Here’s a look at some inside information on how Heath's disk operating system handles disk files.

Dissecting the HDOS Diskette

Like so many computer manufac-
turers before it, Heath has with-
held a great deal of information from
its users concerning how HDOS han-
dles disk file space.

Such lack of information is a major
obstacle to recovering from diskette
crashes, when it is often necessary to
reconstruct, files on a diskette by
hand. Rebuilding files sector by sec-
tor requires intimate knowledge of
the diskette structure, and until now
few outside of Benton Harbor have
had this knowledge.

In this article, I will try to reveal
much of this formerly unavailable
wisdom. Armed thus, you should in
the future be able to salvage most of
the data on a crashed diskette in some
usable form.

Review

Data is recorded on the diskette
surface ih concentric circles called
tracks. The number of tracks is de-
pendent upon the material used, the
recording head and the reliability re-
quired. Originally, due to problems
reading the inner tracks, floppy-disk
drives contained a maximum of 35
tracks; these days we can use 40
tracks with very high reliability, as
HDOS does.

Each track is further subdivided in-
to ten sectors {Fig. 1). In our case
these are hard sectors, each of which
has an individual hole cut into the
diskette, one per sector, to mark its
position within the track. Sector 0 has
an additional hole between the other
two, which yields a total of 11 holes
around the inner rim of the diskette.

66 Microcomputing, July 1981

By E. Tom Jorgenson

Initial bytes: Nulls

First byte: Sync (OFD hex)
Second byte: Volume number
Third byte: Track number
Fourth byte: Sector number
Fifth byte: Header checksum

Table 1. HDOS sector header.

SECTOR 9

SECTOR O SECTOR 8

SECTOR | SECTOR 7

SECTOR 2 SECTOR 6

SECTOR 3 SECTOR 5

SECTOR 4

Fig. 1. Sector division of a track.

An LED and phototransistor within
the floppy-disk drive uses these holes
to produce sector pulses, which then
can be monitored by the operating
system to locate the start of a sector.

The HDOS Séctor Header

HDQS could locate any sector on
the diskette by first positioning the
head on the correct track and then
counting the number of sector pulses
from the sector 0 mark generated by
the drive. There is an inherent prob-
lem in such a scheme, however, in
that the system could become lost by

reading the wrong number of track or
sector pulses.

Fortunately, HDOS does not sub-
scribe to such a simple scheme.

During the initialization process,
HDOS writes a dummy sector within
each physical sector. This dummy
sector consists of two parts: sector
header and data area.

The leading nulls in the header (Ta-
ble 1) give the system some ''slop’’ in
head positioning since they will be ig-
nored (as will anything before the
sync byte). The sync byte (OFD hex)
tells the floppy-disk controller elec-
tronics exactly when a sector header
is under the drive head.

As you can see, the volume, track
and sector bytes uniquely identify
each sector on the diskette, and the
header checksum identifies any er-
rors that occur in reading this header.

If an incorrect volume byte' or
header checksum is read a numbet of
times in succession, HDOS will call
the sector bad. An incorrect track or
sector byte will cause a new sector
search to begin {with the associated
nightmarish sounds from the drive
stepper motor).

Using a sector header such as this,
HDOS needs merely to read one sec-
tor to determine precisely where ona
diskette the head is currently posi-
tioned. There is no chance of getting
lost, as with the more primitive meth-
od. Additionally, we gain a speed in-
crease in sector searches, since
HDOS does not need to spend a lot of

Address correspondence to E. Tom Jorgenson, 122
Yankee Drive, St. Charles, MO 63301.

time just in locating the desired sec-
tor. The advantages far outweigh the
small amount of overhead we pay in
creating and detecting the sector
headers.

Notice that each sector contains the
volume number of the diskette. This
is done so that no read or write opera-
tion will succeed to any diskette not
correctly mounted by HDOS.

' Diskettes formatted on the Heath-
Lifeboat CP/M system all normally
have volume numbers of 0.

The Sector Data Area

Immediately following the sector
header and completely within the
same physical sector is the data area
(Table 2).

Within the data area the nulls, sync
bytes (also OFD hex) and checksum
perform the same basic functions as
they do within the sector header.

The remainder of the data area con-
sists of the actual 256 bytes in which
we are really interested. During nor-
mal operations the sector formatting
(header, sync bytes and checksums)
is completely invisible to the opera-
tor.

Special Areas

Once INIT has written dummy sec-
tors throughout the entire diskette, it
next creates five special areas neces-
sary for the HDOS file-handling tech-
niques (Table 3).

Bootstrap area. The bootstrap area
on the diskette contains the loader
module for the operating system.
When the HDOS system is cold-
booted (i.e., brought up from scratch),
the first four sectors {track O, sectors
1 through 4| are loaded into memory
and executed. These sectors provide
the basic information necessary to lo-
cate—and load—the first part of
HDOS (HDOS.SYS) into memory.

Label identification sector. The next
reserved diskette area (track 0, sector
10) is used by HDOS to store some
very basic facts about the diskette in
question.

Initial bytes: Nulls

First byte: Sync {0FD hex)
Next 256 bytes Data bytes
Last byte: Checksum

Table 2. HDOS data area format.

Most importantly, this sector tells
HDOS where to locate the start of the
diskette directory and the GRT
(group reservation table} sector.
These two areas are the pointers to all
the remaining files on the diskette.

HDOS has the ability to read files
in small groups of sectors called clus-
ters. Since these cluster sizes can ap-
parently be varied from diskette to
diskette, HDOS stores the current
cluster size here also.

The remaining information within
this sector is doubtless more familiar
to you. This sector is also where the
volume identification number and ti-
tle are stored.

Reserved group table (RGT). The
next sector we come upon (track 1,
sector 1) contains the diskette RGT
map. This sector allows HDOS to
lock out bad clusters on the diskette
with INIT.

Byte values within the RGT show
the current status of the individual
clusters in the same relative diskette
positions. Usable clusters are marked
with a 01 byte. Zero or any negative
value locks sectors out.

When INIT formats a new diskette
and prepares to write a blank direc-
tory, it first looks for a large enough
number of good sectors in which to
write it. Any bad sector returns will
cause HDOS to lock out their clusters
within the RGT. This is the only cir-
cumstance I know of that can cause a
directory to be repositioned from its
normal location (track 22, sector 2) on
the diskette.

Track 0 is always locked out, since
it is intended to be available for sys-
tem use only.

HDOS directories. The directory or-

Bootstrap area Sectors 1 to 4

Label identification Sector 10
sector

Reserved group table Sector 11
(RGT.SYS)

Directory (DIRECT.SYS)

sector 222
Group reservation table
(GRT.SYS}

Usually starting at Actual file entries

Usually sector 238 Diskette cluster linkages

Table 3. Reserved areas on the HDOS diskette.

Contains bootstrap loader for HDOS.SYS
Diskette identification

Sector lock-out map

File entry #1
File entry #2
File entry " #3
File entry #22

0 byte

Single byte entry length

Two-byte block number of this cluster
Two-byte block number of next cluster

Table 4. Directory cluster block format.

»See List of Advertisers on page 194

dinarily contains nine clusters of 22
entries each for a total of 198 possible
entries (Table 4). This is actually 22
more entries than the number of files
it is currently possible to write on the
diskette, so don't worry about writ-
ing too many file entries under
HDOS.

As shown in Fig. 1 each directory
cluster points to the next cluster until
the last cluster points to cluster 0.
This is necessary since the initial di-
rectory read operation cannot treat
the directory itself as a file—it simply
doesn’t know at this point where on
the diskette the directory cluster will
be or how to find out otherwise. Such
information only becomes available
once the directory is read. It's the old
chicken-or-the-egg story all over
again.

Directory clusters also individually
specify their own internal entry
lengths. Apparently it would be pos-
sible to allow for longer file names
than are currently being used by
patching the directory clusters. This
is but one of the hidden possibilities
of HDOS.

Each directory file entry (Table 5)
consists of the same 23-byte format as
shown.

These directory entries cortain all
the information necessary to tell
HDOS how to read the file and where
to begin (and end) reading it on the
diskette. The cluster factor tells
HDOS how the file is intended to be
read (sectors per operation). First and
last group numbers specify the start-
ing and ending clusters within the
file. The last sector within the last
cluster is specified by the last sector
index.

The first byte of the file name is
used to mark files as-deleted (with a
OFF hex byte} and to mark the end of
usable entries (with a OFE hex byte).
Files recently deleted—and not over-
written—can be recovered by restor-
ing this byte to its former ASCII val-
ue. Any directory entries after a OFE
byte here will be ignored.

Microcomputing, July 1981 67

File name
Extension
Project
Version
Cluster factor
Flags

First group number {FGN}
Last group number (LGN}
Last sector index (LSI)
Creation date

Last alteration date

{S=200Q, L=100Q, W=40Q, C=20Q) Reserved

Table 5. Directory entry format.

8 bytes
3 bytes
1 byte
1 byte
1 byte
1 byte
1 byte
1 byte
1 byte
1 byte
2 bytes
2 bytes

After the file name and extension
are two bytes which appear not to be
currently used. These are reserved
for the current project number and
version. What the exact purpose of

. these bytes is, we can only guess—
possibly they are only for internal use
in Benton Harbor.

The next byte contains the cluster
size to use in reading the file (usually
3).. Obviously, from its appearance
here, this may be varied from file to
file.

Currently there are four types of

file flags in use, the three we all know
{SLW) and one undocumented flag,
the C flag.

The C flag identifies which files
must be written contiguously; i.e., in
direct sequence from start to finish.
This flag can be displayed by using
the /JGL switch in PIP.

After the next byte, which is re-
served for future use, are three bytes
which uniquely identify the file clus-
ters allocated to a file. The first two of
these bytes contain the starting clus-
ter number and the last cluster num-

ber. These values are in terms of the
cluster factor stored in the label iden-
tification sector. _

HDOS clusters are numbered in a
sequential fashion without skewing.
Track 0, sector 3, for example, is
within cluster 1, and track 22, sector
2 begins cluster 111.

The third byte is the last sector in-
dex within the cluster. Since a file
may only use part of a cluster, this
byte tells HDOS exactly which sector
is the last within the file.

Finally, we come to the file dates.
The dates are encoded into two bytes
each in packed manner (Table 6).

The first of these, the last alteration
date, is the date we normally see dis-
played by HDOS. This date shows
the last date on which the file was
modified.

Although not normally displayed,

Bits 1 through 5 Day ({1-31)
Bits 6 through 9 Month {1-12)
Bits 10 through 15 Year (Year-70)

Bit 16 : 0
Table 6. Packing dates in HDOS.

the directory entries also contain the
original creation date of the files. This
is encoded within the last two bytes
of the file entries.

Group reservation table (GRT).
HDOS locates file clusters on a disk-
ette dynamically. If a file uses cluster
36, for example, the next cluster
within the file is not necessarily clus-
ter 37. It is possible to link any two
clusters not otherwise in use together
within a file.

This is done to make maximum us-
age of the empty disk area. Imagine
that (as under older systems} an oper-
ating system were always to write a
new file into the largest blank space
available at the time. The system
would work very well until it reached
a point where it had a large file to
write into a number of smaller empty
spaces. The system could not then
use the smaller spaces until they
could be squeezed together into at
least one space large enough to con-
tain the current file.

This is the advantage of a dynamic
file scheme. The system makes use of
all the available blank space without
concerning itself with whether or not
it is in one large group or fragmented.

all over the disk. HDOS really gives
the ability to do both (remember the
C switch), although it normally uses
the dynamic mode.

For this reason, the directory only
points to the beginning and end of a
file. The actual cluster linkage is
stored within the GRT.

Groups of clusters are strung to-
gether within the GRT to form what
HDOS calls chains. Even unused
clusters are linked into a free chain.

When HDOS begins reading a file,
it starts at the cluster specified by the
directory entry. The next cluster read
will be pointed to by the byte in the
first cluster’s relative position within
the GRT. This process continues until
the entire file has been read. The byte
in the last cluster's position contains
zero—which verifies that the file en-
try within the directory is correct,
since the last group numbers should
match.

In this manner, if the last cluster
we read was 26, byte 26 in the GRT
contains the next cluster number we
should read (or 0 if we are finished).

The free chain is linked to cluster 0.
This we can do since cluster 0 is part
of the system area and is locked out

by the RGT.

Corrupt Diskette Structures .

One problem with such a complex
dynamic file scheme is that it can
lead to a rather spectacular diskette
demise.

If the RGT, GRT or directory are
overwritten, or written incorrectly,
our file linkage chains may no longer
match the directory entries or usable
sector map.

Perhaps two directory entries ref-
erence the same diskette cluster or a
file attempts to link to a lock-out sec-
tor. Such situations indicate corrup-
tion of the diskette file structure.

When HDOS tries to mount a disk-
ette, these linkages are tested {and in
some cases updated). If any contra-
dictions are found you will get that
wonderful 'Disk Structure Is Cor-
rupt’’ message and an instruction to
contact the Heath technical assis-
tance department. This is because
Heath is trying to protect us from fur-
ther damaging the file structure by
preventing further diskette write op-
erations.

A better way of handling this situa-
tion might have been to make the

diskette mount as read-only. Current-
ly the corrupted diskettes can only be
read using absolute track and sector
utilities (such as the ABSDUMP utili-
ty available from HUG].

Summary

HDOS is an amazingly sophisticat-
ed system as microcomputers go. A
number of file-handling features are
incorporated which are not available
on many similarly priced systems.

It is appropriate indeed that Heath
Company is beginning to free up a
great deal of information to its users.
Certainly this article would never
have been possible had this not been
the case. Heath has always been
more responsive to its users than its
competitors have been, and just re-
cently this has also become true of its
response to its computer hobbyist
customers.

I am sure that, as more and more
information such as this becomes ap-
parent, we Heath users will see an ex-
plosion of very powerful utilities
coming our way.

Perhaps the H8/H-89 will finally
take its rightful place among the
giants of the industry.l

