¥ ¥ ¥ * * * * ¥* % %

* * * * * * *

¥ % %% ¥ H ¥ * * * * ¥
R * * * * * * * *

* * * K K ¥* % K

GAZETTE
he Official Newsletter ot the
Richmond Heath Users Group

EUE R R R R R R I SR R R R R R R I IR T O T O O R I VO SR VR v g Eak ok b LR TR R S R R I S S

Volume 1[I Issue 1

JANUARY 1984

R R R I E R L L o S SO O N VAR VA VI S P S SR T RV VS
Subscriptions: B1u. 00 per calendar vear.
Editor: Dave Harrington, 14813 Lunswood Rd, Chester V&, 3831
Next editorial deadlines February &, 1984,
Note to other HUGs: It vou want to trade newsletters with us, ol ease
mail vours to Harold Lanna, 6% Watch Hill Rd, Midlothian, YA 23113
LR R R R T I EE L T R I R o S S VIR I S S SR R O R R CR VIR VAR TR S A
() 1984 Richmond Heath Users GBroup. Contents may only be reprodoced
with proper credit to both the individual author and the Richmond
Heath Users Group, but are not to be reproduced for commercial pur o
without the express consent of RHUG.
B S e R e

MEETING NOTICE

The next meeting will be Monday, January 16, at 7:3#, The
meeting location is Alpha Audio’s third floor conference room, at 2649
West Broad Street. The night-time phone number there is 3583657,
The front door has a touch-pad combination lock, and the combination
for the night will be S@82 (five zero eight two).

Everyvone i1s welcome'
LR R R R S L T R R R R R R I VRS VIR VI VA VAR AR PR VI e v RS
MINUTES (Meeting of December 19, 1983)

Fresent Carlos Chatin, Dave Harrington, Harold Lanna, John
Furcell, Jim Scott, Ron Stauffer, Nelson Trinkle and Farks Watson.

ELECTION OF OFFICERS. There were no additional nominations from
the tloor and the following officers nominated at the November meeting
were elected wnanimouslyl

Harald Lanna . « « « « Fresident

John Furcell « . + « . Vice~-Fresident
Carlos Chaftin. Secretary/Treasurer
Nelson Trinkle o o o o Software Librarian
Dave Harrington. . o . Newsletter Editor

P Jum

acl wEy s LI T he

TE oprompting, Watson stated that the treasury was
Fecelving mocle, with the result that 7 of the eiaght
meambers present coughed up $12.00 each for 1984 dues. Also one memter,
Hartk uteilgleder had malled 1n his check for a total of eight members
pald ftor the ney S |

o drscussion of Lhe guestion of moving up fubuwre nominations and
clections of it tloere to meet the REMark publication fead] Lne
Loviid catad that 14 shovld be deferred to a later date.

FHUG Garette Jarm 84 - oo
e program for the evering was an Letroductid on tw the O

brogramming languaue by Carlos Chafim, tncluding the genareal Dverview
o the decign of the Language, and a bried comparison of O compilers
from three difrerent sources. Larlos” enthusiasm for i W evident,
but tempered by Bhe warning that tutorial tyvpe publications on the
subject were practically non-existent.

The meeting adiourned at 1@: @@ M.

Farks Watson

becretary/Treasurer
k*%**%**%**a*f!!%ﬁ%%%**k******i**k%*************k*rﬁ{*i*r%k*%***%**#ﬁ*
NEWS
MAILING OF NEWSLETTERS

This month 1s the last one in which this rewsletter will be
mailed to persons who have not paid dues. 1If vou have not palc vouwr
dues, yvou will no longer receive this newsletter, Meaxw (prospective)
members will still have an opportunity to receive one issue, without
payment of dues. This is a simple matter of economices. No Tickea? ——No
Shirtee!'! (If vou can®t attend the next meeting and want to pay yvour
dues by mail, send a check to Carlos or Harold Larrna.)

BRI R Ok L R L R IR R v v *****'********'************************-ﬁ LR R R R LR R
AR UE R R R E R R O R S LR R R L L R L R R R R Vs 33 I W W W KN KW KWW

ASSEMBLY LANGUAGE PRDGRAMMING‘— PART 7
by Jim Scott

INTRODUCTION

This 15 the seventh of a series of articles which parallel ancd
summarize the discussions about assembly language at our meetings.
The purpose of the discussions and the articles is to present enaugh

information about assembly language programming so that someone who
knows how to program in a higher-level language, and is willing to use
the proper manuals for reference, will at least have some idea how Lo
get started at programming in assembly language.

The previous four articles (August, September, October, and

December LSELues of the Gazette) described the Data Transtfer,
Arithmetic, Lagical. and Branch groups of instructions for the 808G
CFL. Instructions in these groups maove data between registers and

memory. perftorm arirthmetic and logical operations on data in registers
and memory, and alter the normal sequence of program ¢1ow. This time
we will discuss the final group of instructions, the Stack, 170, and
Machine Conteol Cor g o

STACK, 1/0, AND MACHINE CONTROL GROUF

Instructions in this group manipulate the stack, pertarm 1/0
boend outputs, and alter internal control +1ags.

frmpu

Foead (o ez COnmLdering the individual instruct 1 &raay
Lamethang about what a stack is. (I wve put thie ELEY
ol et (L] we ' ve 10t w0 0 ity “h bad

RHUG Gazette ~ Jan 84 - Fage

Article 2 1in this series (see the July issue of Lives
defined the Stack Fointer register pair (SF) as follows:

S Stack Fointer Contains the address of the meanry Locston
which 1 the current "ot ack Lo atLon. [e

stack is a set of consecutive menor v locations
which are used for temporarily saving data so
that 1t can be retrieved later. Instructions
such as FUSH, FOF, CALL, and RET make special
use of the stack pointer.

The stack may be thought of as a stack of cafeteria trays with a
spring under the bottom of the stack to keep the top of Lthe stack more
or less level with the top of the counter. This 1s sometimes called a
"push—-down stack" or a "last-in-first-out (LIF(O? cueue ', Wher a
cateteria employee adds a tray (supposedly clean) to the stack, 1t ig
added to the topi the rest of the stack is pushed down by one tray-—-
thickness. This is called a "push" operation (by us programmers, that
is). When a customer takes a tray, it is taken from the tops the
spring makes the rest of the stack rise by one tray-thickness. This
is called a "pop" operation: a tray has been popped off of the stack.
The last trav in is the first one out.

The stack in the B8#8¢ is, as mentioned above, a set of
consecutive memory locations. Now, there is no magic place in memory
determined by the computer factory to be the staclk. Any place in
memory will do {(as long as that area in memoary isn’t already being
vsed for something else). When the machine is cold-booted, one of the
things that happens is that a stack is set up. This means that an
address 1s moved into the Stack Fointer register pair (SF) 5 the
address put into SF at this point should be the address of the byte
just above the top of the memory area allocated to serve as the stack.
For example, if memory locations F8@1 to FFFE are to be used as the
stack, then SF should initially be set to FFFF.

Each "tray" of the 8080 stack holds 16 bits: i.e., the contents
of one register pair, or a sixteen—bit address, can be put onto the
stack 1n one operation. As you may remember from the preceding
article in this series, the CALL and Ccc instructions push the address
ot the next sequential instruction onto the stacks the RET and Rce
instructions pop an address off of the stack and put it into PC (the
Frogram Counter register pair). The FPUSH, FOF, XTHIL., and SPHL
instructions, described below, move data 16 bits at a time between the
stack and a register pair. When an item is pushed onto the stack, the
address in 8F is decreased by 2, to show that the current top of the
stack is twn bytes (1é hits) lower than it used to be. When a pop
takes place, 218 added to SP. Thus SF always points to the current
top of the stack, even if this is a lower memory address than the
original top of the stack.

It is important to remember that items pushed onto the stack must
be popped otf in the opposite order. For example, 1f a subprogram
begins by saving the contents of the BC, DE, and HL reglrster pairs

FUSH I
FlisH D
FLSH M

RHUG Garette - Jan 84 - Fage 4

then it must terminate by restoring them in the opposite order.

FOF H
FOF D
FOF &
RET

(The RET pops off the return address which was pushed byv the CALL that
invoked this subprogram.) If the FOFs were done 1n another order, the
wrong values would get into the wrong regirster pairs. It the RET were
done without doing any FOFs, the return would be to the wrong address
(whatever was in HL when the subprogram was entered).

Just as there i& no magic place where the stack has to be
located, it is also quite possible to have more than one stack
(although SF will only point to one stack at a time). If vou write an
assembly language program that will make use of any 1nstructions that
manipulate the stack (and it would be pretty difficult to aveoid these
instructions), you need to consider what stack vou will use. When
your program begins execution, S5F already containe an address. This
will be the current top of the stack set up by the operating system.
How much space is available on this etack? There is no guarantee.
How much stack space will vour proagram use” That depends on how many
CAlLls and FUSHes you do, and whether your RETs and FOPs are
interspersed with them or not. (If you do ten FUSHes before doing &
FOF, then you need at least 20 bytes for your stacki: but if vyou do
FUSH / POF ten times in & row, this will reuse the same two bytes of
the stack ten times.) It also depends on what operating system
routines you may call (e.g., SCALLs in HDOS, or CALL BDOS in CF/M) and
how these system routines use the stack.

Generally, it 1s safer to set up your own stack area, although
many assembly language programmers do not do this, and never have any
trouble. You can set up your own stack by using a DS assembler
directive to reserve the space for the stack (usually a couple of
hundred bytes should be plenty). Near the beginning of the program,
store into SF the address of the next byte beyond this area. I+ vyou
are going to terminate your program by doing a JMP to the operating
system BOOT routine, then vyou don’t need to save the operating
system’s stack addressi otherwise, you will need to save the original
value of SF (when your program begins execution), and restore SF to
this wvalue just before doing the RET instruction that terminates your
program.]

What marks the bottom of the stack? Nothing! If vou push more
onto the stack tham it will hold, the address in SF keeps getting
lower by 2 bytes at a time, and each additional push writes over
whatever data or program code happens to lie just below the allocated
staclk area. This can easily cause what the computer manuals like to
refer to as "unpredictable results" (what else could they call 1t7),
It an assembly language program you wrote goes oft into never—-never
Land during testing, consider the possibility that it may need a
brgager staclk,

Now vou know everything about stacks. Let” s get down to

el meses,

he individua Lnstructions are as fnllowes.

RHUEG Gazette - Jan 84 - Fagoe 9
FUSH (Fush)

Faormats: FLUSH rp
where vp can be B, D, H, or FSW, representing reg:r«lter palrs BL, DE,
HL ., and the Frocessor Status Word, respectivel y. (The Procossor
Status Worad consists of the accumulator (A) and the tlag word (F)i Lhe
high—order half of FW 185 A.) This 1nstruction pushes the reglrster

pair onto the stack. It does this as follows: it moves the hioh-
order register to the memory location whoss address (s one less than
the contents of SFY 1t moves the low-order reglster Lo the memory

location whose address is two less than the contents ot S8 then 1t
subtracts two from the contents ot SF.

Erxampled FLSH D
This pushes the contents of register pair DE onto the top of the
stack.

This instruction 1s wsed for remembering a lé-bit value. The
value will presumably be recalled at a later time, by executing a FOF
D instruction.

POF (Pop)

Format FOF mp
where rp can be B, D, H, or FSW, representing register pairs BC, DE,
HL.y and the Frocessor Status Word, respectivelv. (The Processor
Status Word consists of the accumulator (A) and the flag word (F)i the
high-—-order halt of FSW is A.) This instruction pops the register pair
from the stack. It does this as follows: it moves the contents of
the memory location, whose address is specified by the contents ot 85F,
to the low-arder register of rpi it moves the contents of the next
memory location, whose address is one more than the contents of &F, to
the high-order register of rpi then it adds two to the contents of SF.

Example: FOF R
This pops the contents of the top of the stack into register pair RC.

This instruction is used for recalling a lé6-bit value which
presumably was remembered at an earlier time, by executing a PUSH R
instruction.

XTHL (Exchange Stack Top with HL)

Feormat XTHL.
This instruction exchanges the contents of HL with the item on the top
of the staclk. It does this by exchanging the contents of the L
reglister with the contents of the memory location whose address 18
specitied by the contents of SF§ it exchanges the contents of the H
reglister with the contents of the memory location whose address 1s one
more than the contents of SF. It does net change the value of SF.

Example X THL.
This exchanges the contents of HL with whatever was most recently
pushed onto the stack.

This 1nstruction i1s not used very often. It can be wsed to
change the value of the item on the top of the stack withoubt having to
oo a FUSH. T can also be used to retrieve the value of the 1tem on

the top of the stack without having to do a FOF, bat it 18 necessary
to remember that XTHL changes-the stacki: the instruction seouence XTHL
LLHGE /7 XYTHL could be used to aoet the valuwe of the item on the top ot

FHHUG Gazette - Jan 934 Fage &
the stack into DE without making a permanent change to the stack.
SPHL (Move HL to SF)

Farmat SFHL
This instructinon moves the contents of HL o o s i ol 2

Example: SFHL.

This instruction is used to set up a new stack. The aduress of
the byte just above the top of the stack is loaded 1nto Hl., then the
SFHL instruction is executed. An LXT SF instruction could also be
used, but only it the address of the stack is an absolute address.
Usually the address is known only at execution time, or is calcul ated,
s0 the SFHL instruction is used to set SP.

IN (Input)

Format: IN port
This instruction receives an 8-bit value from the part (I/0 device)
whose number 18 specitied in the second byte of the instruction, and
puts the value i1nto the accumulator (register A).

Example: IN E&E0
This reads a byte value from the front panel kevpad on the HH
computer.

At the lowest level, this instruction is used to do all input.
How it works depends on the device represented by the port. Which

port number represents which device depends on a number of hardware
considerations.

OUT (Output)

Format: OUT port
This instruction sends an 8-bit value from the accumul ator (register
A) to the port (I/0 device) whose number is speciftied in the second
byvte of the instruction.

Example: QUT Z716
This sends the contents of A to the magnetic tape device, if any, on
the HE computer.

At the lowest level, this instruction is used to do all output.
How it works depends on the device represented by the port. Which
port number represents which device depends on a number of hardware
considerations.

El (Enable Interrupts)

Formeat s ki
thiis anstruction enables the computer to take interrupts tollowing the
execution of the next instruction.

Frample: k1

s anstractilon undoes the etfect of the L instruction (e
el owr .

RHUG Gazette - Jan @4 -~ Fage 7
DI (Disable Interrupts)

Format Dl
This instruction disables the computer from Talbing anterrupts,
immediately following the execution of the DI instruction.

Examples Dl

thig instruction suspends the ability of the compurter to acoept
interrupts. A complete discussion of interrupts ie bevond the scope

of this article. But the main thing to know i that all 170
operations require interrupts. This includes disk reads, disk writes,
displaying characters on the screen, and accepting input from the
terminal kevboard or the computer front panel keypad. While
interrupts are disabled, no I1/0 can take place.

Fossible reasons for disabling interrupts include temporarily
allowing the system to run Ffaster (by preventing the additional
processing necessary to handle interrupts), or allowing time-dependent
code to run without being interrupted.

HLT (Halt)

Format HL.T
This instruction stops the computer. It may be started again only by
an interrupt or a hardware restart. '

Examples HL.T

This i1nstruction has very little actual use. Generally, A
program will terminate by executing a RET or JMF instruction rather
tharn HLT. The operating system itself, if it has nothing to do, will
also not dp a HLTY it will go into a loop, waiting for input from the
keybhoard. ;

NOF (No Operation)

Format: NOF
This instruction does nothing, and has no affect on any registers or
memnory locations.

This instruction may be included in an assembly language pragram
tao leave room for "patches". It may also be patched into the object
code for an existing program, to eliminate other instructions. The
ohject code for NOF is a bvte value aof zero.

CONCLUSION
This completes the discussion of the 8689 instruction set. The

next article will continue the discussion of assembly language
programming for the SE8E,

B L R I i R i R o B R B TR R R
R R R R R R R e R R R R L R R R R R R

