H17Disk

New H17 Hard-sectored Disk Image

1 1.0 Overview

2 This document documents a new format for Heathkit H17 Hard-sectored Disk Images. The current format 3 being used, "H8D", does not preserve the header information on the disk. It only saves the raw user data (256 4 bytes per sector). Since it does not store the 5 byte header for each sector; recreation of a disk requires additional 5 information such as whether the disk is for HDOS or CP/M, and if it's an HDOS disk, what volume number is 6 used, etc. Having this information is critical to transparently supporting different OS (HDOS vs. CP/M) disks in an emulator. It also allows properly writing the data onto a new physical disk without having to know details of 7 8 the disk. The current H8D format requires the user to specify the volume number when creating a new physical disk from the image or forces the volume number to 0. 9

10 The new format is called H17Disk. On modern OSes, which support long file names, such as Linux, 11 Windows and Mac OS X, the file extension is ".h17disk". On DOS, or any other system which limit extensions 12 to 3 bytes, the extension is ".h17". Note: the file extension is not critical to the format; internal checks are 13 available to make sure the file is a valid H17Disk.

14 **1.1 File layout**

The file starts with a 4 byte file tag "H17D", a 3 byte version number, and a 0xFF byte. Starting at offset 8, the remainder of the file consists of blocks of data.

Name	Size	Description
File Tag	4	ASCII "H17D" (0x48313744).
Version	3	The file format version.
8-bit check	1	Fixed value of 0xFF to verify 8-bit clean

Table 1: File Header

17 2.0 Detailed Description

18 **2.1 Header**

19 The file starts with the 4 bytes 'H17D'. This is the file's magic number, which helps programs to confirm they 20 are working with a valid H17Disk file.

The next 3 bytes are the Version number. It starts with major number, then minor number, and finally point release. Major number will increase when there is a significant change or addition to the standard. The minor number is for minor revisions, or corrections. Point release changes are for clarifications to the standard that do not impact the functionality. These numbers are ASCII, for example version 3.2.1 would be stored as 0x33,0x32,0x31.

26 The program that created the file, should set this field to version of the spec, which it is compliant to.

27 The current version of the standard is 2.0.0.

The next byte is 0xFF, which allows verification that file has not been transferred over a 7-bit link which has cleared the high-bit of each byte. If the byte is not 0xFF, then the file has been irreparably damaged.

30 **2.2 Blocks**

The remainder of the file consists of Blocks with the general format being a 4 byte identifier. The block ID will be 4 ASCII characters. The next 4 bytes of the block is the length of the stored Block data, not including the bytes of the header. The block data immediately follows the length bytes. The format of the block data is

34 dependent on the Block ID type.

Position	Description
0-3	Block ID
4-7	Length (big endian)
8	Block Data
	- Dependent on Block ID type
8 + Length	

 Table 2: Block Format

35

Value	Name	Mandatory to Process if included	Required to be included	Description
DskF	Disk Format	Yes	Yes	General information about the disk (must be first block).
Parm	Parameters	Yes	No	Parameters for the disk
Date	Date	No	No	Date image was created
Imgr	Imager	No	No	Person who imaged the disk
Prog	Program	No	No	Program used to create the image
Padd	Padding	No	No	Used to ensure H8D block data starts at byte 256 in the file.
H8DB	H8D Block	No	Yes	Raw data bytes, which are aligned and only contains the sector data. This is the same as the current H8D format.
SecM	Sector Metadata	No	No	Shows if sector was imaged successfully, and any errors, where location is located in the H8D block, and header and checksum bytes.
Labl	Label	No	No	Information from the physical label on the outside of the disk. Free-form Text.
Comm	Comment	No	No	Comment for the Disk, Free-form Text.

Table 3: Block ID Type Values

36 **2.2.1 Disk Format Block**

The Disk Format Block specifies the number of sides and tracks for the image. Other drive characteristics arefixed for Heath hard-sectored disks. This include:

Drive Characteristic	Value
Sectors per Track	10
Data bytes per sector	256
RPM	300
Encoding	FM
Bit rate	250 bps

Table 4: Fixed disk parameters

All Heath hard-sectored disks, use FM encoding, 10 sectors per track, 256 bytes per sector, and 300 RPM.

Description	Size (bytes)	Allowed Values	Default Value
Block ID	4	DskF	-
Block Length	4	2-3	-
Sides	1	1 – 2	1
Tracks	1	40 or 80	40
R/O	1	0 - false / 1 - true	0 – false

Table 5: Disk Format Block

40 Sides – Number of recorded sides of data on the disk.

- 41 Tracks Number of tracks per side
- R/O Flag (boolean) This signifies if the disk is write protected. If the value is 1, the disk is write protected.
 If 0, writes are allowed.

44 **2.2.2 Parameters Block**

- 45 The Parameters Block is an optional block in the file.
- 46 The parameters block currently defines 2 fields.
- 47 Fields are defined in the order specified in this document. New fields will be added at the end of the list.

Description	Size (bytes)	Туре	Allowed Values	Default
Block ID	4		Parm	
Block Length	4		0-2	
Distribution Disk	1	Value	0-3	0
Source of Header Data	1	Value	0-5	0

Table 6: Parameter Block

48 Distribution Disk(value) - This flag signifies if the image was created from an original distribution disk.

Value	Meaning
0	Status of source disk unknown.
1	Image was created from an original distribution disk.
2	Image was not an original distribution disk.
3	Image was created from a disk, which appears to be a copy of a distribution disk.
4-127	Reserved.

Table 7: Distribution Disk Flag

Source of Header data(value) - This flag determines if the headers for the image were save from the actualdisk or if it was created by a utility.

Value	Meaning
0	Generated by an H8D to H17Disk conversion utility
1	Created by an emulator
2	Captured on an H8/H89
3	Captured with an FC5025
4	Captured by AppleSauce
5-127	Reserved.

Table 8: Source of Full Track Data Flag

51 **2.2.3 Label Block**

52 The Label Block is an optional block in the file, but highly recommended. The block is free-form text, 53 describing the label of the disk.

Description	Size (bytes)	Value
Block ID	4	Labl
Length	4	
Text	<length></length>	<free-form text=""></free-form>

Table 9: Label Block

54 **2.2.4 Comment Block**

55 The Comment Block is an optional block in the file, but highly recommended. The block is free-form text, 56 allowing the user to make any comments about the disk. The user could include such things as the brand of the 57 disk, how the disk was acquired, and any other details they want to record.

Description	Size (bytes)	Values
Block ID	4	Comm
Length	4	
Text	<length></length>	<free-form text=""></free-form>

Table 10: Comment Block

58 **2.2.5 Date Block**

The Date Block is an optional block in the file, that specifies the date/time when the image was generated.This should be in ISO 8601 format.

Description	Size (bytes)	Values
Block ID	4	Date
Length	4	
Text	<length></length>	<should 8601="" be="" format="" in="" iso=""></should>

Table 11: Date Block

61 **2.2.6 Imager Block**

62 The Imager Block is an optional block, which specifies the person who imaged the disk. They can provide as 63 much detail as they wish, such as, name, email, website, phone number, etc. Or they may choose to provide no 64 information, and have this block not included in the file.

Description	Size (bytes)	Value
Block ID	4	Imgr
Length	4	
Text	<length></length>	<free-form text=""></free-form>

Table 12: Imager Block

65 2.2.7 Program Block

The Program Block is an optional block, which specifies the program used to generate the file. This can be free-form text, with the program name, OS, version, and reference information (such as website to find the program).

Description	Size (bytes)	Value
Block ID	4	Prog
Length	4	
Text	<length></length>	<free-form text=""></free-form>

Table 13: Program Block

69 **2.2.8 H8D Data Block**

To make the transition to the new format easier, this block allows existing applications which are currently using H8D images, to use this block with very little code changes. Sectors are ordered in logical order. The data portion of this block must start at file offset 256. Working backward, this means this block must start at file offset 248.

The H8D block is just the raw data blocks of in the same format as existing H8D files. The blocks start with Side 0, Track 0, Sector 0.

76

File Offset	Description	Size (bytes)	Value
248	Block ID	4	H8DB
252	Length	4	<should 256="" a="" be="" multiple="" of=""></should>
256	Data	<length></length>	<sector data=""></sector>

Table 14: H8D Data Block

77

2.2.9 Sector metadata

Description	Size (bytes)	Values
Block ID	4	SecM
Length	4	
Metadata	<length></length>	

78

This block contains important information about each sector of the disk. The information for each sector is 16 bytes long. The information include the data needed to place the sectors in the original physical order, header/checksum bytes, and any error status for the sector. The sector metadata is laid out in physical order as imaged from the disk. For single-sided images, it starts at track 0, sector 0, continues in order for each sector on track 0. It continues in the same way for each track 1 through 39 (or 79 for 80 track images). For double-sided disks, for each track, it will have both sides alternating. First side 0, track 0, sectors 0 to 9, then side 1, track 0, sectors 0 to 9. This continues for each track (up to 39 or 79).

Byte	
0-3	Offset to data block
4	Sector Status

5	Header Sync Byte (0xFD)
6	Volume
7	Track
8	Sector
9	Header Checksum
10	Data Sync Byte (0xFD)
11	Data Checksum
12 - 13	Valid Bytes in the block
14 - 15	Reserved

86 87

88

89

2.2.9.1 Offset to data block

The offset (from the start of the file) to the 256 byte sector data in the H8D block. This allows recreating the correct physical layout of the track (i.e. the interleave).

90 2.2.9.2 Sector Status

91

2.2.9.2 Sector Status

Sector status is used to indicate whether or not the sector had any errors during the imaging.

Bit	Meaning
0	Missing Header Sync
1	Wrong Track
2	Invalid Sector
3	Invalid Header Checksum
4	Missing Data Sync
5	Invalid Data Checksum
6	Sector was unreadable
7	Reserved

92 93

94

95

97

98

99

100

102

104

2.2.9.3 Header Sync Byte

The sync byte for the start of the header block. This should be 0xFD for all valid Heathkit hardsectored disks.

96 2.2.9.4 Volume

Volume number recorded in the header block. For Heathkit disks, volume number for track 0 is always 0. CP/M always uses a volume number of 0. For HDOS disks, track number for tracks great than track zero can be set to any value between 0 and 255. It should match the track number specified in the Label sector of track 0.

101 2.2.9.5 Track

Track number recorded in the header block

- 103 2.2.9.6 Sector
 - Sector number recorded in the header block.
- 105 2.2.9.7 Header Checksum

106	Checksum recorded in the header block
107	2.2.9.8 Data Sync Byte
108 109	The sync byte for the start of the data block. This should be 0xFD for all valid Heathkit hard- sectored disks.
110	2.2.9.9 Data Checksum
111	Checksum recorded in the data block.
112	2.2.9.10 Valid Bytes in the Block
113 114 115	A value between 0 and 256, signifying the number of bytes in the data block that appeared to have proper clock bits. (Some disk imaging setups will be able to detect where bad data starts in a sector due to errors in the expected clock bits.)
116	2.2.9.11 Reserved
117	
118	
119	