17,17,9,125,3,1,CR);
PRINT(27,75,56,0); !SEND 6TH LINE GRAPHIC INFO!
PRINTf112,8,4,126,2,2,2,126,2,2,2,126);
PRINT{127,0,0,0,127,0,0,0,0,127,127);
PRINT(O,O,0,0,0,127);
PRINT(8,7,7,8,8,8,10,4,2,0,0,0,0,0,0);
PRINT(0,0,0,0,0,0,0,0,0,3,3,CR);
PRINT(27,75,56,0); !SEND 7TH LINE GRAPHIC INFO!
PRINT(0,0,0,0,0,0,0,0,0,0,0,0,96,8);
PRINT(4,2,127,1,1,1,1,127,127,1,1,1);
PRINT(1,1,127,0);
PRINT(33,94,94,33,32,32,0,31,32,32);
PRINT(16,0,30,33,33,30,0,31,32,31);
PRINT(32,31,0,0,12,12,CR);

END;

BEGIN
PRINT(27,49,CR); !SET LINE SPACING TO 7/72!
PRINT(27,85,CR); !UNIDIRECTIONAL PRINTING!
WRITE(27,69,CR);
WRITE(CR,CR,'CHRISTMAS LABELS');
WRITE(CR,'By Paul E. Flexman');
WRITE(CR,CR,'This program prints Christmas ');
WRITE('labels of five different designs');
WRITE(CR,CR,'First label printed should by ');
WRITE('lined up with top of bail bar.');
WRITE(CR,CR,'RETURN WHEN READY');
REAO(T);
PRINT(CR.CR);
WREATH;
PRINT(CR,CR);
STOCKING;
PRINT(CR.CR);
CANDLE;
PRINT(CR.CR);
TREE;
PRINT(CR.CR);
BOXES;
PRINT(CR.CR);
WRITE(27,'9',CR);

ENO.

PROCEDURE BOXES;
BEGIN

3X 33S

Page 14. THE STAUNCH 8/89'er Issue #26/27

The Linkage Loader
(A column of reader-furnished routines)

Writing Memory-Resident Programs under WHM.
[From Lee Hart, 323 W 19th St., Holland, MI 49423;
continued from the "Letters" column] “To Mark Hunt
and Peter Shkabara on memory resident programs: You
can write your own memory resident CP/M programs
quite easily with Write-Hand-Man. The various
applications supplied (notepad, calculator, etc.)
are really just ordinary CP/M programs that WHM
loads into a protected space in high memory. These
programs can then be called any time by console,
printer, or disk accesses. Source code is supplied
for the Notepad to show how this 1s done.

"Loading WHM does three things. First, WHM is
attached to the BOOS, so any following programs you
run will think you have 5K less memory. Second, WHM
creates a 'hole* 1n high memory to load user-defined
programs. Third, the BOOS and BIOS entry points are
patches so WHM can monitor console, printer, and
disk 1/0 calls.

"When WHM is triggered, it saves the state of
the CP/M environment, and creates a complete dupli
cate, with its own TPA. Memory resident programs
load into this private TPA and are executed. Though
all BDOS calls are available, you should avoid using
tO SYSTEM RESET and »13 RESET DISK. They make major
changes in the disk system, and cause trouble for
the program that was interrupted (closing its files
prematurely, etc.).

"Your memory resident program exits back to WHM,
which restores the CP/M environment. The original
program can then continue, unaware of any interrup
tion.

“WHM loads your memory resident program in high
memory instead of at OlOOh. So it is kept on disk as
a relocatable .REL file instead of a .COM file. If
the program is too big, or you only have its .COM
file (no source code), WHM includes a SWAP applica
tion that saves whatever is in the TPA to disk, then
loads your program. When the program exits, SWAP
restores the original program in the TPA and resumes
executing it exactly where it left off.

"To create your own memory resident application,
write and debug it as a normal CP/M .COM program
first. Aim for a 1.5K TPA size; if you need more,
you can reconfigure WHM to reserve up to 9K.

"Now change all absolute memory addresses to
• BASE+address*. Thus to call the BDOS, don't use
•CALL 5'; use 'CALL BASE+5*. BASE is the address of
the reserved memory that WHM will actually load your
program into. You need not define BASE; WHM will do
it for you at load time.

"WHM closely duplicates the CP/M page 0 memory
map. BASE+5Ch has an FCB filled in for the file
'name.OAT' wnere 'name' 1s the name of the applica
tion. The DMA address is set to BASE+80h. Execution
of the application begins at BASE+lOOh. BASE+O has a
JMP instruction to the return point of WHM. BASE+5
is a JMP to the BDOS.

"The user number and logged-on disk are set as
defined when the 'WHM ON’ command was issued. Your
application can change the USER number, logged-on
drive, and DMA address; they will be restored when
control returns to WHM.

"There are two new BIOS functions available for
application programs. BASE+lOh has a JMP to a

routine to home the cursor; 'CALL 8ASE+10h' thus
homes the cursor. There are also a set of extended
BOOS functions, which take less code to call and
provide easier access to function keys and screen
graphics. BASE+13h has a JMP to a chaining routine,
so an application can use overlays or chain control
to another application. Put the name of the new
application at BASE+5Dh (the file name part of the
default FCB, with trailing blanks). Now execute a
'JMP BASE+13h'. The new application is loaded and
executed with the environment set up as described
above.

"WHM provides a 16-level (32-byte) stack for the
application; most applications need not use their
own stack area (a space saver).

"The JMP instruction at BASE+O doesn't go to the
standard BIOS vector table; use absolute address 0
as for normal CP/M. Remember to return to BASE+x, or
WHM will lose control.

"Once you've replaced the absolute addresses in
your application, assemble it with the Microsoft M80
assembler. A typical command line would be:

A>M80 yourfile,yourfile=yourfile

This makes 'yourf11e.REL' and 'yourfile.PRN' from
'yourfile.MAC'. Any other assembler that produces
relocatable (.REL) files compatible with M80 can be
used, though we've only tested it with M80.

"To load your application, call WHM and hit any
key to get the 'enter filename >' prompt. Type your
filename, then RETURN. The WHM loader accepts a
subset of the LINK-80 loader commands. It cannot
search libraries, and recognizes only CSEG addresses
(Code SEGment, the default); do not use any ASEG,
DSEG or COMMON directives in your application.

"To end your application, exit with a RETURN to
go back to the WHM menu, or JMP BASE to return im
mediately to the interrupted program. To suspend
your application (so you can continue it later),
write the address to resume at (BASE**) into the
variable CHAIN, then JMP BASE to exit. The next time
WHM is triggered, it will immediately resume execu
tion at address CHAIN, without displaying a menu or
prompting for a new application.

"The prologue of Notepad is included here as an
example of how to code your application.

; NOTEPAD by Lee Hart, TMSI

org 0
base equ $
bdos equ base+5 » WHM's BDOS entry
home equ base+lOh • WHM's home cursor subroutine
chain equ base+13h 1 WHM's chaining subroutine
functab equ base+18h base address of Clipboard
bdosi equ base+lAh extended BDOS functions
fcb equ base+5Ch WHM's file control block
fcbcr equ fcb+32
fcbrO equ fcb+33
fcbr2 equ fcb+35
fcbs2 equ fcb+14
buf equ base+80h 1 WHM's DMA buffer
»
1 is tout equ 5 s BDOS functions used
conio equ 6
open equ 15

Sep-Dec 1991 THE STAUNCH 8/89'er Page 15.

code and instructions for all WHM applications for
$10 from TMSI c/o Lee Hart, 323 West 19th, Holland
MI 49423. Be sure to identify the desired disk for
mat."

cl ose equ 16
make equ 22
setdma equ 26
ranread equ 33
ranwrit equ 34
fsize equ 35
»

org lOOh ; actual program starts here
cal 1 home ; home cursor subroutine
mv i b,16

topi ine :lx1 h,top ; display top line of notepad
call pstring
dcr b
jnz topiine ... and so on

"WHM owners can order a disk with full source

Pete on CP/M
By Peter Shkabara

Hey, I got to writing a lot sooner this time -
started July 6th. I was even going to tease Kirk
about going to press quickly. Alas, other things got
in the way and here it is six weeks later and I fi
nally get it done.

Hank Lotz sent me a note to thank me for finally
answering some of his queries in my last install
ment. He did however, have some comments on my com
ments. The first comment had to do with my expres
sion of "UGH" in reference to BASIC programming. No,
I do not hate BASIC. I can even be caught using the
language on occasion. In fact, Quick Basic which
comes with version 5 of MS-DOS is kind of neat! The
problem is that BASIC does not lend itself to good
programming practice and large programs are usually
a real terror to work on. Pascal or C do a much
better job.

Regarding Hank's request for a format program to
format a single track, some clarification is in
order. My AFORM program (source code available) can
easily be modified to do just that. However, AFORM
is only for H-37 soft sector disks. I do not have a
source listing of the H-17 formatter. Mark Brooks of
C.D.R. had disassembled the Heath code and created a
new version for the C.O.R. controller software
package. It would be possible to hack the existing
object code by poking around with DDT or DSD, but it
would be so much easier if Mark was to share his
source with us. Can you carry the ball on this one.
Hank?

Hank clarified his problem with DDT eating up
TPA when KEYMAP was installed. Seems that after DDT
loaded itself in and marked appropriate low address
vectors to protect itself from the program it was
debugging, it was unable to restore proper addresses
on exit. Must be KEYMAP restoring some vector along
the way to protect itself also. A little explanation
may be in order for those who are totally lost at
this point (which may be most of the readers out
there).

DDT is a program which makes possible the debug
ging and modification of another program. To allow

the loading and running of another program in the
TPA while debugging it, DDT has to move itself into
high TPA area. To prevent the other program from
clobbering DDT in high TPA, DDT makes a patch to
some CP/M vectors in the area below the lOOhex start
of TPA. The debugged program then thinks that DDT is
actually part of CP/Ms BOOS and leaves it alone.
This is essentially the same thing that memory
resident programs such as KEYMAP also do. So here we
have both KEYMAP and DDT trying to make everything
else see them as BDOS. How successful DDT is in
restoring the original condition of the system after
it is through depends on what patches KEYMAP
originally made. Remember that being memory resident
is not a standard CP/M procedure and must be
considered a hackers dream come true! Thus conflicts
can (and apparently do) arise.

All this now leads us to Hank's original request
number three of how to write a memory resident
program to intercept terminal or disk I/O calls. The
memory resident part means that the program has to
move itself into high TPA and then patch the CP/M
BDOS vector at address 0005 so that applications
think that the BDOS is now lower. One problem with
doing this is that BDOS is above the CCP (the com
mand processor) while the resident program is below
it. Normally the CCP may be overwritten by a
transient program if it needs the TPA area. If the
memory resident program sits below the CCP and then
makes the transient program think that the BDOS 1s
below the actual CCP area, you loose several
kilobytes of TPA. For this reason I do not like this
approach. There 1s another way.

Do you remember the MOVCPM program? Do you know
what it does? In case your answer 1s no to either of
the questions, I will explain a bit. MOVCPM is a
program developed by Digital Research and modified
by Heath. Its purpose is to adjust the addresses
within CCP, BOOS and BIOS to allow positioning them
to run at various locations in memory. If a size is
specified as part of the MOVCPM command, the CCP,
BDOS and BIOS will be adjusted to fit just within
the amount of RAM specified (in kilobytes). Other
wise, an asterisk (*) will force an adjustment to
the maximum RAM available. By specifying a RAM size
smaller than the true size, it is possible to leave
some holes at the top of RAM. Remember that this is
all done as a memory image. You need to run SYSGEN
immediately afterwards in order to save the RAM
image to disk.

[You can also SAVE the image to disk as a named
file for later use by SYSGEN in circumstances where
you've particularly customized the system. This is
useful, for example, when preparing a bootable
system for program development under various Pascal
(or other) compilers to ensure that those programs
will load and run on computers where the available
RAM is significantly less than on your own machine.
SAVEing custom systems also reduces the hassle of
having to rerun MOVCPM and/or MAKEBIOS on those rare
occasions when you need then. -Ed]

Let us say that we have 64K of RAM and run
MOVCPM 63 followed by SYSGEN. Of course you will
actually run M0VCPM17, M0VCPM37 or whatever is ac
tually needed. The variations come from the Heath
mods which put appropriate bootup code in the first
sectors of the disk. In any case, we will have IK
byte of RAM free above the BIOS portion of CP/M. No

Page 16. THE STAUNCH 8/89’er Issue #26/27

program or CP/M activity can bother this area. CP/M
and all its application programs think that there is
only 63K of RAM in the computer! Enter our desired
manory resident modification. Instead of the "nor
mal" below CCP installation, let us install the mod
into the very top of RAM. Although CP/M doesn't know
there is that space, our program does (we wrote it).
The only patches to CP/M that need to be done now
will depend on what is desired from the program.
Most likely we will need to patch into the BOOS it
self, or into the BIOS vector table at the start of
BIOS. 8oth locations are known to our program, and
the functions are standard CP/M documented items.
From here your assembly language skills are put to
use.

An almost indispensable book in writing such
programs is Inside CP/M by David Cortesi, (1982,
Holt, Rinehart and Winston Publishers). I have had a
collection of many CP/M references and some were
quite useful, but Cortesi's book was the most
comprehensive although not easiest to read. It may
be out of print now, but can still be found.

For those who have been exposed to the Z-System,
there is another choice. Due to running out of time
(or motivation), I never implemented the replaceable
device driver feature in my Z-System BIOS. It was
certainly planned, but sales never picked up enough
to justify the effort commercially. My own needs did
not require it since I was starting to switch over
to an MS-DOS system at the time. Rick Swenton has
done it on his system and perhaps he may be con
vinced to contribute such mods for you readers out
there. [I've approached Rick about this question and
he is willing. -Ed.] By the way, you readers seem to
be very quiet lately. Are you out there?

Perhaps a real software construction article
next time, but I better send this in to the press
before another six weeks go by.

aasss

Troubleshooting the *89, Pt. 3:
The H-89 Power Supply Module

By Daniel N. Jerome

Introduction. The scope of this document is to
dissect the power supply of the H-89 computer.
However, the reader should understand that there are
other major modules which make drastic changes to
the power provided to them by the H-89 power supply.
These modules include the video circuit board with
its Horizontal Sweep and High Voltage, the Video
Driver Circuit Board, and the Terminal Logic Circuit
Board (commonly referred to as the TLB).

The H-89 first hit the market in 197 8. At that
time the power supply was the best in the business.
It was designed to be heavy-duty and to last a long
time. When you compare it against its main competi
tors, such as the Radio Shack TRS-80, the H-89 was
far ahead in all features. By rights, one must give
credit to the original Heath engineers who designed
the H-89 and its power supply. However, with the
passage of time and new developments, electronic
requirenents change. The power supply that was over-
designed for 1978 requires various enhancements in
order to handle current demands made upon it by the
more advanced accessories of modern times. These
improvements will be discussed later on in this

document.
For those who do not know, the power supply is a

device which converts the AC voltage to DC voltage
delivered at various maximum currents. This DC power
feeds the various circuits of the computer. There is
a difference between voltage and current. As an
example for the uninitiated, think of the voltage as
a city water tank built on a hill. The water pres
sure available is the same in that tank. The pres
sure or electromotive force represents the water
pressure. The current can be compared to different
diameter pipes that come forth from the water tank.
The larger the pipe, the more pressure can be
delivered. Various components in the computer demand
their own specific amounts of current.

Refer to Figure 1: H-89 Power Supply Module -
Exploded View [on the facing page] for detailed
1ayout.

(1) THEORY OF OPERATION. The primary circuit of
the power supply consists of slow-blow fuse Fl,
ON/OFF switch SW3, 115/230-volt switch SW1, NORM/LOW
line switch SW2, and the primary windings of
transformer Tl.

The red secondary windings of transformer Tl
supply AC voltage to the discrete diode bridge rec
tifier network composed of diodes D109 thru DU2.
The 65-volt rectified output of the bridge is fil
tered by capacitor Cl. This 65-volt supply provides
voltage to the Video Board via connector P202.

The yellow secondary winding of transformer Tl
supplies AC voltage to the diode bridge rectifier
BRI. The rectified output of the bridge (approxi
mately 9 volts DC) is filtered by capacitors C101
and C103, passes through 5-volt regulators U101 and
U102 which provide two regulated 5-volt supplies
and 12-volt regulator U103, which provides one
regulated 12-volt supply. The voltage supply from
U101 is used on the CPU Logic Circuit Board. The
voltage supplies from U102 and U103 are used to
supply the H-17 (and H-37/H-47/H-67 if applicable)
floppy drive controllers and the three-port serial
board. The 5-volt and 12-volt lines enter the CPU
Logic Board at connector P515.

The green secondary windings supply center
tapped 30 volts AC to the discrete diode bridge rec
tifier network composed of diodes 0101 through 0104.
The rectified outputs of the bridge, ♦ and - 18
volts DC, are filtered by capacitors C102 and C104.
These voltage supplies provide voltages and currents
to the CPU Logic Board thru connector P154 and to
the Terminal Logic Board through connector P515.

The three power supplies: (1) +65 volts, (2)
+8.5 volts, and (3) +/- 18 volts are not intercon
nected on the power supply circuit board. Instead,
they pick up their appropriate circuit grounds at
the circuit boards they power. The +65 volt video
supply connects to + and ground points on the Video
Circuit Board. The external conductive coating of
the CRT (Cathode Ray Tube) and the CRT socket
arc-ring both connect directly to the Video Circuit
Board ground.

The +8.5 volt and the + and - 18 volt supplies
connect directly to the Logic Circuit Boards with no
common grounds until they meet at the Terminal Logic
Circuit Board.

This grounding technique produces two indepen
dent operating systems that do not interact with

Sep-Dec 1991 THE STAUNCH 8/89'er Page 17

6-3? » Iff

C2 .

C7

Dl.l

B4 "
U102

A4
C103

D3 [POWER SUPPLY
HEAT SINK

A3 A4 D4 2
C102 C101 ll^inch

Cable

tONi.tcion

of

B5‘
U103

Cable to Fan
(Part of H-89
Chassis)

CRN
YE I

TRANSFORMER
LEADS

Bl.l
D109-D112

B3
oint)U101

Cl
(Part
Chassis)

B2
Diode Bridge
Rectifier

FIGURE 1; H—89 Power

C104

POWER SUPPLY wi

CIRCUIT BOARD

RED OOt
OR POSItr.t

6-32 i 1/4"
SPACER

EHOir
CONNECTOR

LONG WIRE 66*10
501OfH IUC

(H-89A
- Only)

0101-D104
(Cutaway View)

Part of H-89

Supply Module - Exploded View

Page 18. THE STAUNCH 8/89'er Issue #26/27

each other, except through the signal ground and
synch/video inputs. In the event of a CRT arc, the
arc discharge current is confined to the Video Cir
cuit Board and it does not induce transients into
the logic circuits.

The protective ground input (pin 1) of the EIA
RS-232 connector connects to the Terminal Logic
Board ground.

(2) POWER SUPPLY ENHANCEMENTS: (A) Upgrade the
diode bridge rectifier, BRI. After a period of use
the standard Heath part, BRI, begins to get flaky.
You notice diagonal lines appearing on your screen,
especially if you have added new accessories. The
best way to solve or prevent these problems is to
change the Diode Bridge Rectifier, BRI, for a unit
that provides more current. Even if you could
purchase a replacement part from Heath, it would be
capable of supplying only marginal current.

Purchase the following parts from Radio Shack or
an equivalent vendor:

Full-Wave Bridge, 25-Amp, 50PIV, R-S Part No. 76-
1185, $2.69

Heat Sink Compound, R-S Part No. 276-1372, $1.59

Refer to Figure 1: The H-89 Power Supply Module- Ex
ploded View for details, and replace the diode
bridge rectifier in accordance with the following
steps:

1. First insure that AC power is off and the com
puter cover is removed.

2. Unfasten and remove the four #6 screws that hold
the power supply circuit card to the chassis,
and swing the chassis to the side. To do this,
you do not need to disconnect the cables, but
you may if you wish.

3. Remove the standard Heath issue BRI from the
power supply heatsink, and clean up the place
where it was fastened with a clean cloth rag.

4. Then fit the bridge in the power supply heat
sink, and orient the unit so the terminal marked
plus (+) faces upward.

5. Drill one hole in the power supply heatsink that
will accommodate a #6 screw at a convenient lo
cation as close to the center of the bridge as
possible. The caution here is that the wiring
must be able to reach the appropriate terminal.

6. Heat sink compound is not toxic. Pick up some
silicone heatsink compound on your fingers, and
smear it liberally on the backside of the new
bridge.

CAUTION: Insure that you don't touch this compound
to your eyes or your clothing. You cannot clean it
from your clothing by any method known to science!

7. Secure the new bridge to the power supply heat
sink, using a #6 screw of the appropriate length
and a star lock washer.

8. Using a 25-watt soldering iron, or the
equivalent, resolder the wires to the new part.
The red output wire goes to the terminal that
indicates plus (+). The black output wire goes
to the terminal that indicates minus (-). Each
of the yellow wires go to the two remaining
terminals, but it doesn't matter which wire goes

to which terminal, since the input voltage seen
by the bridge rectifier is AC.

NOTE: If you opt to perform the connectors P101 and
P103 modification described below, ignore the yellow
wires. If you decide not to perform this other modi
fication, then the yellow wires must be snipped off
from connector P101 and connected directly to the
diode bridge rectifier. This came as a Heath
bulletin some time ago.

9. Now, double-check your wiring. Red wire goes to
the (♦) terminal and black wire goes to the {-)
terminal. If there is no terminal marked (-),
assune that it is the terminal opposite the (+)
marked one.

10. Once you are done, reattach the power supply
circuit card. The next time you turn on your
H-89, you should notice a clearer and steadier
screen.

11. The final step is to insure that the H-89 fan,
located on the top cover, is blowing down toward
the power supply. This will tend to keep it
cooler than if it were blowing upward.

(8) Replace Power Supply Connectors P101 and
P103. After a period of use, the pins (male) and
sockets (female) at connectors P101 and P103 corrode
and resistance, with its consequent heat, increases
to the point that it can cause an electrical fire!
The problem is that different types of pins and
sockets were used in the original design, and corro
sion is inevitable. Connectors P101 and P103 may be
found at the rear of the power supply circuit card.
Connector P101 has 9 pins. Connector P103 has 4
pins. This makes them easy to identify. Before you
do this mod, inspect the female connector shells at
P101 and P103. If these shells are streaked with
brown, you are seeing evidence of overheated pins
and burning of the plastic! If this is the case, you
should perform this modification. If you don't, you
will have problems later on! Refer to Figure 1:
H-89 Power Supply Module - Exploded View for
orientation details. The repair technique is
inexpensive, fairly simple, and will be permanent
and safe. You will need the following parts:

1. Stranded hookup wire in several colors: green,
yellow, and red are suggested in an attempt to
match the type of wire and gauge on the orig
inal. NOTE: Colors may vary according to that
which is available. DO NOT use solid wire!

2. Molex connectors from Radio Shack, or equivalent
source:

4-pin male
4-pin female
9-pin male
9-pin female

RS Part No. 274-224
RS Part No. 274-234
RS Part No. 274-229

$1.09
1.09
1.59
1.59RS Part No. 274-239

NOTE: The Molex connectors come with their own pins
and sockets. If you solder the wires directly to
the power supply PC board, an alternative solution
to the problem, you won't need the Molex parts. You
may need the wire to slightly extend existing wir
ing. Read through the entire procedure before you
decide which alternative to use.

Sep-Dec 1991 THE STAUNCH 8/89'er Page 19.

The original P101 connector is wired as follows:

Pin 1 RED
Pin 2 RED
Pin 3 No Connection
Pin 4 YELLOW
Pin 5 YELLOW
Pin 6 GREEN
Pin 7 GREEN
Pin 8 GREEN/YELLOW
Pin 9 No Connection

The original P103 connector is wired as follows:

Pin 1 Longer ORANGE
Pin 2 BLACK
Pin 3 Shorter ORANGE
Pin 4 REO

First alternative: Take one connector at a time
and clip the wires off as close as possible to the
old connector block. Strip and trim the ends of the
leads and solder them to the MALE 4-pin Mol ex
connector block to the cable coming from the bridge
rectifier, P103. Connect a 4-pin FEMALE plug to 4
new wires into the vacated holes of P103 on the
circuit board. Now strip and trim the ends of the
leads and solder them to a FEMALE 9-pin Mol ex con
nector block to the seven wires coming from the
power transformer, Tl. Connect 7 wires to the MALE

9-pin Molex connector block, and solder these wires
to the empty holes where P1OL was formerly located.
This order of “sex" connection is used so that there
will be the lowest possibility of electrical shorts
in the future. All connector blocks carrying “hot"
wires have the relatively recessed female connectors
(sockets), and the more passive wires have the
exposed male connectors (pins).

Second alternative: Take one connector at a time
and clip the wires off as close as possible to the
old connector block. Strip and trim the ends of the
leads. Carefully tilt the power supply PC board and
reaove the pins of the old connector header by
applying your soldering iron to each pin underneath
the board while pulling the same pin out with a
pliers from the top. The plastic block will come
away when you remove the last pin. Carefully clean
the holes thus exposed with your favorite desolder
aid, such as braid. Now individually insert the
original stripped and trimmed wires you have
already prepared into the holes from the top of the
board and solder them to the foil on the underside.
Be sure you insert and solder the proper wire to the
correct hole!

Either alternative: It is vital to double
check, then triple-check to insure that all wires
are properly restored in the same orientation as
they were originally. Plug in the connectors if
necessary, and with power off check the wires
again! If you have made a wrong connection, you may

Transformer/Power Supply Wiring
First Alternative

OLD CONFIGURATION NEW CONFIGURATION

Old wire config, to transformer Tl
»■

■+

New wire config, to transformer Tl
—- -—-

Holes where P103
pins were before
NEW wires

0 0 0 0

4-pin FEMALE
Molex connector
4-pin MALE Molex

Orig inal wiring

<--

Page 20 THE STAUNCH 8/89'er Issue #26/27

have to "kiss" your H-89 goodbye after the AC power
goes on. So be v-e-r-y careful!

After you are ABSOLUTELY SURE that you have ev
erything connected properly, check that the "OFF
LINE" key on your keyboard is UP, and turn the AC
power on. If you don’t IMMEDIATELY hear the two
beeps: one from the TLB board and one from the CPU
board, you are in BIG TROUBLE! In this case, kill
the power immediately, and look over your handiwork
to determine what you did wrong. [See the wiring
line-drawings on the preceding page.]

(3) Parts List. NOTE: The following list of parts
is to be used in conjunction with Figure 1, The H-89
Power Supply. This figure is shown earlier.

KEY HEATH QTY DESCRIPTION CIRCUIT COMPONENT t
NO. Part No. (Reference Design.)
33333333333333 33333333333333333333338333333333383333

Electrolytic Capacitors

Al 25-197 3 luf tantalum C105,C106,C107
A2 25-891 1 470 uf C104
A3 25-906 1 4700 uf C102
A4 25-902 2 10,000 uf C101, C103

Diodes

81 57-42 4 3A1 diode 0101 thru D104
Bl.l 57-27 4 1N2071 diode 0109 thru D112
B2 57-67 I 10A20 bridge rect BR101
B3 442-651 1 78H05 5-v regulator U101
B4 442-30 1 UA309K 5-v regulator U102
B5 442-650 1 78H12 12-v regulator U103

Sockets, Connectors, Pins

Cl 434-117 3 Transistor socket
C2 432-943 1 2-pin plug
C3 432-974 I 2-hole connector shell
C4 434-319 1 4-hole plug
C5 432-1070 1 Large 4-hole connector shell
C6 432-1069 I 4-pin plug
C7 432-8/6 2 8-pin plug
C8 432-1002 4 Large female socket pin

Miscellaneous

01 73-80 1 Foam pad
Dl.l 85-2384-1 1 Bare circuit board for power supply
D2 204-182 I Capacitor support bracket
D3 215-637 1 Power supply heat sink panel
D4 215-658 4 Heat sink for regulators
04.1 354-10 1 ll-inch nylon tie

(4) Troubleshooting. The component parts have
been assigned reference designations which will halp
you to determine their location in the computer.
For exampl e:

REFERENCE
DESIGNATIONS

LOCATION

0-99 Parts mounted on the cabinet base or
front panel

100-199 Parts mounted on the power supply
modul e

200-299

300-399

400-499

500-599

600-699

700-799

800-899

900-999

Parts mounted on the video circuit
board
Parts mounted on the keyboard cir
cuit board
Parts mounted on the TLB (terminal
logic circuit board)
Parts mounted on the CPU logic
board
Parts mounted on the serial inter
face circuit board
Parts mounted on the cassette inter
face circuit board
Parts mounted on the hard-sectored
controller board
Parts mounted on the video driver
circuit board

[The troubleshooting guide for this article is on
the facing page. Be careful while checking voltages,
particularly that for the CRT anode. The latter re
quires a special, high-voltage voltmeter. Further,
careless contact with the CRT anode connector or any
bare wire on or from the flyback transformer could
be deadly! -Ed.]

This "n* That
by Hank Lotz / 2024 Sampson St. / Pgh, PA 15221

My column title usually signals a potpourri of
topics. This time I have only two items. Maybe we
can think of one as "this" and the other as "that!"

How About Quick-Print?: As its fans know, Magic
Wand has two sections, EDIT and PRINT. EDIT creates
and edits text files for you. PRINT outputs your
file to a printer, or as a formatted disk file.

However, you can do limited printing directly
from within EDIT. That feature is called "Quick-
Print." It's nothing fancy, mind you. In fact,
after a few tries at it myself, I abandoned it!
Quick-Print was too, shall we say, "quirky."

But that was years ago. Now I use it, and it's
great! What fixed it? Nothing. I just tried 1t
again recently, only to discover I'd simply
misunderstood Quick-Print those other times. I think
I'm to oe excused though, because Wand's (otherwise
fine) docwnentation was scanty when 1t came to
Quick-Print (Supplemental Manual to Version 1.1). It
didn't detail the problem I experienced. That's one
of the things I'll cover here.

What I'm saying today, then, is, "Hey, if you're
avoiding Quick-Print because it seemingly 'acts up'
on you, chin up!“

But I'm saying something else, too. If you
haven't been using Quick-Print, you may have for
gotten you even have it! If you need a nice quick
way to print BASIC listings (or anything) with room
to punch holes (for a 3-ring binder), dust 1t off
and put it to work! Q-P is good for many print
jobs, where you want control over all four margins
without a lot of fuss.

Another use is, if you want a permanent record
of how you did something with embedded
commands in Magic Wand, Quick-Print's printout will
show any embedded commands you have in the file.
That's because Quick-Print does not execute the

Sep-Dec 1991 THE STAUNCH 8/89’er Page 21

ro

Tr
ou

bl
es

ho
ot

in
g T

ab
le

 for
 "T

ro
ub

le
sh

oo
tin

g th
e '8

9,
 Pt

+ ------ -- i --- ------—------------
II II * l
II 11' 1 1

11 ■ I
11 l Mt »
III CT • o t
11 r— 1 CM 1 k
11 c O' * T>
If > CT • * XJ
" f~ • h c o

ti « CM o » CM » o
II •—i > 1 o • o *
n ■* 1 Q CM * <u uh
ft in 1 o 1 Uh 01
II i Q 1 1 CT
II L0 I • CM 1 01 ■o
II O O * 3 1 r—1 O 1 uj ■r~ i-
II *■ •T MT uh k l o CM i -0 L. o
II =) Z3 02 -C 1 CM o i — JO -4~>
II •ct CT o 1 O i
li LU CT CT t— «—i 1 ■ i n. a; u
II CO •ct •CT ex ■—i c_> 1 Uh ■—1 i O' ■o 'TJ
li Z3 3 Cl - o > k o I V o ex
II <r o L2 3 V ■—41 k 1 O CM i ex ■r~ ■rd
II o k k Uh O a o * CT Q « ex T3 o
II *,"• ■” CT CT (Uh i (13
II LU II u o ai (0 Uh •CT * •ct uh 1 * L.
li —1 II o o u ct- 02 o • uh 02 i r—1 a;
II tn 11 k k k 3 T3 <r> ■ S3 T3 i O h- ■4-J
ft •—• It o U> =1 CT O ex t ra O 1 0) r—
n CO II o ty >r- rd I k •ct t -C 9—
ii GO 11 X uh k Q C3 * 1— a » C3 O
ii o II t r
ti o_ ft • •
ii II r—1 CM co rt i CM
ft w 1

II II 1 r
11 II 1 o
II 11 o » o
11 II o i CT • CL
11 II CT 1 in CX
11 " * uh L0
11 U> * •ct + uh
II 1 h
11 » OS > U
tt Oi 1 CT ! uh 0J
'i m 1 0 1 a>
ft (Q 1 CT 1 CT o
ft CT 1 r—) 0 ex
» r— 1 o 1
II o 1 > | c
n " > 1 i o o
'» 1 k i >■
f! k X 1 o X 1 '■-O
n o o) o i ■o r—S
ii r» 1 i OJ
ii ti * 1 Uh i +J 1
n n us o 1 CT n rt5
n El CT o l r— n t r~ U
ni II r— CT > o u 3 O
ii II o I > n CT
n X II > k l k f aj +
n LU II o l co O i
ii —J 11 m t in * £Z «* X3
ii CO 11 1 -C » 4- <— » 3 in U
ii o 11 Ch F CT I • <T3
ii Qi 11 O ■ct 1 Q *— F O co o
ft CL 11 Z -C 1 Z .C t + ^3
•i
•v _____

1!
+

1
+

I
L

4> -t + +
11 « 1 1
1 l 1 1
1 ■ J 1

| f= « 1 1
1 <5 t 1
1 CM I 1 1
1 u- O 1 1 1
1 ■M- CM } 1 ■
1 CT f—1 CM CT 1 1 I
1 c CM m 1 1 »
1 f~ CT CM * » 1 »
1 E <_> •—t 1 t »
> o • O 1 1 r
* o <"O ’S- * CM 1 1 •
• ^-1 a> CT CO CT 1 » i
1 uh CM CM CM 1 ■—1 CT 1
1 01 O' o -J CM U» 1 CO 1 CT CM r
1 uh >h O 4J 1 CM 1 LC CM

F“ UT • •r- 1 CT * CM O n
1 3 t. c CO Uh co 9 • ■—ii r-- Qi i
• CL o O CT 1L o O ■—1> k 11 o J- 1

u ■f— CM O CM u 1 CM O CM k o i
r O Uh 4-> -J 4-J CT » CT CT CT O CT' 1
2 C *»”■ u •r* CJ 1 ■**= CT •r- 1
r >h Uh o> uh <_> a> o • OJ o * at Uh I
1 Uh c r~ r— <0 T3 U 1 T3 *0 F T7 •r~ (O i
1 co <o H- •r- ex O o 1 O ex 1 O Uh ex i
1 O —1 U- 0? O <n ■T— 1 (0 1 •r- 0) (0 I
1
1

z t- a O o o X 1
1

CT CT
1

CT oe o i
i

1
1

•
CM rO in 10 CT 1 »—H CM 1 r—• CM l*> t

1 • 1 i
-► 1

1 t k. 1
h 1 o l u i

1 1 o i
1 1 J3 *
1 V. 1 cn I CT

11 a> ■1— I CT t
• XT x: 1 ■
* -M 1 1 CT
1 o o t
h 1 o i O »
l c F 4-> » O «
1 01 1 « CT ■
1 XT 1 uh » «
l » •t— t Uh i
1 >h 1 ! •r“ i
1 OJ fT3 1 >> 1 i
1 CT JMi » >1 j
1 CD O 1 ex I 1
1 4J 1 ex CL i
l r- 01 !■ 3 1 ex t
li o u » iZP IE =5 i
i > (0 1 uh i
» 1 CT 1 i
l OJ uh 1 ,r— I CT l
T TO OJ 1 o * 1 r— I
* O CT I > o 1 o o I
I c fld » f— 1 > l
* rO » CT J I
> r— 1 CT o 1 o o I
» o o I m o 1 cn o 1

1
4-

z > 1

4-

CT F
i

I CT i
♦
4

-6
 /o

lt s
up

pl
y is

 too
 hig

h o
r 1. Diode

 D2
03

to

o lo
w

2.

 Re
si

st
or

 R21
2

I
+

H ii • cm m on ud r-. i ct cm m -^r m lo r- co cr> 1 ct cm co * ct cm co i ct cm co i
MM I till

A ’,V ? t ------------------- 4.--------

1« » >i 1 1 h
It >1 u 1 1 i
il ■ rd O m 1 « ■ 1
W » ex CT ■r—1 m 1 1 F

11 III i ex C T—4 c_> <± ■ 1 1
11 H CT1 > 3 O ne CT i 1 » 1
II II O i Uh u CD 3 • CM * 1
II II c jd ■ 02 3 *r i O * * 1
II II □2 uh i k. uh • -C S- CT ► 1 i 1
11 CL i 02 CM •CT 42 CM » CT 1 ■0- F 1
II II CT O i—t « CT 1 k < CT CT CT I O t CT » CT 1

11 3 h- * C O E t—1 CM 1— I •—i 1 i—1 1 1
II O -u ! — ex CT O O CT L. 1 i—t o ■ CT * CT 1
II 0) U CT • k. X CTI o O L. ! O « m 1
11 CT Th CT 0) o 1 1- c 3 O jj 01 1 3 o 3 • o 3 1

u> O> u E -c » * o CT U -J Uh E l CT k ■ k i k I
• it CT CT- o C ut » 02 _£T «■ •CT 02 k 1 -C CM h CT JC CM • CT -£T •

'I CT C <“ o » >» CT CT CT CTI Uh uh Uh o I Uh CT O • CT CT ■ CT <3 ’
LU tt = 3 Uh CT CT 1 1_ *r^- »-F» o CT c 3 CT 1 CT t CT 1 CT
1<I w r—• o CL uh C_> 1 rd 3 3 CT *r- 0 CT Uh 1 ■CT 10 o * •CT ■—1 O •CT O •
CT w CL r— "L. c 1 p O <_> o Uh 3 t- C t 3 o • 3 o 3 O 1
«c -O XJ ■CT ai <0 L. 1 — L- i- CTi L. r_2 CT CT 1 Q k I U L > O k »

M o CT L. tn CT u o 1 u 'r— o O U U k 1 k CT o t L CT o k Q O F
II " O CT O r— CT CT » CL LJ CT •CT Th a# CT ■i •CT CT F •CT CT t '•CT* CT l!
II UJ ft c Lu o jc o *?—■ 1 Uh •CT w 02 u 1 M uh <—• F L> Uh F o 'Uh •CT |
II -J ft o XT I- W 1 _*r CT CT oi u o CT t- k 2 O O> u 1 CTI (U U F o 01 U 1
II CD 11 CT a? <U CT *11 0J CO I u> L. U CT -TJ u $- o 02 1 k K3 F L ■Q (0 1 k TJ H3 |
11 t—l II uh c CM 5 ex 1 02 O o O ex u> O o * 1 CJ O ex 1 O O ex I o O ex 1
II tn II C 3 'I 3 O (O 1 .C -E ■CT _c c O 1 •CT (0 F m l rt3 1
M GO II CT LU tn LU Q. <_> 1 o tn <n o C-J X cn CT CL 1 X CT CT 1 X CT 1 X CT <_> I

11 CL II 1 •'
I { 1

t t --------------------------+-------------------- --- ------------------------
1

-------------------------------------+ -------------------------— _u ---------------------- * t
II w 1 1 •• • O i >
II I > Uh X • o i »
II 1 1 02 o * CT • 1
II S' ft- r— • * O 1
II 1 ■— * uh 'F o 1'
11 ft c • 1 ex o ■ -CT » CT n
II ft o * » ex o • F I
II ■i 1 » 3 CT' • 02 F Uh i
" 0 c T J Uh F CT 1 CT- »

"■ k F 1 k 1 rd 1 I
ft 3 1 1 CT o J CT » 02 }

" 11 CT 1 * CT- 1 «— 1 CT l
" 1 » O J= 1 O | 1

II CT 1 » > CT> 1 > I CT 1
II II <O 1 » 1 1 1 r— 1
'1 11 1 1 L0 XT ’ k I o I
II II Uh 1 1 > O X 1 > X i
H 11 C 1 • E O 1 o 1 o I
II ft 02 I 1 O o 1 - r- F k r- I
II ft ex * 1 k CT 1 UI 1 I
II li ex 1 1 CT 1 CT O | O 1
II ft fl3 ’ ui 1 Uh » I— O 1 * o i
II ft ■ 2 1 CT •CT l o CT 1 (/I CT i
ft H ■ O 1 3 * > 1 CT1 *
" X II CT 1 1 ex ai ' k 1 CT* k F
ft LU ft e • J3 1 CT cn ’ CM O 1 o o »
ft —1 •CT 1 1 3 in 1 CT 1 > «
II CD ft J3 F QJ » O CT * + JD I J= 1
II O ftl CT I Uh F r— » CT 1 CM Ct 1
II or II o 1 3 » O n F O -CT I < -i— 1
It CL ri z » LL 1 Z > 1 Z JZ 1 l JZ
N n 1 1 1 1

Page 22 THE STAUNCH 8/89’er Issue #26/27

commands, as PRINT does. It just copies the screen
as 1s. (When I didn't know that, I went to a lot of
trouble, substituting command markers left and right
trying to get PRINT to give a hardcopy that would
show command markers. A lot of unnecessary effort.)

You access Quick-Print from EDIT's command
screen. There are 5 commands: P, P!, PB, PB! , and
P». You always start with the "P»" command, which
takes you to a small "Quick-Print Options" screen.
Here you tell Q-P your paper size (in lines), and
you set up margins and other parameters. You’ll
easily figure out that short menu. But notice there
is no "Top Margin" spec. You must make your "Bottom
Margin" large enough to suffice for both bottom and
top, and then adjust the paper (Top Of Form) in your
printer to wherever you want actual printing to
start.

The Options screen queries you for a "Left
Margin," but there is no "Right Margin" on the menu.
It's important to realize that you already control
the right margin froa the com a nd screen simply
by using the L command. (L60 permits lines up to 60
chars long, L75 allows 75, etc.) To this extent, Q-P
is a WYSIWYG function.

"Single Sheet" on the menu should be set to "N"
if you use continuous paper, as most of us do.

After setting the options (the "P«" command),
you return to EDIT's command screen. All of the
other four Q-P commands are to send text to the
printer.

Now you're ready to print. Let's say you have
66-11ne paper and you've set Quick-Print for a
bottom margin of 10 lines. Just for simplicity,
let's say you'll start printing at the very top of
the page. Under these conditions you can print 56
1ines on each page.

But let's suppose you have a total of only 50
lines of text currently in your EDIT workspace —
just over 2 screens full. (Quick-Print takes each
line on the screen as 1 line of output, regardless
of whether or not it ends with a carriage return.)

You enter the P command and hit RETURN, and your
printer springs to life! At the end of the 50th line
it stops, because that's all you have. (We're
getting to the part where I made my big mistake!)

Now you decide to do additional editing on the
text. Having finished that, you want a new printout.
You reach over to the printer and hit its formfeed
button, ejecting to a new page. Then you type the P
command again. Once more your printer springs Into
action, but this time it prints only 6 lines and
ejects to the top of the next sheet! It then prints
the remainder of your file, but you have an awful
gap on that previous page, don't you? Well that's
essentially what happened to me.

But I can explain it now: Q-P keeps a line
counter as it prints. It won't formfeed to a new
page until it has reached 56 lines (in this case).
Quick-Print didn't know about our local formfeed
(at the printer). Its line count was still at 50,
from our previous printout. That's why it printed
only 6 lines on the new page: It did a formfeed at
what it thought was 56.

The false impression I was under can be summed
up this way: I thought each P command started fresh.
But the fact is, Q-P remembers the line count from
the previous P command. So just watch out if you do
more than one printout in the same EDIT session. Or,

to be safe, use the P! command.
The P! (P with exclamation point) resets the

line counter. But it always does a formfeed before
printing. My best advice, therefore, is go ahead and
let Q-P do your formfeeds for you. If you don't, it
won't reset its line counter at the times you want
it reset. Use P! and you'll keep things straight;
it's that simple.

The P command is fine for your first listing
during an EDIT session. P is also very useful when
you want additional printing to go to the same page.
But whenever you want a fresh page use the P!
command, not the panel switch on your printer.

An alternative to P! is to answer "Y" to the
"Start New Page" option on the Quick-Print Options
menu. The difference here 1s each printout will al
ways start on a new page, even with the P command.

It's the same story for the PB and PB! command
pair. Their behavior is the same, even though their
purpose is to print only text that's between
block aarkers ("Print Block"), whereas the P and
P! coraands always print the entire text.

Quick-Print is aptly named. It's a no-fuss,
ready tool — easy-to-use yet versatile enough to
handle more job types than have probably occurred to
us!

A Multtcoluon Utility: Please excuse me for now
putting in a plug for a program I wrote myself! I've
done this kind of plugging before (for LP.COM for
the H-14), but I think it's honorable to speak out
for MCOLS, too, as it "saved my life" more than
once. Because, you see, I simply have no other
way, under CP/M, to create multiple columns out of
a single-coltinn file! (Other programs exist, but I
don't have them.) I've been given jobs where I badly
needed columns to save paper and repro costs. You
could do it with Magic Wand, but it'd be very
impractical —1 line at a time, and many manual
steps per line. Too slow and tedious a job, and
you’d be working without macros; there aren't many
with Wand. Even if you set up Wand macros with
KEYMAP (as I alluded to in >13, p.12 and >25, p. 6)
their use is hardly recommendable for this task.

Kirk has printed short blurbs about MCOLS,
including the Inserts of >8 and >9, but let me add a
few details here. To do that I'm rehashing a piece I
once put in a Pgh-HUG newsletter. (Speaking of
Pgh-HUG, you may not know that club dissolved in Jan
1990 when we lost our meeting place.)

The name MCOLS means "Multiple COLumnS" because
the program formats a single-column disk file into
multiple columns. I wrote it in Microsoft BASIC
(CP/M) and it should be easily adaptable to other
BASICS. (I've done program conversion between
BASICS, and it's no big deal.) The MCOLS listing is
documented. It should be possible to put it into a
version for HDOS.

MCOLS does not alter your original file, it
just reads it and prints it out in a number of
columns. The output device is menu-selectable, and
output can go to a disk file. The resulting disk
file may be edited with a text editor or word
processor.

One good application for MCOLS is to list long
assembly-language sources that otherwise would go
down the left side of the pages, wasting a lot of
white space to the right. Doing listings in columns

LP.COM

Sep-Dec 1991 THE STAUNCH 8/89'er Page 23.

saves paper, and that also means lots less page-
turning. And it doesn't have to be an assembly
listing. Other lengthy listings of relatively short
lines will also be improved. For example, one guy
who approached me was thinking about running a
word-frequency analysis on a text. This outputs a
very long list of single words — a real "white
space generator"! But with MCOLS he should easily
get 6 columns across the page. The program is
configured to allow you anything up to 13 columns,
but can handle even more if you change the source
code. Your paper width is your limitation.

You don't have to start your listing with the
first record (line) in your file, either. You can
tell MCOLS where to start the output. This feature
has obvious advantages; but one is, you can break up
a long printout into more than one session.

The MBASIC program-listing of MCOLS is bulky,
but size isn't a drawback because the program works
so well. And anyway, there are a lot of REM
statements that can be dropped (from the copy you
run). Those REMs list and describe every variable in
the program —again, helpful when converting to
other BASICS. I've written a thorough documentation
(6 pages) describing the various features and how to
use them.

But this doesn't mean you can't use it without
the instructions. The program has on-screen prompt
ing to guide you as you go. And after you tell MCOLS
how many colitnns you want, how many lines per page,
how many spaces between columns, starting record
number, etc., you have the chance to change any of
these parameters before actually doing the output.

MCOLS can report to you the number of records
In your input file, as well as the lengths of the
longest and shortest records in that file.
(Sometimes I run the program with no output just to
get these stats alone!) Also, MCOLS can tell you if
your file contains TAB characters. If TABs are
present it expands them to standard columns. (The
record lengths that MCOLS reports are, conveniently,
the lengths after TAB expansion.) Also, before you
print, MCOLS can report how many pages of output
there will be.

Naturally, the more columns you want, the nar
rower each one must be. So you will be warned ahead
of time if you choose too many columns to
accommodate the longest record in your file.

When one sees a layout of columns on a page, it
is customary to read down the leftmost col, then
read down the next col, etc. However, with MCOLS it
is also possible to arrange the sequence of your
records across col unns, from left to right, if
you desire.

The MCOLS program is in the public domain, and
is being distributed by our editor, Kirk Thompson.
There is also a compiled version for CP/M. Kirk is
continually building Staunch's "catalog" of soft
ware, both public-domain and commercial, for our
8-bit machines. (He has even threatened to publish
an actual physical catalog some day!) As you know,
much of Kirk's software is gratis except for ship
ping and handling.

BEAT THE HEM YEAR'S DAY DEAOLINE
RENEW NOW BEFORE THE RATE GOES UP!

Send $12 if you live in the U.S. or Canada,

Overseas, please send $16 1n U.S. funds.
ON NEW YEAR'S OAY, THE RATE BECOMES $15/YR.

U.S. ANO CANADA, $19/YR. OVERSEAS.
!So send a check before you forget!

MISCELLANY

The Bookshelf. A number of computer books have
crossed my desk over the last several months that
you might find of interest. I only have room in this
issue to discuss three of them. Two are of these are
devoted to the COBOL language and are still
available. The third is the one on troubleshooting
recommended by Safford Magee in the last issue (p.
4).

COBOL. You should already be aware of my own
Interest in this, the oldest of high-level lan
guages, from my discussion in issue #20/21 (p. 5).
While searching for novice materials to supplement
the old tutorial in REMark by H.W. Bauman and
Heath's disappointing home-study course (EC-1105), I
stumbled across two books that are still in print,
yet applicable! One of these is Ruth Ashley's
Structured COBOL: A Self-Teaching Guide (John
Wiley A Sons, 1980, softcover).

This is a tutorial in the finest sense of the
word. Ashley presents you with some material, then
quizzes you on it, and at the end of each chapter
has a "self-test" on the contents of the chapter.
Space is proved for your answers, even reproductions
of the conventional COBOL coding form. And the cor
rect answers are no more than a page away from each
quiz. She even begins by emphasizing the importance
of "structured" programming techniques before she
delves into the elements of the language.

Covered are unit-record files, arithmetic,
conditions, sequential and random-access files,
tables, qualified data names, REDEFINES, the case
structure, and elementary use of the ACCEPT and
DISPLAY verbs. Indeed, much is here that neither the
REMark series nor Heath course even touch on. The
version of COBOL discussed is even the one (without
the custom enhancenents Microsoft added) that was
used in the two commercial compilers available for
our systems. The only drawback the book has is that
compiler use isn't covered until the final chapter.
But I recommend it if you're interested in learning
the 1anguage.

When I discussed resources for learning COBOL in
issue #20/21, I mentioned the desirability of find
ing a key-word reference book to supplement your
materials. The other in-print COBOL book I discov
ered satisfies that recommendation. This is Ruth
Ashley and Judi Fernandez* COBOL Wizard: A Wiley
Programmer's Reference (John Wiley A Sons, 1987,
spiral-bound). This language reference uses the 1985
COBOL standard for its discussion, but the differ
ences between that and the late 70's standard aren't
that great. Further, the authors specifically note
where the ‘85 standard differs from the earlier one
and include an appendix summarizing those differ
ences. And unlike the Sordillo book I suggested in
that earlier issue, this one is organized mainly by
the DIVISIONS in a COBOL program. Example code, both
short and extended, are given throughout.

I might add parenthetically that I have always
found any of the computer books by Ashley and/or

Page 24. THE STAUNCH 8/89'er Issue #26/27

Fernandez to be excellent Investments. Regrettably,
many of them are now out of print, so recourse must
be made to the used bookstore.

TROUBLESHOOTING. You undoubtedly recall Safford
Magee's letter in #25 recanmending Robert Paynter's
Microcomputer Operation, Troubleshooting, and
Repair (Prentice-Hall, 1986). As I mentioned there,
I ordered it through a local bookstore and it turned
out to be the most expensive book I have ever
bought! (Computer books, even soft-cover, are costly
anyway.) Current price is $57.00, but it's a large-
format (8-1/2 x 11) book and is profusely illus
trated with line drawings, photos, and circuit
diagrams. When he wrote it, Paynter was a technical
school instructor with strong connections to Heath.

The book 1s divided into four sections: computer
fundamentals (including number systems), electronics
fundamentals, digital circuitry, and microcomputers
and peripherals. Indeed, it merges technical infor
mation from books such as Beechhold's and Middle
ton's (both mentioned in #24, p. 8) and appears to
have been the text for a technical school course in
computers. Once out of elementary material 1n the
first nine chapters, Paynter divides his time
between Motorola's 6800 CPU (exemplified by Heath's
ET-3400 microcomputer trainer) and Zilog's Z80 (in
the '89A). The former is used to introduce CPU ar
chitecture, programming, and hardware interfacing.

After this preliminary material, Paynter turns
to the *89A as an exanple of a production micro
computer. He discusses, in turn, the keyboard and
its I/O; the CRT, character generators, and
controllers and their troubleshooting; serial I/O
with the *89A*s board as an example; printers, using
the H-14 as representative (he even spends some time
covering the workings of the beast!); and a sketchy
introduction to floppy drives. Paynter concludes
with a chapter on troubleshooting and analysis and
another introducing 16-blt chips, using Motorola's
68000 as an example.

One thing I had better mention is that you
cannot simply turn to the few chapters on the '89A
and expect to find yourself in familiar territory.
To understand Paynter's discussion of the '89A, you
must either have already digested earlier portions
of the book or have a preexisting, thorough
grounding 1n digital electronics. Like the Middleton
book discussed in the introduction to hardware
troubleshooting in issue #24, Paynter's book func
tions at a level considerably ■grittier" than the
troubleshooting articles you'll encounter on these
pages. However, I can recommend it as a replacement
for Middleton simply because some of its discussion
1s specific to the '89A. The only remaining hurdle
1s the price, so you might first check your used
bookstore for a copy.

Dual-Format Soft-Sector Diskettes. Bill Lind
ley's discussion of dual-format soft-sector in the
last issue (p. 1) prompted me to experiment with the
hard-sector master furnished by Charles Horn (and

finally listed in this issue) and ZUG's (formerly,
HUG's) old MAN37 utility from its #885-1217. For
those of you who are unfamiliar with this ZUG disk,
it contains a pair of CP/M utilities for duplicating
hard- (H-17) and soft-sector (H-37) disks that will
accurately copy both CP/M and HDOS media. But, as I
noted, it also includes MAN37, a utility for prepar
ing single-density, single-sided soft-sector disks
from hard-sector originals. Price from ZUG (P.O.
Box 217 / Benton Harbor, MI 490 2 2-0217) is $20 plus
$2 shipping; if ordering on soft-sector, append
"-37" to the part number. The title of the disk is
"HUG Disk Duplication Utilities."

My thought was that this would be a nifty way of
preparing dual-format soft-sector disks from Charles
Horn's hard-sector original! Alas, it has a
limitation. More to the point, the HDOS soft-sector
device driver you are running effects whether or
not you can use the disk so prepared. A soft-sector
disk produced by this conversion is unreadable
under HOOS 2.0 If you're running Extended Tech
nology's driver (as I explained I'm doing in issue
#3). However, it works fine when used with CP/M
2.2.03 or 2.2.04, HDOS 2.0 (with either Heath's
standard driver or ZUG's replacement on #885-1127),
and HDOS 3.Ox.

Further, a hard-sector disk INITialized under
HDOS 2.0 that is subsequently converted to soft-
with MAN37 Is readable by Extended Technology's
driver. So whatever "problem" there is with
Charles's HDOS 1.6 original must be that ET's
driver either can't find the directory files or
can't digest the boot track. Given the character of
the access noises from the drive while the system
attempts to mount the disk and that HDOS 1.6
predates the soft-sector controller, I think the
former is likely. Either way, if you order the
soft-sector version of the dual-format disk listed
earl ler in this issue, you should be aware of this
1 imitation.

THE STAUNCH 8/89'er, created by Hank Lotz, is a
bimonthly newsletter on 8-bit H/Z computers. The
editor is Kirk L. Thompson; P.O. Box 548; West
Branch, IA 52358; home: 319/643-7136. Subscriptions
always start and end with the calendar year. Rate:
$12.00/year. (Overseas, add $4.) Single copies: $2.
Make checks payable to "Kirk L. Thompson". Staunch
pays authors for their articles; write for an
author's guide. It also accepts commercial ads for a
modest fee; contact the editor. Neither this news
letter nor its editor is responsible for damages or
losses resulting from use of any information pre
sented herein. Info from THE STAUNCH 8/89'er may
be reprinted only if this publication's name and ad
dress is included. Credit should also be given to
authors and other sources of said material, if
known. This publication is archived by the Univer
sity of Iowa Libraries. CP/M is a registered trade
mark of Digital Research, Inc. REMark is a regis
tered tradanark of Zenith Users' Group. EOF

