
USER’S GUIDE MANUAL

for the

IMAGINATOR

MODEL 1-100 
RETROFIT GRAPHICS 

DISPLAY BOARD

CLEVELAND CODONICS, INC. 
CLEVELAND, OHIO

REV. A

Printed in the United States of America



Copyright © 1982 by CLEVELAND CODONICS, INC.
All rights reserved

No part of this publication may be reproduced, transmitted, transcribed, stored in a 
retrieval system, or translated into any language or computer language, in any form or 
by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, 
without the prior written permission of Cleveland Codonics, Inc., Cleveland, Ohio.

However, permission is granted to reproduce or abstract from the example programs 
supplied in the User’s Guide section of this manual for inclusion within the user’s pro­
grams.

Although every effort has been made to insure the correctness of this 
manual, Cleveland Codonics, Inc. assumes no responsibility for any 
errors that may appear in this manual. Cleveland Codonics, Inc. 
makes no commitment to update nor to keep current the information 
contained in this manual.

The information in this manual is subject to change without notice.



TABLE OF CONTENTS

INTRODUCTION..................................................................................... 1

HOSTCOMMUNICATIONS REQUIREMENTS.................................3

WELCOME ...............................................................................................5

GENERAL................................................................................................. 9

COMMAND FORM AND FUNCTION, ASCII.......................................11

COMMAND FORM AND FUNCTION, BINARY ................................ 27

EXAMPLES...............................................................................................41

THEORY OF OPERATION.................................................................... 53

REPLACEMENT PARTS........................................................................ 57

REFERENCES.........................................................................................59

MODIFICATIONS...................................................................................61

APPENDIX...............................................................................................63

SCHEMATIC.............................................................................................67

WARRANTY.............................................................................................68





INTRODUCTION

The Imaginator is an intelligent, high efficiency, high resolution (504 by 247 pixel) 
graphics retrofit unit for your Heath/Zenith H/Z-19 terminal and H/Z-89 computer.

The Imaginator has its own onboard microcomputer to perform graphics processing in­
dependent of the host computer. This reduces the burden placed on the host processor 
and therefore improves execution speed.

A 128 character communications buffer further improves execution speed. This buffer 
permits the terminal and the host computer to perform their tasks asynchronously.

A graphics command may be entered by typing on the keyboard when the terminal is 
OFF-LINE or it may be sent via RS-232C from the host computer when the terminal is 
ON-LINE.

The Imaginator’s transparent operation leaves all of the terminal’s normal escape func­
tions intact. The terminal's normal alphanumerics are totally independent of the Im- 
aginator's graphics. The two displays can be overlayed on one another and may be in­
dividually altered under software control. Both alphanumeric and graphics images can 
be created in memory and restrained from being displayed on the screen. Once created 
they can be displayed instantaneously. Alternatively, the images may be displayed as 
they are created.

The graphics command processor (GCP) can be invoked to accept commands in either 
ASCII or BINARY format. ASCII mode has the advantage of easy user implementa­
tion of the graphics command language. All of the commands can be directly output by 
high level language programs which are executed in the host computer (e.g., PL/I, FOR- 
TAN, PASCAL, BASIC, and of course ASSEMBLY languages). Standard, off-the- 
shelf, interpreters and compilers are all that are required (those languages need not have 
any special graphics instructions). No machine language driver programs are required.

The BINARY mode has the advantage of high efficiency. A minimum of information 
must be sent to specify an operation. Again, no special interpreters or compilers are re­
quired but machine language drivers are suggested (even these are not required) for effi­
ciency.

An additional memory-mapped socket is provided for memory expansion. Up to 16K of 
E/P/ROM can be mounted and addressed by the GCP, or 8K of E/P/ROM and 8K of R/W 
RAM can be used. Custom programs can be downloaded from the host computer into 
this memory for fast independent execution.



2

GRAPHICS INSTRUCTION SET

EnterGraphicsMode
MoveTo (X.Y)
PointAt (X,Y)
LineTo (X,Y)
AreaTo (X,Y)
Pri LineStyle (Z)

30 Unique styles
SecLineStyle (Z)

30 Unique styles
LineType (Z)

1 On
Off
Complement
Read Bit
Toggle to Alternate LineStyle at Boundary
Read Byte

DisplayToggle (Z)
Enable/Disable Graphics
Enable/Disable Alphanumerics
Erase Graphics
or any of the eight combinations

BringlnProgram (Z0>Zi.... Z117)
JumpToProgram
ExitGraphicsMode

Cleveland Codonics, Inc. reserves the right to discontinue products and to change 
specifications at any time without incurring any obligation to incorporate new features 
in products previously sold.



HOST COMMUNICATIONS 
REQUIREMENTS

When operating at high baud rates, the graphics ter­
minal will generally lag behind the host computer if 
asked to execute a succession of commands with long 
execution times (e.g., Erase, AreaTo, and LineTo 
commands). The Graphics Command Processor 
(GCP) will set the Request To Send RS-232C line 
false when the terminal's input communications buf­
fer is nearly full, preventing a loss of data resulting 
from a buffer overflow. (The terminal’s bell will tone 
to indicate a loss of data.) The GCP will reset the Re­
quest To Send line true when the buffer is ready to 
receive additional data.

Therefore, it is important that the host computer or 
MODEM is configured to respond to this signal. (The 
terminal needs no modification because it is 
manufactured with hardware handshaking capabil­
ities.) A true RS-232C configuration will work fine, 
but often the typical RS-232C’s handshaking por­
tions are incomplete. Pin 4 of the 25-pin “D” connec­
tor on the back panel of the terminal is the Request 
To Send line (defined as Clear To Send at the com­
puter end). A physical wire must connect the ter­
minal’s pin 4 with the computer’s (MODEM’S) pin 4.

The UARTs used in the host’s RS-232C serial ports 
fall in two catagories. Some UARTs, such as the IN­
TEL 8251 Universal Synchronous / Asyncronous Re- 
ceiver/Transmitter, respond directly to the Clear To 
Send signal. A high or low on the Clear To Send line 
with this type of UART will electronically disable or 
enable transmissions This type of UART requires no 
further modifications.

The other type of UART has a software flag that 
represents the Clear To Send signal. Normally, the 
computer’s operating system’s Basic Input/Output 
System (BIOS) is responsible for interfacing with the 
serial port hardware. Generally, the BIOS will check 
to see if the transmitter is ready (TxRDY) before 
loading the UART with a character to transmit to the 
terminal. To add hardware handshaking, simply 
modify the BIOS to check the Clear To Send flag 
also. That is, make sure that TxRDY AND Clear To 
Send are both true before loading the UART with a 
new character to transmit.

Without this hardware handshaking, it is the pro­
grammer’s responsiblity to add software timing 
delays to prevent a buffer overflow.

Hardware handshaking will in no way detrimentally 
effect the operation of any of your existing programs. 
Software handshaking is still present when running 
the terminal in its standard alphanumeric mode. 
Assuming that the process executing in the host 
computer understands ctrl-S (stop transmitter) and 
ctrl-Q (start transmitter), it is possible to suspend 
graphics program output by typing a ctrl-S on the 
keyboard, when the terminal is on line.

The GCP supports only one directional hardware 
handshaking. It will send signals to control the 
host’s serial channel transmitter,but will not respond 
to signals sent to the terminal’s serial channel 
transmitter from the host.

3



4

This page Intentionally left blank.



WELCOME

Welcome to the field of computer graphics. The human mind is the greatest known 
graphics processor in existance. Thoughts can be instantly conveyed by means of a pic­
ture. And in this time of information upheaval graphics is needed more than ever to 
enable one to assimilate it all. As a result computer graphics is one of the fastest grow­
ing disciplines in computer science.

Try typing in and executing the following demonstration programs. (We are assuming 
that you have access to a BASIC interpreter or compiler.)

Note that the Imaginator is assumed to be installed in a terminal that is serving as the 
console.

In case of error. If nothing appears to happen or something very strange happens once 
you have typed the RUN command give the terminal a hardware reset (right-SHIFT 
RESET) followed by a ctrl-C (or whatever command stops program execution in your 
particular version of BASIC). Type LIST and then double check the program for typing 
errors.

Enter and run this program first:

DEMONSTRATION 1.
00010 DEFINT X,Y
00020 PRINT CHR$(27);“1”
00030 PRINT “I0,N255.D3”
00040 PRINT “M”;0;125
00050 FOR X = 0 TO 500 STEP 2
00060 Y = 100*SIN(X/13.27) + 125
00070 PRINT “L”;X;Y
00080 NEXTX
00090 PRINT “D6,E”
00100 STOP

5



6

Here’s another one.

DEMONSTRATION 2.
00010 DEFINT A-Z
00020 PRINT CHR$(27);“1”
00030 PRINT “D3,I2,N255”
00040 FOR J = 1 TO 10
00050 X = 251
00060 Y = 126
00070 PRINT "P”;X;Y
00080 FOR I = 0 TO 80 STEP 8
00090 X = 250-1
00100 Y = 125
00110 PRINT “L”;X;Y
00120 X = 254
00130 Y = 121-1
00140 PRINT “L”;X;Y
00150 X = 258 + I
00160 Y = 125
00170 PRINT “L";X;Y
00180 X = 250
00190 Y = 133 + l
00200 PRINT “L”;X;Y
00210 NEXT I
00220 NEXT J
00230 PRINT “D6,E”
00240 STOP

Too simple? Try this one if you have some time.

< This program requires the host computer to calculate over 30,000 coordinates so it 
takes quite a while to complete. Start this program and relax, read the rest of the User’s 
Guide.

DEMONSTRATION 3.
00010 DEFINT F,I,L,N,O,X,Y
00020 DIM L(302)
00030 PRINT CHR$(27);“1";“D3,N255,IO,MO,O,A5OO247,I1”
00040 FOR I = 0 TO 301
00050 L(l) = 0
00060 NEXT I
00070 PRINT "P050023"
00080 OY = 23
00090 OX = 50
00100 FORY = 0TO100
00110 FORX = 0TO300
00120 ZX = (X-150)*(X-150)/1790.5
00130 ZY = (Y-50)*(Y-50)/199
00140 Z = COS(ZX + ZY)/(S IN ((ZX + ZY + .48)/82))
00150 NX = X + Y + 50
00160 NY = Y + Z + 20
00170 IF F = 1 THEN PRINT “M”;NX;NY : F = 0 : GOTO 200



7

00180 
00190 
00200 
00210 
00220 
00230
00240
00250
00260
00270

IF NY > = L(X + 1) THEN PRINT “P”;OX;OY;“L”;NX;NY : GOTO 200
IF NY < = L(X + 1) THEN L(X) = L(X + 1): GOTO 210
L(X) = NY
OX = NX
OY = NY
NEXTX
F = 1
NEXTY
PRINT “D6,E”
STOP

/

s



8

This page intentionally left blank.



GENERAL

COMPUTER GRAPHICS BASICS

This is an introduction to the general concepts of 
computer graphics for those who may be unfamiliar 
with the field. Basically, a graphics terminal in its 
simplist form need only execute two commands: 
MoveTo(X,Y) and LineTo(X.Y). A superset of com­
mands can be formed from these two primitives.

Consider for the moment a hardcopy XY plotter. The 
MoveTo(XltY,) command in this case will lift the pen 
off the paper and move it to the absolute coordinate 
(X^Y,). The LineTo(X2,Y2) command will drop the 

y pen onto the paper and move it in a straight line to 
the absolute coordinate (X2,Y2) (i.e., it would draw a 
line segment from (X,.Y,) to (X2,Y2)).

In a CRT style graphics terminal the commands 
would be executed in a similar manner. The 
MoveTo(X,,Y,) command will move a virtual pointer 
to the absolute screen coordinate (Xi.YJ. Nothing is 
written on the screen. The LineTo(X2,Y2) command 
writes a straight line on the screen from the absolute 
coordinate (X1(Y,) to the absolute coordinate (X2,Y2) 
by turning on the appropriate pixels (picture ele­
ments). Almost any geometrical shape can be created 
by a sequence of MoveTo and LineTo commands 
(e.g., a circle can be approximated by a many sided 
polygon). Several other primitive utility commands 
are convenient, such as some means to erase the 
screen and a command to reinitialize the graphics 
terminal. To take some of the burden from the ap­
plications programmer, this primitive instruction set 
is usually expanded.

IMAGINATOR SPECIFICS

The graphics screen memory is composed of 131072 
bit arranged in a 512 by 256 array (although only 504 

by 247 are user accessible and displayed). The 
positive X axis (horizontal axis) originates at the left 
of the screen and terminates at the right. The 
positive Y axis (vertical axis) originates at the bot­
tom of the screen and ends at the top. Therefore, the 
origin (0,0) is located at the lower left of the screen. 
Since the alphanumeric screen is 80 characters wide 
and the graphics screen is 63 characters wide, the 
graphics screen’s left starts at the alphanumeric’s 
9th character position.

To view the entire graphics screen, enable the 25th 
line, ESC x 1 ( ESC [ 1 h if in ANSI mode).

When the terminal is reset, either when powered up, a 
keyboard reset right SHIFT-RESET , or a software 
reset ESC z ( ESC [ z ifin ANSI mode) the terminal 
will perform as though it were unmodified. It will ex­
ecute all of the escape functions it did before the addi­
tion of the Imaginator—the functional existence of 
the Imaginator is transparent to the user. (At this 
time the graphic’s video RAM will be cleared, and the 
line type will be ON; the primary line style will be 
solid, the secondary line style will be blank, and the 
virtual pointer will be assigned as (0,0).)

To invoke the graphics command processor (GCP), 
an “EnterGraphicMode” escape sequence is re­
quired. (When graphics or “EnterGraphics Mode” is 
referred to in this manual it should be connoted as a 
reference to the capabilities of the Imaginator, not 
the 33 special symbols stored in the terminal’s 
character generator.)

The GCP can be invoked to accept commands in 
either ASCII mode or as seven bit binary words 
(BINARY mode). Both forms of each command will 
be accompanied by a functional description.

9



10

A command may be entered either by typing on the 
keyboard when the terminal is OFF LINE or it may 
be sent via RS-232C from the host computer when 
the terminal is ON LINE.

There is no good way to abort a command midway 
(e.g., delete and backspace won’t erase a command). 
Obviously, a keyboard reset right SHIFT-RESET is 
one way to clear a half-created command, but is 
rather drastic. The GCP expects to receive com­
mands and data in certain fixed sequences; once a 
command sequence is started it must be completed.



COMMAND FORM AND 
FUNCTION, ASCII

ASCII COMMAND FORMATS

A complete description of the form and function of each command follows.

Upper case characters A,B,C,D,E,F,G,H,I,«J,K,L,M,N,O,P represent commands (some 
of these are unassigned).

X represents the absolute horizontal coordinate. It must be an integer between 0 and 
999 inclusively, although it will be truncated to 503 if greater than 503.

Y represents the absolute vertical coordinate. It must be an integer between 0 and 999 
inclusively, although it will be truncated to 246 if greater that 246.

Z represents an operand. It must be an integer between 0 and 999 inclusively.

[opt. deliml represents an optional delimiter. A delimiter here is not required but may be 
included. If included it may be any number of ASCII characters except the charac­
ters 0,1,2,3,4,5,6,7,8,9.

[delim] represents a delimiter. A delimiter here is manditory unless three consecutive 
numerals preceed it (a delimiter is automatically assumed after a three digit number, ad­
ditional delimiters are optional). The delimiter may be any ASCII character except 
0,1,2,3,4,5,6,7,8,9.

11



12

It will be assumed in the remainder of this manual that the language BASIC is 
understood by the reader. However, only them most rudimentary of BASIC commands 
will be used to prevent undue confusion to a novice.

The following examples illustrate a typical command format.

A PointAt command: P |opt. delim) X [delim| Y [delim) may be created in BASIC as:

PRINT "P”;X;Y The space will serve as the delimiter.

or

PRINT‘'P’’,X,Y The tab will serve as the delimiter, (note that in some BASICs a 
tab may be represented as a series of spaces. This format would 
then be inefficient.)

or

PRINT “P”
PRINT X
PRINT Y

The carriage return/line feed will serve as the delimiter.

or

If X and Y are constants such as X=25 and Y=39

PRINT “P”;25;39 The space will again serve as the delimiter.

or

PRINT "P025039" The leading zeros create three digit numbers so the delimiter is 
automatically inserted.



13

EnterGraphicsMode, ASCII

Command form: ESC 1

Command function:

This command signals the GCP to interpret all future information as graphics com­
mand/data. No graphics attributes are reinitialized. Commands and data will now be 
assumed to consist of the ASCII characters A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P and 
0,1,2,3,4,5,6,7,8,9 respectively. ASCII mode has the advantage of easy user implementa­
tion of the graphics command language. All of the commands can be directly output by 
high level language programs which are executed in the host computer. No machine 
language driver programs are required. The ASCII mode has the disadvantage of ineffi­
ciency. On the average, twice as many characters must be sent to the terminal than in 
binary mode to perform the same operation. The disadvantage would be most evident 
when communications speed, rather than vector drawing speed or host processor speed, 
is the effective bottleneck.

EXAMPLE: 10 PRINT CHR$(27);"1”



14

MoveTo (X.Y), ASCII

Command form: M [opt. deliml X (deliml Y [deliml

Command function:

The virtual pointer is assigned the absolute coordinate (X.Y). Nothing is written to the 
screen nor can it be interrogated.

EXAMPLE: 10 DEFINTX.Y

20 X = 25
30 Y = 210
40 PRINT “M”;X;Y



15

PointAt (X,Y), ASCII

Command form: P [opt. delim| X [delim| Y |delim|

Command function:

The virtual pointer is assigned the absolute coordinate (X,Y). The Pattern byte (see the 
LineStyle commands) is rotated one position; if the carry contains a 0, the command is 
treated as a MoveTo, command. If the carry contains a 1, the pixel is interacted with ac­
cording to the pending line type (see LineType command).

EXAMPLE: 10 DEFINT X,Y

20 X = 25
30 Y = 210
40 PRINT “P”;X;Y

✓



16

LineTo (X,Y), ASCII

Command form: L [opt. delim) X (delim) Y [deliml

Command function:

A line is drawn from, but not including, the virtual pointer’s currently assigned absolute 
coordinate to the absolute coordinate (X, Y). The line drawn is subject to the current line 
style and line type attributes. This command will emulate a MoveTo command if the 
line style is 00000000 (execution time will be considerably longer however). At the com­
pletion of this command, the virtual pointer is assigned the absolute coordinate (X,Y).

EXAMPLE: 10DEFINT X,Y

20 X = 25
30 Y = 210
40 PRINT “L”;X;.Y



17

AreaTo (X,Y), ASCII

Command form: A |opt. delim) X [delim] Y (delim)

Command function:

The area inside a regular rectangle is filled. The rectangle is defined as having the virtual 
pointer's currently assigned absolute address as one vertice and the absolute coordinate 
(X,Y) as the diagonally opposite vertice. Starting at, but not including, the virtual 
pointer’s currently assigned absolute coordinate,a horizontal line is drawn to the op­
posite side of the rectangle. When possible, a second line starting at the original side of 
the rectangle is drawn adjacent to the first line (a rectangle with a height of 1 will only 
accept one line). This procedure is repeated until the rectangle is filled. The line drawn is 
subject to the current line style and line type attributes. This command will behave as a 
MoveTo command if the line style is 00000000 (execution time will be considerably 
longer however). At the completion of this command the virtual pointer is assigned the 
absolute coordinate (X,Y).

EXAMPLE: 10 DEFINT X,Y

20 X = 25
30 Y = 210
40 PRINT “A’’;X;Y



18

PriLineStyle (Z), ASCII

Command form: N (opt. delim) Z (delim)

Where: Z is a number between 0 and 999 inclusively. This number is converted to binary 
format whose least significant 8 bits are used to define the Primary Pattern.

Command function:

This command permits dashed or dotted lines to be automatically generated by the 
GCP.

Preceeding any write to the graphics display, the pending Pattern byte is rotated one 
position. The least significant bit is rotated into the carry and is used to determine 
whether screen interaction is permitted or not. A logical 1 in the Pattern represents per­
mission to interact with the pixel; a 0 disables interaction. The pending Pattern byte is 
then updated with the new rotated pattern. The least significant bit is the first to be 
tested to determine if interaction should occur. Therefore, the eight bit line style pattern 
is repetitively traced to the screen when drawing a line.

ROTATION

► CARRY

PATTERN BYTE

The LineStyle and LineType commands are totally independent of one another. The line 
style will equally effect any line type attribute (except READ BIT and READ BYTE). 
For instance, a line drawn with a 10101010 line style and a complement line type will 
complement every other pixel.

When short line segments are used to construct long lines (e.g., curves), they should be 
sent in a consecutive order. There is no guarantee that a line segment patched into the 
middle of an existing line will have a perfectly matched line style sequence. Of course, it 
is possible to reset the sequence by executing another LineStyle command.

The pending line style pattern is always reset to Primary when entering any graphics 
command.

Any portion of the graphics display may be selectively erased by executing an AreaTo 
command with a line style of 11111111 and an OFF line type.

EXAMPLE: 10 PRINT “N255”



19

SecLineStyle (Z). ASCII

Command form: O (opt. deliml Z (delim]

Where: Z is a number between 0 and 999 inclusively. This number is converted to binary 
format whose least significant 8 bits are used to define the Secondary Pattern.

Command function:

Identical to PriLineStyle (Z), ASCII

EXAMPLE: 10 PRINT “0170”



20

LineType (Z), ASCII

Command form: I (opt. delim) Z (delim)

Where: Z PIXEL ACTION

0
1
2
3
4
5

ON
OFF
COMPLEMENT
READ BIT
TOGGLE TO AL TERNA TE LINESTYLE A T BOUNDARY
READ BYTE

Command function:

This command sets the type of line to be drawn, (Note, that a point is considered a short 
line and an area is considered a long line). Consider each pixel of the line individually for 
now.

The different line types are explained below.

ON—the pixel is turned on.

OFF—the pixel is turned off (i.e., erased).

COMPLEMENT—the pixel is complemented (i.e., the pixel is turned on if it was off and 
it is turned off if it was on).

READ BIT—The pixel is interrogated to determine whether it is on or off but is not 
otherwise effected. An ASCII 0 or 1 followed by a carriage return is transmitted to the 
host computer for a pixel that is respectively off or on.

This line type has some special restrictions.

This line type can only be used in conjunction with a Point At command. LineTo and 
AreaTo commands will imitate a MoveTo command.

Note that if the terminal is OFF LINE this attribute will perform no function except 
that the PointAt, LineTo, or AreaTo command will act as a MoveTo command.

The line style will act as if it were set to solid (11111111) regardless of its actual value. 
(See LineStyle command). This is to prevent the host computer from getting trapped in 
an eternal wait loop for a terminal response if the line style contains a 0.

The process executing in the host computer that is responsible for reading the data sent 
by the terminal must be fast enough to keep pace. The terminal will transmit the data as 
fast as the baud rate selected will permit.



21

Z

It is important that the host computer does not echo the terminal response (0 or 1 fol­
lowed by a carriage return) back to the terminal. An echoed response will be treated by 
the GCP as command/data information. (This is really only true if the GCP is in 
BINARY mode,because in ASCII mode the 0 or 1 will be received when the GCP is ex­
pecting an opcode (A—P) and will therefore be assumed to be a delimiter.) See the Ex­
amples section of this manual to see how this can be implemented.

TOGGLE TO ALTERNATE LINESTYLE AT BOUNDARY—This line type is a very 
simple, and therefore limited, algorithm that may be used for filling irregular polygons.

As the line is scanned,each pixel is interrogated in turn to determine whether it is on or 
off. If it is off it is written to according to the pending line style. A single on pixel will be 
left untouched, but the current line style pattern is exchanged with the alternate Pat­
tern. For instance, if the line style is currently loaded with the Primary Patternit will be 
reloaded with the Secondary Pattern, or if the Linestyle is currently loaded with the 
Secondary Pattern it will be reloaded with the Primary Pattern. If two or more adjacent 
pixels are on they will be left untouched and line style pattern will NOT be exchanged. 
At the completion of the LineTo or AreaTo command the line style is reloaded with the 
Primary Pattern.

READ BYTE—The display byte is read and converted from binary to hexadecimal. The 
ASCII representation of this hexadecimal number is transmitted to the host computer. 
Display bytes are defined as 8 consecutive horizontal pixel locations. The beginning of 
a display byte is (X.Y) where X is 0,8,16.... 496 and Y is any integer between 0 and 246,
inclusively. Each display byte is redundantly addressed by 8 coordinates. For example, 
to access the display byte beginning at (0,0) any of the following coordinates could be 
used: (0,0), (1,0), (2,0), (3,0), (4,0), (5,0), (6,0), or (7,0). The pixel at the beginning of the 
display byte is the least significant and the pixel at the beginning 4-8 is the most signifi­
cant. Notice that this means that, visually, a pattern on the screen will appear in reverse 
significance with respect to its hexadecimal representation.

Leading zeros are transmitted (not suppressed).

This line type has some special restrictions.

This line type can only be used in conjunction with a PointAt command. LineTo and 
AreaTo commands will imitate a MoveTo command.

Note that if the terminal is OFF LINE this attribute will perform no function except 
that the PointAt, LineTo or AreaTo command will act as a MoveTo command.

The line style will act as if it were set to solid (11111111) regardless of its actual value. 
(See LineStyle command) This is to prevent the host computer from getting trapped in 
an eternal wait loop for a terminal response if the line style contains a 0.

The process executing in the host computer that is responsible for reading the data sent 
by the terminal must be fast enough to keep pace. The terminal will transmit the data as 
fast as the baud rate selected will permit.

It is important that the host computer does not echo the terminal response (00 to FF 
followed by a carriage return) back to the terminal. An echoed response will be treated 
by the GCP as command/data information. See the Examples section of this manual to 
see how this can be implemented.



22

DisplayToggle (Z), ASCII

Command form: D [opt. delim) Z [deliml

Where: Z ENABLE ENABLE ERASE
ALPHA GRAPHICS GRAPHICS

0 NO NO NO
1 NO NO YES
2 NO YES NO
3 NO YES YES
4 YES NO NO
5 YES NO YES
6 YES YES NO
7 YES YES YES

Command function:

This command has two distinct functions. One function is to permit the user to block or 
not block the display of alphanumeric or graphics information to the entire screen. The 
other function of this command is to erase the entire graphics display memory. This 
command stays in effect even after executing an ExitGraphicsMode command.

EXAMPLE: 10 PRINT “D3”

This command would disable alphanumerics, enable graphics and erase the previous im­
age.



23

BringlnProgram (ZO), (Zl),... ,(Z127), ASCII

Command form: B [opt. delim) ZO [opt. delim) Zl [opt. deliml,... ,Z127 (opt. delim)

Where: [opt. delim) in this case is any ASCII character except 0,1,2,3,4,5,6,7,8,9,A,B, 
C.D.E.F.

AND

Where: Z is a double digit hexadecimal number between 00 and FF, inclusively. A 
leading zero must be present if a single digit number (i.e., 03 not 3). However, do not in­
sert a leading zero in front of a two digit number (i.e., FF not OFF).

Command function:

This command loads 128 bytes of data (Z0-Z127) into the expansion R/W RAM U9B. 
The data is converted from hexadecimal to binary format prior to loading into R/W 
RAM. ZO is loaded into memory at address C001H, Zl is loaded into memory at C002H, 
etc. After the 128th byte is loaded control is returned to the GCP for the next command.

This command is only useful if R/W RAM is mounted at U9B. Beware that once a 
BringlnProgram command is initiated the GCP will expect at least 256 characters 
before accepting new commands (this is true regardless of whether R/W RAM is present 
at U9B or not).

EXAMPLE: 10 PRINT “B”
20 PRINT “00”
30 PRINT “00”
40 PRINT “00”
50 PRINT “C3”
60 PRINT “04”
70 PRINT “CO”

1290 PRINT “00”

This example of data entry is correct with regard to format but is quite inflexible and 
therefore not advocated as a good programming technique.



24

JumpToProgram, ASCII

Command form: J

Command function:

This command transfers control from the GCP to the program residing in U9B. 
Transfer is accomplished by a JMP (JUMP) to address C004H. Control may be given 
back to the GCP by a RET (RETURN) statement.

Before the transfer is made a test pattern is written to location COOOH and then read 
back. The pattern must match or no transfer is permitted and control is returned to the 
GCP. Therefore, physical memory must be mounted at U9B and it must be valid at 
COOOH. This prevents inadvertantly jumping to a nonexistent program resulting in a 
runaway processor.

EXAMPLE: 10 PRINT “J”



25

ExitGraphicsMode, ASCII

Command form: E

Command function:

This command instructs the GCP to release control back to normal alphanumeric pro­
cessing. All previously set graphics attributes will remain valid (i.e., no attributes 
revert back to default or reset values).

EXAMPLE: 10 PRINT “E"



26

This page intentionally left blank.



COMMAND FORM AND 
FUNCTION, BINARY

BINARY COMMAND FORMATS

The binary command formats are described with each command. X and Y coordinates 
and Z parameters are represented in binary notation. The ASCII character representing 
the binary number is transmitted to the terminal. For example, examine the bytes (P is 
the parity bit):

PO 1 00 1 00
P0 1 00000
P 1 1 1 1 1 1 1

is represented by the ASCII character $ 
is represented by the ASCII Space 
is represented by the ASCII Delete

See the Appendix for binary to ASCII conversions.

More stringent conditions are placed on the syntax of commands in BINARY mode 
than in ASCII mode. In general delimiters are not required and are not permitted, but 
there is one exception. The binary codes P0000000 through P0001111 can serve as NOP 
(no operation) commands when used as opcodes. This permits the inclusion of dummy 
carriage-return and line-feed characters in transmissions. This is required because some 
high level languages insert their own carriage-returns regardless of whether the pro­
grammer requested one or not. For instance, some releases of BASIC automatically in­
sert a carriage-return and line-feed if the user does not specify one before 255 conse- 
quative characters are transmitted. Unpredictable results may result since this 
automatic carriage-return may occur when the GCP is expecting a valid operand. 
Therefore, it is important for the programmer to force occasional carriage-returns when 
the GCP expects an opcode (if they are to be ignored) before the automatic one is trig­
gered.

It is important to note that the binary codes P0000001 through P0001111 are valid 
when used as operands (P0000000 is never used because nulls are filtered out by the ter­
minal and most operating systems)

Since the binary code P0000000 can never be used a simple data conversion needs to be 
performed when using MoveTo, Point At, LineTo and AreaTo commands. The respec­
tive subroutines need to add an offset of 8 to X and an offset of 2 to Y.

A''

27



28

• For instance, if the programmer wanted to MoveTo(O.O) a GOSUB 2000 would be 
executed (see MoveTo, BINARY).

• The programmer would set X=0 and Y=0 before the call.

• The MoveTo subroutine would effectively add 8 to X and add 2 to Y.

• The GCP will then subtract 8 from X and 2 from Y once it receives them.

Of course, these syntax restrictions only apply when in BINARY mode, these 
restrictions do not exist when in ASCII mode or when in the terminal’s standard 
alphanumeric mode. The driver routines presented take all of these requirements 
into account.

To gain the most efficiency BINARY mode was really designed to be driven by 
assembly language routines. The routines should have the following features.

• They need to convert the X and Y coordinates or the Z parameter to the proper 
binary format.

• The command identifier needs to be appended to the opcode.

• The ASCII character that represents the binary word needs to be formed.

• The routines should not echo back ANY of the characters that are sent from the 
terminal. (As stated above, some characters can be echoed back without problem if 
the GCP expects an opcode, but it is simpler to unconditionally avoid echoing back 
any characters.) This is particuarly true for data received from the terminal when 
the READ line types are set. Data should be read and processed but not echoed 
back.

• The routines should return control back to the calling program once the command 
and its data have been transmitted. When checking the serial channel status 
remember that the Imaginator expects that the Clear To Send signal is being 
monitored.

Example driver routines are included. More efficient driver routines can be written in 
assembly language but BASIC was choosen to help clarify the principles involved.

A note about the driver routines. These routines perform no X, Y, or Z parameter limit 
checking. For example, these routines would accept a value greater than 503 for the X 
coordinate without complaint and would pass an incorrect value to the terminal.



29

EnterGraphicsMode, BINARY

Command form: ESC 0

Command function:

This command signals the GCP to interpret all future information as graphics com- 
mand/data. No graphics atributes are reinitialized. Commands and data will now be 
assumed to be seven-bit binary words (the parity bit is not used). The BINARY mode 
has the advantage of high efficiency because a minimum of information must be sent to 
specify an operation. Binary mode has the disadvantage of requiring the information to 
be condensed into a compact form by the host computer. Actually, this is a rather simple 
process, it requires only short subroutines. (Since the condensed information can cover 
the complete range from 0000000IB toOlllllllB inclusively, another problem may 
arise if the Basic Input Output System (BIOS) of the host’s operating system filters out 
or modifies specific values. For instance, a DELETE may be changed to a 
BACKSPACE-SPACE-BACKSPACE. Or a TAB may be changed to a string of 8 
spaces. The GCP would misinterpret this corrupted data with unpredictable results.)

EXAMPLE: 10 PRINT CHR$(27);“0”



30

MoveTo (X,Y), BINARY
'—

Command form: Command Opcode

First Operand

Second Operand

7 6 5 4 3 2 1 0 
P 1 1 0 1 X2X,X0
7 6 5 4 3 2 1 0
P YoX.XtX.XsX^X,

7 6 5 4 3 2 1 0
P Y7Y.YiY4Y»Y1Y1

P • parity

Command Function:

Identical to MoveTo (X,Y), ASCII

EXAMPLE: 10 DEFINT O,X,Y
20 X = 25
30Y = 210
40 GOSUB 2000

2000 REM MOVE TO COMMAND BINARY DRIVER
2010 REM
2020 REM X = X COORDINATE
2030 REM Y = Y COORDINATE
2040 REM
2050 OPCODE = (X AND 7) OR &H68
2060 OP1 = ((X AND NOT 7)/8 AND 63) + 1 + (Y AND 1)*64
2070 OP2 = (Y AN D 254)/2 + 1
2080 PRINT CHR$(OPCODE);CHR$(OP1);CHR$(OP2)
2090 RETURN



31

PointAt (X,Y), BINARY

Command form: Command Opcode

First Operand

Second Operand

7 6 5 4 3 2 1 0 
P 0 1 1 0 XjX.Xo
7 6 5 4 3 2 1 0
P YOX,X7X.X5X4XS
7 6 5 4 3 2 1 0
P Y7YtY5Y«YsY1Yl

P - parity

Command function:

Identical to PointAt (X,Y), ASCII

EXAMPLE: 10 DEFINT O,X,Y
20 X = 25
30Y = 210
40 GOSUB 3000

3000 REM POINT AT COMMAND BINARY DRIVER
3010 REM
3020 REM X = X COORDINATE
3030 REM Y = Y COORDINATE
3040 REM
3050 OPCODE = (X AND 7) OR &H30
3060 OP1 = ((X AND NOT 7)18 AND 63) + 1 + (Y AND 1)*64
3070 OP2 = (Y AND 254)/2 + 1
3080 PRINT CHR$(OPCODE);CHR$(OP1);CHR$(OP2) 
3090 RETURN



32

LineTo (X,Y), BINARY

Command form: Command Opcode

First Operand

Second Operand

7 6 5 4 3 2 1 0 
P 1 1 0 0 X.X.Xo
7 6 5 4 3 2 1 0
P Y.X.XjX.X.X.X,
7 6 5 4 3 2 1 0
P YTY.Y.Y^Y.YtY,

P - parity

Command function:

Identical to LineTo (X,Y), ASCII

EXAMPLE: 10 DEFINT O,X,Y
20 X = 25
30 Y = 210
40 GOSUB 4000

4000 REM LINE TO COMMAND BINARY DRIVER
4010 REM
4020 REM X = X COORDINATE
4030 REM Y = Y COORDINATE
4040 REM
4050 OPCODE = (X AND 7) OR &H60
4060 OP1 = ((X AND NOT 7)18 AND 63) + 1 +<Y AND 1)*64
4070 OP2 = (Y AND 254)/2 + 1
4080 PRINT CHR$(OPCODE);CHR$(OP1);CHR$(OP2)
4090 RETURN



33

AreaTo (X,Y), BINARY

Command form: Command Opcode

First Operand

Second Operand

7 6 5 4 3 2 1 0 
P 1 0 1 1 X,X,X0
7 6 5 4 3 2 1 0
P YoX,X7X.X5X4Xj

7 6 5 4 3 2 1 0 
P YtY.YsYmY^Y,

P - parity

Command function:

Identical to AreaTo (X,Y), ASCII

EXAMPLE: 10 DEFINT O,X,Y
20 X = 25
30 Y = 210
40 GOSUB 5000

5000 REM AREA TO COMMAND BINARY DRIVER
5010 REM
5020 REM X = X COORDINATE
5030 REM Y = Y COORDINATE
5040 REM
5050 OPCODE = (X AND 7) OR &H58
5060 OP1 =((X AND NOT 7)18 AND 63) + 1 + (Y AND 1)*64
5070 OP2 = (Y AND 254)/2 + 1
5080 PRINT CHR$(OPCODE);CHR$(OP1);CHR$(OP2)
5090 RETURN



34

PriLineStyle (Z), BINARY

Command form: Command Opcode

First Operand

7 6 5 4 3 2 1 0
P 1 1 1 0 * Z, Zo
7 6 5 4 3 2 1 0
P Zj Z. Zj Z< Z3 Z21

* - don’t care 
P - parity

Command function:

Identical to PriLineStyle (Z), ASCII

EXAMPLE: 10 DEFINT O,Z
20Z = 3
30 GOSUB 8000

8000 REM PRIMARY LINE STYLE COMMAND BINARY DRIVER 
8010 REM
8020 REM Z = ATTRIBUTE
8030 REM
8040 OPCODE = (Z AND 3) OR &H70
8050 OP1 = (Z AND 254)/2 OR 1
8060 PRINT CHR$(OPCODE);CHR$(OP1)
8070 RETURN



35

SecLineStyle (Z), BINARY

Command form: Command Opcode

First Operand

7 6 5 4 3 2 1 0
P 1 1 1 1 * Z, Z.
7 6 5 4 3 2 1 0
P Z7 Z, Z. Z4 Z, Z,1

• - don’t care
P - parity

Command function:

Identical to SecLineStyle (Z), ASCII

EXAMPLE: 10 DEFINT O,Z
20Z = 3
30 GOSUB 9000

9000 REM SECONDARY LINE STYLE COMMAND BINARY DRIVER
9010 REM
9020 REM Z = ATTRIBUTE
9030 REM
9040 OPCODE = (Z AND 3) OR &H78
9050 OP1 = (Z AND 254)/2 OR 1
9060 PRINT CHR$(OPCODE);CHR$(OP1)
9070 RETURN



36

LineType (Z), BINARY

Command form: Command Opcode 7 6 5 4 3 2 1 0 
P 1 0 0 1 Zt z, z,

P - parity

z, z, Z. PIXEL ACTION

0 0 0 ON
0 0 1 OFF
0 1 0 COMPLEMENT
0 1 1 READ BIT
1 0 0 TOGGLE TO ALTERNATE LINE STYLE AT BOUNDARY
1 0 1 READ BYTE

Command function:

Identical to LineType (Z), ASCII

EXAMPLE: 10 DEFINT O.Z
20Z = 3
30 GOSUB7000

7000 REM LINETYPE COMMAND BINARY DRIVER 
7010 REM
7020 REM Z = ATTRIBUTE
7030 REM
7040 OPCODE = Z OR &H48
7050 PRINT CHR$(OPCODE)
7060 RETURN



37

DisplayToggle (Z), BINARY

Command form: Command Opcode 7 6 5 4 3 2 1 0 
P0100ABC

P - parity
1 is logical true

A - Enable Alphanumerics 
B - Enable Graphics
C - Erase Graphics

Command function:

Identical to DisplayToggle (Z), ASCII

EXAMPLE: 10 DEFINT O,Z
20Z = 3
30 GOSUB 6000

6000 REM DISPLAY TOGGLE COMMAND BINARY DRIVER 
6010 REM
6020 REM Z = ATTRIBUTE
6030 REM
6040 OPCODE = Z OR &H20
6050 PRINT CHR$ (OPCODE)
6060 RETURN



38

BringlnProgram (ZO), (Z1),...,(Z127), BINARY

Command form: Command Opcode 7 6 5 4 3 2 1 0 
P 0 0 1 0 * * *

* - don’t care 
P • parity

Command function:

Identical to BringlnProgram (ZO), (Zl).....(Z127), ASCII

EXAMPLE: 10 DEFINT O
20GOSUB 10000

10000 REM BRING IN PROGRAM COMMAND BINARY DRIVER 
10010 OPCODE = &H10
10020 PRINT CHR$(OPCODE)
10030 PRINT "76"
10040 PRINT “F5”
10050 PRINT “F1”
10060 PRINT “C9”

11300 PRINT “00”
11310 RETURN

This example of data entry is correct with regard to format but is quite inflexible and 
therefore not advocated as a good programming technique.



39

JumpToProgram, BINARY
/

Command form: Command Opcode 7 6 5 4 3 2 1 0 
P 1 0 1 0 * • ♦

• ■ don’t care 
P - parity

Command function:

This command transfers control from the GCP to the program residing in U9B. Trans­
fer is accomplished by a JMP (JUMP) to address C001H. This command is otherwise 
identical to JumpToProgram, ASCII.

EXAMPLE: 10 DEFINT 0
20 GOSUB 12000

12000 REM JUMP TO PROGRAM COMMAND BINARY DRIVER 
12010 OPCODE = &H50
12020 PRINT CHR$(OPCODE)
12030 RETURN



40

ExitGraphicsMode, BINARY

Command form: Command Opcode 7 6 5 4 3 2 1 0
P 0 1 0 1 * ‘ *

* - don’t care
P - parity

Command function:

Identical to ExitGraphicsMode, ASCII

EXAMPLE: 10 GOSUB 1000

1000 REM EXIT GRAPHICS MODE COMMAND BINARY DRIVER
1010 PRINT CHR$(&H28)
1020 RETURN



EXAMPLES

We recommend that you try some of these examples.

Hands on experience is a must for learning any new subject. Refer to the command form 
and function sections for details. We recommend that you become acquainted with 
ASCII mode first before attempting BINARY mode.There is no way to damage the ter­
minal by accidentally giving it an invalid command, so experiment.

EXAMPLE 1

The following example is meant to be entered by typing the commands directly on the 
keyboard rather than sending them from a host computer. Lock down the OFF-LINE 
key. Type the commands as they appear, for instance, type a space where a space is 
shown and a carriage return when a new line appears (the space and carriage-return will 
serve as delimiters).

TYPE ANYTHING

CAPS-LOCK unlocked

ESCx1

CAPS-LOCK locked down

ESC1

D3

IO

Type a few random characters.

Enable 25th line, this permits the entire graphics 
display to be shown.

It makes it easier to enter the remainder of the 
commands.

EnterGraphicsMode command, ASCII.

DisplayToggle command, disable alphanumerics, 
enable graphics, and erase the previous graphics 
image.

LineType command, the line type is ON.
(Note that though a hardware or software terminal 
RESET will reinitialize the line type to ON, it is 
good practice to include initialization commands 
such as this one in your graphics programs. This 
permits graphics subroutines to be relocated with 
out being concerned about the action of previously 
executed routines.

41



42

N255 PriLineStyle command, 11111111 pattern (solid). 
Again, it is good practice to include this type of ini­
tialization command.

OO SecLineStyle command, 00000000 pattern (blank). 
Again it is good practice to include this type of ini­
tialization command.

P50 0 PointAt (X,Y) command, X = 50, Y = 0

L50 200 LineTo (X,Y) command, X = 50, Y = 200
Notice that the line was drawn before the carriage 
return was keyed since 200 is a three digit number 
(i.e., the carriage return was really not needed).

P150 0 PointAt (X.Y) command, X = 150, Y = 0
The space between the 150 and the 0 is unnecessary 
since 150 is three digits long.

L150100 LineTo (X,Y) command, X = 150, Y = 100

M300 0 MoveTo (X,Y) command, X = 300, Y = 0 
Notice that no point is drawn.

A400 200 AreaTo (X,Y) command, X = 400, Y = 200

PO 190 PointAt (X.Y) command, X = 0, Y = 190

L500 190 LineTo (X.Y) command, X = 500, Y = 190 
The line type is ON.

11 LineType command. Line type is OFF.

PO 150 PointAt (X.Y) command, X = 0, Y = 150

L500 150 LineTo (X.Y) command, X = 500, Y = 150

I2 LineType command, Line type is COMPLEMENT

PO 110 PointAt (X.Y) command, X = 0, Y = 110

L500 110 LineTo (X.Y) command, X = 500, Y = 110

I4 LineType command. Line type is TOGGLE TO 
ALTERNATE LINESTYLE AT BOUNDARY.

PO 70 PointAt (X.Y) command X = 0, Y = 70

L500 70 LineTo (X,Y) command, X = 500, Y = 70 
The secondary line style is 00000000 (blank).

MO 30 PointAt (X,Y) command, X=0, Y = 30

A500 0 AreaTo (X,Y) command, X = 500, Y = 0
READ BIT and READ BYTE line types only 
operate when the terminal is ON-LINE.



43

D4

D2

DO

D7

E

TYPE ANYTHING

DisplayToggle command, disable graphics and 
Enable alphanumerics.

DisplayToggle command, Enable graphics and 
Disable alphanumerics.

DisplayToggle command, Disable graphics and 
Disable alphanumerics.

DisplayToggle command, Enable graphics, Enable 
alphanumerics, and Erase previous graphics image.

ExitGraphicsMode command

Normal alpha mode.



44

The following examples are written in BASIC.

The graphics terminal will receive its commands via RS-232C from the host computer so 
the terminal should be ON-LINE. .

EXAMPLE 2

The following program will draw a simple XY axis with tick marks.

00010 DEFINTX.Y
00020 PRINT CHR$(27);“1”
00030 PRINT “D3”
00040 PRINT "IO”
00050 PRINT “N255”
00060 FOR X = 20 TO 500 STEP 10
00070 PRINT “M”;X;“103";‘,L";X;"98”
00080 NEXT X
00090 FOR Y = 20 TO 240 STEP 10
00100 PRINT "M”;"247”;Y;"L”;“252”;Y
00110 NEXTY
00120 PRINT “N170”
00130 P RIN T “ P250 240 L250 20 P20 100 L500 100”
00140 PRINT "D6"
00150 PRINT "E”
00160 STOP

Line 10 defines the variables X and Y as INTEGERS. The decimal point inserted in real 
numbers would act as an unintentional delimiter.

Line 20 sends an EnterGraphicsMode, ASCII command, ESC 1.

Line 30 sends a DisplayToggle command that turns the alphanumeric display off, the 
graphics display on and erases the graphics display memory.

Line 40 is a LineType command. The line type is defined as ON.

Line 50 is a PriLineStyle command. The primary line style pattern is defined as solid 
(11111111).
128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255

Lines 60, 70 and 80 form a program loop that draws tick marks on the horizontal axis. 
Line 70 consists of a MoveTo command (“M”;X;“103”) and a LineTo command 
(“L”;X;“98”).

Lines 90, 100 and 110 form a program loop that draws the tick marks on the vertical 
axis. Line 100 consists of a MoveTo command (*‘M”;’*247”;Y) and a LineTo command 
(“L”;"252”;Y).

Line 120 is a PriLineStyle command. The primary line style pattern is defined as dotted 
(10101010).
128 + 0 + 32 + 0 + 8 + 0 + 2 + 0 = 170

Line 130 draws the horizontal and vertical axis. It consists of a PointAt command



45

(“P250 240) a LineTo command (L250 20) a PointAt command (P20 100) and a LineTo 
command (L500 100”).

Line 140 is a DisplayToggle command that instructs the graphics terminal to enable 
both alphanumeric and graphics displays.

Line 150 is an ExitGraphicsMode command.

Line 160 is the end of execution statement.

EXAMPLE 3

This program draws 256 lines each with a different line style. Though the patterns
00010001 and 00100010 are different, they appear identical when the pattern is re­
peated (e.g., when drawing a long line). Using this criteria to disqualify similar patterns,
there remain 30 unique pattern styles.

00010 DEFINTA-Z
00020 PRINT CHR$(27);“1D3,10"
00030 LS = O
00040 FOR I = 1 TO 32
00050 FOR J = 1 TO 8
00060 PRINT “N”;LS
00070 PRINT “P";0;247-J*30
00080 PRINT "L”;504;247-J*30
00090 LS = LS + 1
00100 NEXT J
00110 PRINT "D3”
00120 NEXT I
00130 PRINT “D5,E”
00140 STOP



46
JI 6-^

EXAMPLE 4

This program demonstrates a technique for generating cross hatched patterns easily. 
Bar charts are a typical application.

00010 DEFINT A-Z
00020 PRINT CHR$(27);“1”
00030 PRINT “D3”
00040 PRINT “M350,240"
00050 PRINT “I0"
00060 PRINT “N170”
00070 PRINT “A151,10"
00080 PRINT "I2”
00090 PRINT “A351,240”
00100 PRINT “11”
00110 PRINT "A150,10”
00120 PRINT "I2”
00130 PRINT “A351,240”
00140 PRINT “11"
00150 PRINT "N17"
00160 PRINT “A150,10”
00170 PRINT “D6,E”
00180 STOP

Line 40 moves the virtual pointer to (350,240).

Line 50 sets the LineType to ON.

Line 60 sets the PriLineStyle to dotted, 10101010.

Line 70 fills a rectangular area with (350,240) and (151,10) as the diagonally opposite 
vertices. Since 350-151 is not an even multiple of 2 (the numerical distance between two 
consecutive ones in the primary pattern byte, 10101010), the pixel pattern is diagonal. 
If the 151 was changed to 150, a pattern of vertical lines would have been drawn.

010101010
101010101
010101010
101010101
010101010

Line 80 changes the line type to Complement.

Line 90 draws another rectangular area on top of the one just drawn. This time the dif­
ference between old and new X coordinates (351-151) is an even multiple of 2. This re­
sults in a pattern of vertical interactions. Every other pixel is complemented, since the 
line style is still 10101010, resulting in the complete cancellation of every other row and 
a filling in of the remaining rows.



47

Line 100 changes the line type to OFF.

Line 110 makes an area pass over the existing pattern to selectively erase specific pix­
els.

Lines 130-160 are more of the same.

Line 170 is the erase screen and exit command.

It probably is now evident that combining area overlays using different line types and 
line styles can create some complicated but interesting patterns.

EXAMPLE 5

In case you are not convinced.

00010 DEFINT A-Z
00020 PRINT CHR$(27);“1”
00030 PRINT “D3”
00040 PRINT “M”;“350”;“240”
00050 PRINT “I0”
00060 PRINT “N1”
00070 PRINT “A151.10”
00080 PRINT “A352,240”
00090 PRINT “A151,10”
00100 PRINT “A350,240”
00110 PRINT “I2”
00120 PRINT “N170”
00130 PRINT “A151,10”
00140 PRINT "A351,240”
00150 PRINT “A150,10
00160 PRINT “A350,240”
00170 PRINT “N17”
00180 PRINT “A150,10”
00190 PRINT “A352.240”
00200 PRINT “A150,10”
00210 PRINT “D6,E”
00220 STOP



48

EXAMPLE 6

Here’s a different one.

00010 DEFINT X,Y
00020 PRINT CHR$(27);“1"
00030 F0RL = 1T0 2
00040 PRINT “I2,N17,D2”
00050 FOR N = 30 TO 100 STEP 5
00060 PRINT “M”;0;125
00070 FOR X = 0 TO 500 STEP 63
00080 Y = 100*SIN(X/N) + 125
00090 PRINT "A”;X;Y
00100 NEXTX
00110 NEXTN
00120 NEXT L
00130 PRINT’’D5,E’’
00140 STOP

Obviously this program demonstrates the overlay principle,but there is another concept 
here. It is the fact that when strictly the complement line type is used,there is no loss of 
information on the screen. No matter how many times a pixel is overlayed its original 
state can be determined. There are some practical implications of this. Two independent 
images can be overlayed to form a single image that can be totally separated later. For 
instance, a crosshair cursor can be drawn over an existing image if done with the comple­
ment line type. It will always remain visible because it is complemented. The original 
image can be restored by recomplementing the crosshair cursor. Therefore, the 
crosshair cursor can be scanned across the original image without destroying the im­
age, as long as it is drawn an even number of times in the same location before it is 
moved.

EXAMPLE 7

This program demonstrates an efficient method of generating graphics characters. 
Though graphics character generation is slower than alphanumeric character genera­
tion there are some advantages:

• The characters can be defined by the programmer (e.g., Latin and Greek symbols 
can be produced.

• The characters can be practically any size (a 5 by 5 matrix is the minimum for a well 
formed upper case character).

• The characters can be oriented in any direction—horizontal, vertical, inverted, 
diagonally, etc.

• The characters can be positioned anywhere. For example, a label can be centered 
directly under a graph’s axis tick mark, rather than the closest character block 
position.

This program was written especially for generating upper case characters defined on a 5 
by 5 grid. Label orientations are limited to horizontal (from left to right) and vertical 
(from bottom to top) directions. Any direction is possible,but the computations would



49

be severely slowed down since the trigonometric functions required are slow when writ­
ten in BASIC.

MAIN PROGRAM 

00010 DEFINTA-Z
00020 DIM CGEN(4,5)
00030 GOSUB 21000 
00040 PRINT CHR$(27)“1”
00050 PRINT “D3,10”
00060 LABELS = ”0123” 
00070 STARTX = 5
00080 STARTY = 100
00090 LDIR = O
00100 GOSUB 20000
00110 PRINT “D6,E”
00120 STOP

GRAPHICS CHARACTER GENERATOR SUBROUTINE

20000 IF LDIR = OTHEN ILDIR = 1 ELSE ILDIR = 0
20010 HEIGHT = 5
20020 COUNT = 0
20030 SPACE = 2
20040 FOR CHAR = 1 TO LEN(LABELS)
20050 CHARCODE = ASC(MID$(LABEL$,CHAR,1)) - 48
20060 FOR I = 1 TO 5
20070 PRIPAT = CGEN(CHARCODEJ)
20080 PRINT “N”;PRIPAT
20090 BASEX = STARTX + COUNT'ILDIR
20100 BASEY = STARTY + COUNT* LDIR
20110 PRINT“P";BASEX;BASEY
20120 X = BASEX + HEIGHT*-LDIR
20130 Y = BASEY + HEIGHT’ILDIR
20140 PRINT "L”;X;Y
20150 COUNT = COUNT + 1
20160 NEXT I
20170 COUNT = COUNT + SPACE
20180 NEXT CHAR
20190 RETURN

CHARACTER GENERATOR TABLE

21000 CGEN(0,1) = 31
21010 CGEN(0,2) = 17
21020 CGEN(0,3) = 17
21030 CGEN(0,4) = 17
21040 CGEN(0,5) = 31
21050 CGEN(1,1) = 0
21060 CGEN(1,2) = 9
21070 CGEN(1,3) = 31
21080 CGEN(1,4) = 1
21090 CGEN(1,5) = 0
21100 CGEN(2,1) = 23



50

21110 CGEN(2,2) = 21
21120 CGEN(2,3) = 21
21130 CGEN(2,4) = 21
^1140 CGEN(2,5) = 29
21150 CGEN(3,1) = 17
21160 CGEN(3,2) = 21
21170 CGEN(3,3) = 21
21180 CGEN(3,4) = 21
21190 CGEN(3,5) = 31
21200 RETURN

• LABELS in the main program is the statement to be printed in graphics char­
acters.

• STARTX and STARTY is the starting position for the label.

• LDIR (label direction) is the label orientation: 0 is horizontal; 1 is vertical.

• The character HEIGHT is 5, with 2 pixels (SPACE) skipped between each char­
acter.

• CHAR is the main loop which is indexed for each character in LABELS.

• CHARCODE stands for character code; it’s purpose is to identify the character 
with its 5 by 5 pattern matrix (CGEN).

• The I loop performs the actual symbol drawing.

• Each of the 5 character generator (CGEN) matrix columns is in turn loaded into 
the primary line style pattern (PriLineStyle command).

• A short (5 pixel) line is drawn.

• LDIR and ILDIR (Inverse label direction) are multiplied with the draw coordi­
nates to determine direction.

• I is then indexed for the next character column.

• The between character space is skipped before the next character is drawn.

• The subroutine returns to the calling routine once the complete label is drawn.

• The table is truncated here for brevity; available memory is the only restriction to 
its length.



51

EXAMPLE 8

This program reads a pixel from graphics memory and prints the result in alphanumeric 
mode. The result will be zero unless a pixel is turned on at (100,50).

00010 DEFINT B-Z
00020 PRINT CHR$(27);“1"
00030 PRINT “I3"
00040 PRINT“P100050”
00050 A$ = INPUT$(2)
00060 PRINT "E”;A$
00070 STOP

Line 30 sets the line type to READ BIT.

Line 40 reads the pixel at (100,50).

Line 50 inputs the terminal’s transmission of a 1 or 0 followed by a carriage-return with­
out echoing the characters back to the terminal.

Line 60 exits graphics mode and prints the state of the pixel at (100,50).

EXAMPLE 9

The program reads a display byte from graphics memory and prints its value in alpha­
numeric mode. The result will be 00,unless a pixel is turned on between (96,50) and 
(103,50), inclusively.

00010 DEFINT B-Z
00020 PRINT CHR$(27);“1”
00030 PRINT "15”
00040 PRINT “P100050”
00050 A$ = INPUT$(3)
00060 PRINT “E”;A$
00070 STOP

Line 30 sets the line type to READ BYTE.

Line 40 reads the display byte between (96,50) and (103,50).

Line 50 inputs the terminal’s hexadecimal transmission followed by a carriage-return 
without echoing the characters back to the terminal.

Line 60 exits graphics mode and prints the value of the display byte.



52

EXAMPLE 10

The following program is Demonstration program 1 rewritten to use the binary drivers 
described under Command Form and Function, BINARY.

00010 DEFINT X,Y
00020 PRINT CHR$(27);“0”
00030 Z = 0
00040 GOSUB 7000
00050 Z = 255
00060 GOSUB 8000
00070 Z = 3
00080 GOSUB 6000
00090 X = 0
00100 Y = 125
00110 GOSUB 2000
00120 FOR X = 0 TO 500 STEP 2
00130 Y = 100*SIN(X/13.27) + 125
00140 GOSUB 4000
00150 NEXTX
00160 Z = 6
00170 GOSUB 6000
00180 GOSUB 1000
00190 STOP

EXAMPLE 11

Demonstration program 1 is rewritten in ASCII mode and in FORTRAN.

PROGRAM SINE
INTEGER ESC,X,Y
NO = 3
ESC = 27
WRITE(NO,10)ESC
WRITE(NO,11)
WRITE(NO,12)
DO 200 X = 0,500,2
Y = 100*SIN(X/13.27)+ 125
WRITE(NO,13)X,Y

200 CONTINUE
WRITE(NO,14)

10 FORM AT(1X, AVI')
11 FORMAT^ l0,N255,D3')
12 FORMAT('MO,125')
13 FORMAT('L',2(I3,1X))
14 FORMATf D6,E)

STOP
END

(Most FORTRAN compilers permit the mode conversion required in theY = 100 * SI N(X/
13.27) +125 statement, if yours does not,then use the FORTRAN IFIX command.)



THEORY OF OPERATION

This section is for those reader interested in the elec­
trical operation of the Imaginator. Information is 
also available on the software including the complete 
source code in the Imaginator Source Code and 
Manual.
Remove the schematic from the Appendix and place 
it where you can refer to it easily.

POWER SUPPLY

The Imaginator is interfaced to the rest of the ter­
minal by means of two ribbon cable assemblies and a 
power harness. The power harness delivers 
unregulated + 16VDC, -16VDC, +8.5VDC and 
ground. VR1 and R2 form a simple zener voltage 
regulator that supplies the —5VDC. VR2 is a 3 ter­
minal voltage regulator used to supply the + 12VDC. 
C2 is that regulator’s input bypass capacitor to in­
sure stable operation. VR3 is a +5VDC regulator 
that provides the bulk of the power to the board. Cl2 
and C13 are used for that regulator’s input and out­
put bypass capacitors, respectively. Capacitors CIO, 
Cll and C9 are used for bulk decoupling of the 
dynamic RAM’s supply voltages. The remainder of 
the capacitors are placed near each IC to serve as 
decoupling capacitors. Reduced operating temp­
eratures for VR2 and VR3 are maintained by heat­
sinks. For additional safety, these integrated

The power is distributed to the IC’s via a grided net 
work to minimize the effective inductance.

MICROCOMPUTER

The Z-80 microprocessor on the TERMINAL 
LOGIC board was moved to the Imaginator and in 
its place a 40 conductor ribbon cable was connected. 
The ribbon cable connects the Imaginator and the 

TERMINAL LOGIC address buses, data buses, and 
control buses together (J4).

U4C, U5, and U6 are non-inverting buffers used to 
provide the supplementary source and sink drive re­
quired by the additional loads on the address bus. 
U35A and U35B are non-inverting buffers used to 
provide additional drive on the microprocessor’s 
read (RD) and write (WR) lines.

E/P/ROM U9A contains the software for the 
graphics command processor (GCP). U8 is a 128 by 8 
bit scratchpad R/W RAM used by the graphics com­
mand processor. U9B is a memory mapped socket 
that may be used for memory expansion.

GRAPHICS COMMAND PROCESSOR 
MEMORY EXPANSION

Jumpers El thru E13 allow the Imaginator to be 
reconfigured to accept up to 16K of E/P/ROM or a 
maximum of 8K of E/P/ROM and 8K of R/W RAM 
instead of the standard 2K E/P/ROM. The standard 
jumper configuration of E12-E13 connects pin 23 of 
socket U9A with Vcc. By changing the jumper to 
E12-E11 pin 23 is connected to address line 11. (In a 
similar manner E5-E7 can be changed to E5-E6 to 
reconfigure U9B.) This permits MOSTEK or INTEL 
family compatible 4K or 8K E/P/ROM to be used. A 
maximum of 16 K of E/P/ROM may be addressed by 
reconfiguring both jumper sets and adding an addi­
tional E/P/ROM at U9B.

Alternatively, U9B could be R/W RAM instead of 
E/P/ROM. Strapping E5-E4 connects pin 23 of U9B 
to the microprocessor write (WR) line. This con­
figuration is used for 2K R/W RAM. Strapping 
E9-E8 is used for larger 4K R/W RAM. Psuedostatic 
RAM can be implemented by strapping E2-E3. This

53



54

connects pin 1 of U9B to the microprocessor refresh 
(RFSH) line. Refer to Modifications for specific 
strapping information.

MEMORY MAP

U22, U34B, U29B, and U28B form the memory map 
decoding logic. Address lines A1S, Au, and A13 are 
decoded to divide the total address space of 64K into 
eight 8K banks.

The total address space is allocated as follows:

2000H-3FFFH, pin 14 of U22, is allocated to the 
graphics command processor E/P/ROM, U9A.

6000H-7FFFH, pin 12 of U22, is allocated to the 
graphics scratchpad R/W RAM, U8.

8000H-BFFFH, pin 10 OR pin 11 (U29B) of U22, 
is allocated to the graphics display dynamic R/W 
RAM, U10-U17.

C000H-DFFFH, pin 9 of U22, is allocated to the 
optional graphics command processor memory, 
U9B.

The rest of the address space 0000H-1FFFH, 
4000H-5FFFH, and E000H-FFFFH, pin 7 OR 
pin 13 OR pin 15 (U28B) of U22, is allocated to 
memory on the TERMINAL LOGIC board.

The outputs of U22 are only enabled when pin 5 of 
U22 receives an active memory request (MREQ) 
from the microprocessor.

INPUT/OUTPUT

An input/output request (IORQ) is sent to the TER­
MINAL LOGIC board only when both IORQ (pin 20 
of U7) AND A, are low (U34C).

HARDWARE RESET

When the microprocessor receives a hardware reset 
(pin 26 of U7) it instinctively knows to output ad­
dress 0000H and fetch an opcode. Normally 
0000H-1FFFH is allocated to the E/P/ROMs on the 
TERMINAL LOGIC board. However, since the clear 
input of flip-flop U27A (pin 1) also receives the reset 
signal it causes the output of U34B to go high. This 
effectively moves a copy of the Imaginator’s 

E/P/ROM (U9A) at 2000H-3FFFH down to 
0000H-1FFFH, while at the same time prevents a 
MREQ (U28B) from being sent to the TERMINAL 
LOGIC board. The first instruction of the Im- 
aginator's E/P/ROM (U9A) is a JMP to 2003H. The 
E/P/ROM program then accesses the R/W memory 
at 6000H-7FFFH (pin 12 of U22) which presets U27 
(pin 4) and the memory map configuration returns to 
normal.

INTERRUPTS

The graphics command processor initializes the 
microprocessor to accept both non-maskable inter­
rupts (NMI) and software maskable vectored inter­
rupts. The NMI originates on the TERMINAL 
LOGIC board (pin 17 of U7). The software maskable 
interrupt request is output from multiplexor U38B 
pin 8. The multiplexor chooses between an interrupt 
generated on the TERMINAL LOGIC board 
(keyboard, asyncronous communications element or 
break key) or a horizontal retrace interrupt generated 
on the Imaginator. U21A first inverts the interrupt 
from the TERMINAL LOGIC board to convert to 
high true logic.

The horizontal retrace interrupt pulse is generated 
by U32A and U21C 10.24uS before the 
microprocessor’s time slot begins to allow for inter­
rupt latency. The horizontal retrace interrupt re­
quest becomes active when both U32A pin 5 AND 
U21Cpin6arehigh(U38Bpins 1 and 13). Itisreturn­
ed to an inactive state 5.12uS later when the inverted 
(U21C) secondary address line A3 goes low. The 
horizontal retrace interrupt is used to signal when 
the microprocessor is permitted to access the 
graphics display R/W RAM.

The interrupt multiplexor (U38B) is controlled by the 
outputs of U40B (pins 8 and 9). The microprocessor 
can set the interrupt multiplexor (U38B) to pass an 
interrupt generated on the TERMINAL LOGIC 
board by performing an I/O write of port 00011000B. 
Specifically, this would happen with an active IORQ 
(U21B and U28A pin 2) AND an inactive Ml (U28A 
pin 13) AND A4 high (U28A pin 1) while holding A, 
high (U40B pin 12). Alternatively.it can set the inter­
rupt multiplexor to pass the Imaginator generated 
horizontal retrace interrupt by an I/O write to port 
00010000B (as before except A, is low).

Once the microprocessor receives a software 
maskable interrupt it will request an interrupt vector 
to be placed on the data bus by making both IOQR 
(U34D pin 12) and Ml (U34D pin 13) active. The out-

Alternatively.it


55

put of U34D then enables the three-state buffers 
U35D and U41C. D, of the vector is determined by 
pin 9 of U40B with the other 7 bits permanently 
assigned as zero. The graphics command processor’s 
interrupt routine will then access the graphics 
display memory located at 8000H to BFFFH caus­
ing the output of U29B to go low, presetting U40 (pin 
10). The interrupt multiplexor (U38B) will then block 
horizontal retrace interrupts and will pass only inter­
rupts generated on the TERMINAL LOGIC board.

GRAPHICS REFRESH ADDRESS COUNTERS

Syncronous binary counters (U19,U26,U31,U25) are 
cascaded to form the graphics display R/W RAM’s 
14 bit secondary address bus. These counters are 
syncronized with the vertical and horizontal sync 
pulses generated by the CRT controller on the TER­
MINAL LOGIC board (J2/J3 pins 6 and 8, respec­
tively). The output of the non-inverting buffer U4A 
provides the clock signal used to syncronize these 
counters.

Counter U20 is used to disable the cascaded address 
counters from counting for a fixed number of clock 
pulses past the receipt of the horizontal sync pulse 
(U21E). This is done to center the graphics display on 
the screen. Since a low on either enable P or enable T 
disables the counter, the cascaded address counters 
are disabled until enable T (pin 10) of U19 goes high. 
When U20 receives a horizontal sync pulse (pin 9) it 
loads 0010 with the rising edge of the next clock pulse 
(pin 2). It then counts to 1111 at which time the ripple 
carry out goes high. The ripple carry out is inverted 
by U21D and input to the enable P pin on U20 (pin 7). 
This disables further counting and holds the ripple 
carry out high until the next horizontal sync pulse 
(i.e., the next display line).

X COUNTERS

Counters U19 and U26 are cascaded to form the 6 ad­
dress lines Aq-Aj, that cover the range 0 to 63. Note 
that these counters form addresses that are used to 
access bytes of data, and that the horizontal width of 
the graphics display is 512 pixels (i.e., 64 times 8). 
Since the horizontal sync pulse loads counter U26 
with 1100 a ripple carry out will be generated on pin 
15 of U26 when U19 and U26 reach the count of 63. 
This ripple carry out permits the cascaded counters 
U31 and U25 to increment with the next positive 
edge of the clock (pin 2).

Y COUNTERS

The next horizontal sync pulse restarts counter U20 
and reloads counters U19 and U26 with 11000000 
but does not effect U31 or U25. The latter two 
counters are loaded with 00000000 only when they 
receive a vertical sync pulse (pins 9 on U31 and U25). 
These counters count from 0 to 255 and logically 
represent the vertical axis of the graphics display.

DYNAMIC RAM ADDRESS MULTIPLEXORS

U18, U24, U30 and U36 are 4 to 1 multiplexors used 
to interface the graphics display’s dynamic RAMs 
(U10-U17) with the microprocessor’s address bus 
and the graphics counter’s secondary address bus. 
These multiplexors have the dual task of selecting 
between the microprocessor’s and secondary address 
buses and selecting between high and low order ad­
dress bits on either bus. Select A (pins 14) are used to 
specify which address bus is to be selected and select 
B (pins 2) specifies the high or low order bits. The 
microprocessor's address bus is selected by U32B 
(pin 9) only when the CRT’s electron beam is outside 
the graphics display region to prevent disturbing 
displayed graphics data.

ROW ADDRESS STROBE (RAS) AND COLUMN 
ADDRESS STROBE (CAS) LOGIC

The graphics display address counters and the 
microprocessor are not syncronized together, which 
requires the high/low address line selection to be con­
trolled independently of each other. The multiplexor 
(U38A) that selects between these independent con­
trollers is itself controlled by an output (pin 8) of 
U32B. U40A.U21F and U29D form the 
microprocessor’s high/low address line controller. 
Address lines A0-As are selected until a positive edge 
of the microprocessor clock (U40A pin 3) latches an 
active read (RD) OR write (WR) (U29D) AND the 
graphics display RAM at 8000H to BFFFH (U40A 
pin 4) has been accessed. The microprocessor will ac­
cess the graphics display RAM only after the states 
on the address bus are stable. The output of U29B 
will go low causing the output of U29C, the row ad­
dress strobe (RAS), to go low. The dynamic RAM’s 
will latch addressesA0-Ag with the negative going 
edge of the row address strobe (RAS). If the dynamic 
RAM’s are accessed (pin 4 of U40A), the positive go­
ing edge of the microprocessor clock (pin 3 of U40A) 
will latch an active read (RD) OR write (WR) (U29D)



56

resulting in a high output (pin 6 of U40A). This 
causes the address multiplexor to select address lines 
A7-A13. It also causes the output of U36 (pin 9) to 
switch states. This signal is used as the column ad­
dress strobe (CAS) after being delayed by the cascad­
ed non-inverting buffers U35C and U35D. This delay 
is present to insure that the address lines A,-A13 have 
stabilized before the dynamic RAM’s read them.

U33 and U39 make up a sequential circuit that 
generates the row address strobe and the address 
selector signal for the address multiplexor. The dot 
clock (U4B) and the load clock (U4 A) are used to syn- 
cronize the generator with the graphics display 
RAM’s secondary address bus counters and the shift 
register (U2).

Series terminating resistors R1 and R3-R11 are used 
to prevent undershoot by matching the low level 
source impedance with the line impedance.

DYNAMIC RAM ACCESS LOGIC

The dynamic RAM’s are written to in ‘early write’ 
mode which permits the input and the output of each 
individual RAM to be connected without contentions 
(the outputs are internally placed in a high im­
pedance state.) The write signal is generated by U3C 
when the graphics display RAM is selected (pin 9 of 
U3C) AND when the microprocessor issues an active 
write (WR) (pin 10 of U3C). The dynamic RAM’s data 
lines form the secondary data bus and are connected 
in parallel to the eight bit shift register (U2) and the 
octal bus transceiver (U37).

DATA BUS TRANSCEIVER

The octal bus transceiver is used to isolate the 
primary data bus from the secondary data bus. The 
two buses remain isolated from one another unless 
the microprocessor accesses the graphics display 
RAM at 8000H-BFFFH (pin 19 of U37). The read 
(RD) line from the microprocessor is used to deter­
mine the direction of data flow through the tran­
sceiver (pin 1 of U37).

GRAPHICS SHIFT REGISTER

The shift register (U2) loads these eight bits when the 
load clock is active (pin 15 of U2) AND with the 
positive going edge of the dot clock (pin 7 of U2). The 
shift register shifts one bit out with each subsequent 

positive going edge of the dot clock. Since the data 
need only be stable on the secondary data bus when 
the shift register loads, an extra stage of pipelining is 
produced. The load clock and the dot clock are input 
to both shift registers (pins 15 and 7, respectively, of 
U1 and U2) before the non-inverting buffers U4A and 
U4B to avoid the propagation delay through those 
buffers.

ALPHANUMERIC SHIFT REGISTER

The 16 conductor ribbon cable carries the dot and 
load clock as well as the eight data lines from the 
character generator located on the TERMINAL 
LOGIC board. These signals are input to the shift 
register (Ul) that was moved from the TERMINAL 
LOGIC board to the Imaginator. Unused lines 1,6,8, 
9, and 16 of cable JI are tied to the Imaginator’s sup­
ply lines to prevent them from harmfully coupling 
with the high frequency clock signals carried on the 
ribbon cable.

DISPLAY ENABLE LOGIC

The output (pin 13) of shift register Ul is forced low 
when the clear input (pin 9 of Ul) is brought low by 
the output of U23B. The state of address line A, (pin 
12 of U23B) is latched by flip flop U23B with the 
positive going edge of IORQ (pin 2 of U28A) AND 
NOT Ml (pin 13 of U28A) AND address line A4 (pin 1 
of U28A AND address line A6 (pin 10 or U28C). The 
output (pin 13) of shift register U2 is forced low when 
either the output of U23A is low (pin 2 of U29A) OR 
the non-inverting output of U32B is low (pin 1 of 
U29A). The state of address line A, (pin 2 of U32A) is 
latched by flip flop U23A in the same manner as 
U23B.

The alphanumeric video output (pin 13) of Ul and the 
graphics video output (pin 13) of U2 are ORed 
together and then output to the TERMINAL 
LOGIC board (U3B).



REPLACEMENT PARTS

INTEGRATED CIRCUITS VOLTAGE REGULATORS
CIRCUIT 
NUMBER

INTERNAL 
NUMBER

EXTERNAL 
NUMBER

U1 1550-0166 IC, 74LS166
U2 1550-0166 IC, 74LS166
U3 1540-0032 IC, 74S32
U4 1550-0367 IC, 74LS367
U5 1550-0367 IC, 74LS367
U6 1550-0367 IC,74LS367
U7 1530-0080 IC, CPU, 2-80
U8 1560-0310 IC, 68A10
U9A 1560-0116 IC, EPROM, 

UNPROGRAMMED
U10 1560-0216 IC, 4116N-4
U11 1560-0216 IC, 4116N-4
U12 1560-0216 IC, 4116N-4
U13 1560-0216 IC, 4116N-4
U14 1560-0216 IC, 4116N-4
U15 1560-0216 IC, 4116N-4
U16 1560-0216 IC, 4116N-4
U17 1560-0216 IC, 4116N-4
U18 1550-0153 IC, 74LS153
U19 1550-0163 IC, 74LS163A
U20 1550-0163 IC, 74LS163A
U21 1550-0004 IC, 74LS04
U22 1550-0138 IC, 74LS138
U23 1550-0074 IC, 74LS74
U24 1550-0153 IC, 74LS153
U25 1550-0163 IC,74LS163A
U26 1550-0163 IC,74LS163A
U27 1550-0074 IC, 74LS74
U28 1550-0011 IC, 74LS11
U29 1550-0008 IC, 74LS08
U30 1550-0153 IC,74LS163A
U31 1550-0163 IC, 74LS163A
U32 1550-0074 IC,74LS74
U33 1550-0163 IC, 74LS163A
U34 1550-0032 IC,74LS32
U35 1550-0367 IC, 74LS367
U36 1550-0153 IC, 74LS153
U37 1550-0245 IC, 74LS245
U38 1550-0051 IC, 74LS51
U39 1550-0074 IC, 74LS74
U40 1550-0074 IC, 74LS74
U41 1550-0367 IC, 74LS367

CIRCUIT 
NUMBER

INTERNAL 
NUMBER

EXTERNAL 
NUMBER

VR1 1410-0100 ZENER DIODE, 
1N751A

VR3 1580-0100 REGULATOR, +5V,
LM340K-5

VR2 1580-0110 REGULATOR, + 12V, 
LM340T-12

CAPACITORS

INTERNAL EXTERNAL
NUMBER NUMBER

1300-0110 CAP, TANT, 10uf
1350-0110 CAP, CER, 0.1uf
1350-0821 CAP, CER, 820pf

RESISTORS

INTERNAL EXTERNAL
NUMBER NUMBER

1200-4330 1/4W, 5%, 33 OHM
1200-2471 1/2W, 5%,470 OHM

IC SOCKETS

INTERNAL 
NUMBER

EXTERNAL 
NUMBER

57

1100-0040
1100-0028
1100-0024
1100-0020
1100-0016
1100-0014

SOCKET, IC, 40 PIN
SOCKET, IC, 28 PIN
SOCKET, IC, 24 PIN
SOCKET, IC, 20 PIN 
SOCKET, IC, 16 PIN
SOCKET, IC, 14 PIN



58

POWER HARNESS HARDWARE

INTERNAL EXTERNAL
NUMBER NUMBER

1110-0111 11-HOLECONN. SHELL
1110-0211 11-PIN POLARIZING WAFER
1115-0000 CRIMP TERMINAL

* HEAT SINKS
INTERNAL EXTERNAL
NUMBER NUMBER

1700-0010 HEAT SINK, LARGE
1700-0020 HEAT SINK, SMALL

HARDWARE
INTERNAL EXTERNAL
NUMBER NUMBER

1806-0500 6-32 X 1/2 SCREW
1806-0375 6-32 X 3/8 SCREW
1810-0632 6-32 NUT
1820-0600 #6 LOCKWASHER
1700-0000 CARD GUIDE

RIBBON CABLES
INTERNAL EXTERNAL
NUMBER NUMBER

1190-0001 40-COND. RIBBON ASSY.
1190-0002 16-COND. RIBBON ASSY.

HOOKUP WIRE
INTERNAL EXTERNAL
NUMBER NUMBER

1690-1801 WIRE #18 AWG, WHT
1690-1802 WIRE #18 AWG, BLACK
1690-1803 WIRE #18 AWG, RED
1690-1804 WIRE #18 AWG, GRN
1690-1805 WIRE #18 AWG, YEL
1690-1806 WIRE #18 AWG, BLU
1690-1808 WIRE #18 AWG, ORG
1690-1810 WIRE #18 AWG, VIO

INTERNAL 
NUMBER

MISCELLANEOUS

EXTERNAL
NUMBER

0500-0000
0100-0000
0100-0001
0110-0000

CIRCUIT BOARD 
ASSY MANUAL 
USER MANUAL 
3-RING BINDER

H/Z-89 MODELS ONLY

INTERNAL 
NUMBER

EXTERNAL 
NUMBER

1110-0103 3-PIN CONN. SHELL
1110-0203 3-PIN POLARIZING WAFER
1710-0010 REAR BRACKET
1710-0011 FRONT BRACKET
1710-0012 TO-3 BRACKET
1120-0000 TO-3 SOCKET
1850-0025 NYLON SPACER
1190-0003 40-COND. RIBBON ASSY.
1190-0004 16-COND. RIBBON ASSY.

When ordering replacement parts be certain to 
specify the Internal Part Number.

Please mark all correspondence Attn: Parts Replace­
ment.

♦ For replacement of programmed EPROMs give us 
the part number and revision number that are im­
printed on the EPROM label.



REFERENCES

The following list of references is suggested for those who wish to explore the subject of 
computer graphics in greater detail. The first three references listed contain extensive 
bibliographies. Though the first two books listed have the same title,they are quite dif­
ferent in content.

William M. Newman, Robert F. Sproull. Principles of Interactive Computer Graphics. 
McGraw Hill Book Company, 1973.
William M. Newman, Robert F. Sproull. Principles of Interactive Computer Graphics. 
Second Edition. McGraw Hill Book Company, 1979.
Sylvan H. Chasen. Geometric Principles and Procedures for Computer Graphic Applica­
tions. Prentice-Hall, Inc., 1978.
Conrac Division, Conrac Corporation. Raster Graphics Handbook. Conrac Division, 
1980.
Chris Rorres, Howard Anton. Applications of Linear Algebra. Second Edition. John 
Wiley and Sons, 1979. (This book has one chapter devoted to computer graphics.)

59



60

This page intentionally left blank.



MODIFICATIONS

The Imaginator may be easily reconfigured to permit the user to modify and enhance its 
present capabilities. Up to 16K of E/P/ROM can be accommodated by simply restrapp­
ing El through E13.
Alternatively, 8K of E/P/ROM and 8K of R/W RAM can be configured. This arrange­
ment along with some of the special GCP commands permit the downloading of custom 
programs from the host computer into the graphics terminal. Fast custom character 
generators is a typical application.

NOTE: The information contained in this manual is not detailed enough to permit the 
user to take advantage of these enhancements. An additional manual, Imaginator 
Source Code and Manual, is required. However, the required strapping information is 
included below. A detailed pictorial description is included with memory expansion ac­
cessories.

MEMORY DEVICE SOCKET U9A SOCKET U9B

E/P/ROM
2716 E12-E13 E5-E7, E14-E15
2732 E12-E11 E5-E6, E14-E15
2764 E12-E11 E2-E1.E5-E6, E14-E15

STATIC R/W RAM
4118 NA E5-E4
4802 NA E5-E4

PSEUDO STATIC R/W RAM
4816 NA E2-E3, E9-E8

Only the indicated pads should be strapped. Unmentioned pads should have no connection. 
Non-violatile memory is mandatory in socket U9A, therefore the strapping for the R/W RAM 
is not applicable (NA).

61



62

This page intentionally left blank.



APPENDIX

63

Alphanumerics Mode Graphics Mode
Decimal 

Code
Hex 
Code

Octal 
Code

Binary 
Code Character

Control
Keys ASCII Mode Binary Mode Operand

0 00 000 00000000 NUL @ Unused Unused
1 01 001 00000001 SOH A Delimiters
2 02 002 00000010 STX B
3 03 003 00000011 ETX C No Operation
4 04 004 00000100 EOT D
5 05 005 00000101 ENQ E
6 06 006 00000110 ACK F
7 07 007 00000111 BEL G
8 08 010 00001000 BS H
9 09 011 00001001 HT I

10 0A 012 00001010 LF J
11 OB 013 00001011 VT K No Operation
12 OC 014 00001100 FF L
13 0D 015 00001101 CR M
14 0E 016 00001110 SO N
15 OF 017 00001111 SI O
16 10 020 00010000 DLE P
17 11 021 00010001 DC1 Q
18 12 022 00010010 DC2 R
19 13 023 00010011 DC3 S BringlnProgram
20 14 024 00010100 DC4 T
21 15 025 00010101 NAK U
22 16 026 00010110 SYN V
23 17 027 00010111 ETB w
24 18 030 00011000 CAN X
25 19 031 00011001 EM Y
26 1A 032 00011010 SUB z
27 IB 033 00011011 ESC [
28 1C 034 00011100 FS \
29 ID 035 00011101 GS ]
30 IE 036 00011110 RS A
31 IF 037 00011111 US -
32 20 040 00100000 SP
33 21 041 00100001 !
34 22 042 00100010 i 4 Delimiters



64

Alphanumerics Mode Graphics Mode
Decimal Hex Octal Binary

Code Code Code Code Character
Control

Keys ASCII Mode Binary Mode Operand

35 23 043 00100011 Delimiters
36 24 044 00100100 $ DisplayToggle
37 25 045 00100101 %
38 26 046 00100110 &
39 27 047 00100111
40 28 050 00101000 (
41 29 051 00101001 )
42 2A 052 00101010 ♦
43 2B 053 00101011 + ExitGraphicsMode
44 2C 054 00101100 »
45 2D 055 00101101 -
46 2E 056 00101110
47 2F 057 00101111 / Delimiters
48 30 060 00110000 0 Data
49 31 061 00110001 1 1
50 32 062 00110010 2
51 33 063 00110011 3 PointAt
52 34 064 00110100 4
53 35 065 00110101 5
54 36 066 00110110 6
55 37 067 00110111 7
56 38 070 00111000 8
57 39 071 00111001 9 Data
58 3A 072 00111010 Delimiters
59 3B 073 00111011
60 3C 074 00111100 <
61 3D 075 00111101 =
62 3E 076 00111110 >
63 3F 077 00111111 ?
64 40 100 01000000 @ Delimiters
65 41 101 01000001 A AreaTo
66 42 102 01000010 B BringlnProgram
67 43 103 01000011 C
68 44 104 01000100 D DisplayToggle
69 45 105 01000101 E ExitGraphicsMode
70 46 106 01000110 F
71 47 107 01000111 G
72 48 110 01001000 H
73 49 111 01001001 I LineType
74 4A 121 01001010 J JumpToProgram
75 4B 113 01001011 K LineType
76 4C 114 01001100 L LineTo
77 4D 115 01001101 M MoveTo
78 4E 116 01001110 N PriLineStyle
79 4F 117 01001111 O SecLineStyle
80 50 120 01010000 P PointAt
81 51 121 01010001 Q Delimiters
82 52 122 01010010 R
83 53 123 01010011 S JumpToProgram
84 54 124 01010100 T Delimiters



65

Alphanumerics Mode Graphics Mode
Decimal Hex Octal Binary

Code Code Code Code Character
Control

Keys ASCII Mode Binary Mode Operand
85 55 125 01010101 u Delimiters
86 56 126 01010110 V
87 57 127 01010111 w
88 58 130 01011000 X
89 59 131 01011001 Y
90 5A 132 01011010 z
91 5B 133 01011011 { AreaTo
92 5C 134 01011100 \
93 5D 135 01011101 1
94 5E 136 01011110 A
95 5F 137 01011111
96 60 140 01100000 4
97 61 141 01100001 a
98 62 142 01100010 b
99 63 143 01100011 c LineTo
100 64 144 01100100 d
101 65 145 01100101 e
102 66 146 01100110 f
103 67 147 01100111 g
104 68 150 01101000 h
105 69 151 01101001 i
106 6A 152 01101010 j
107 6B 153 01101011 k MoveTo
108 6C 154 01101100 1
109 6D 155 01101101 m
110 6E 156 01101110 n
111 6F 157 01101111 0
112 70 160 01110000 P
113 71 161 01110001 q
114 72 162 01110010 r
115 73 163 01110011 8 PriLineStyle
116 74 164 01110100 t
117 75 165 01110101 U
118 76 166 01110110 V
119 77 167 01110111 w
120 78 170 01111000 x
121 79 171 01111001 y
122 7A 172 01111010 z
123 7B 173 01111011 { SecLineStyle
124 7C 174 01111100 11
125 7D 175 01111101 }
126 7E 176 01111110 -
127 7F 177 01111111 DEL Delimiters



66

This page intentionally left blank.



J2/J3<

__________________________________________ jfl-M <M U*
V*’ 1 Cl. O C* Cl* VI' UM VM VM VMC« CM C»J CM UM UM U>l U» UM

, / CM CM-CM UM-UM UM UM VM *” Ul» U** U*« V> u*

**■ T U1 7T I. kI. 
I r r r

L I" m I.I In A

T
1 —OJ*

C1>
' 1 T r r r r

R2 G£> 8l» uw-uo A

U1 
U2
U3
U4
U5
U6 
or
U8
INA 
uh 
uw
U11
U12
U13
U14



115 4116-4 U30 74LS1S3
16 4116-4 U31 74LS163

.17 41164 U32 74LS74
■ 18 74LS153 U33 74LS163
H9 74LS163 U34 74LS32
120 74LS163 U35 74LS367
121 74LS04 U36 74LS153
I22 74LS138 U37 74LS245
I23 74LS74 U38 74LS51
I24 74LS153 U39 74LS74
I25 74LS163 U40 74LS74
I26 74LS163 U41 74LS367
127 74LS74 VR1 1N751
128 74LS11 VR2 LM34OT-12
129 74LSO8 VR3 LM340K-5

Copyright (Cl I9S2 by Cleveland Codonac*. Inc

Ail rights rsMrvpd. Worldwide

Cleveland Codonics, Inc.

Imaginator
REV. B



WE WOULD LIKE YOUR COMMENTS ON THIS MANUAL

Did you find any errors in this manual? Where?

Was it complete, should some areas be covered in greater detail?

Was it the right level? Too simple? Too difficult?

Was it clearly written?

Please rate this document with respect to similar ones?

CLEVELAND CODONICS, INC.
P.O. Box 45259
Cleveland, Ohio 44145





l231SlS2lS3

-
.j£t

YOUR 90-DAY LIMITED WARRANTY
Cleveland Codonics, Inc. warrants that during the first ninety (90) days after purchase, this 
product, when correctly assembled and used in accordance with our printed instructions, 
will meet published specifications.
For a period of ninety (90) days after purchase. Cleveland Codonics, Inc. will repair or replace 
(at our option) free of charge (excluding freight) any parts or assemblies that are defective in 
either materials or workmanship. This warranty covers only Cleveland Codonics, Inc. pro­
ducts. It does not include equipment used in conjunction with this product. We are not 
responsible for incidental or consequental damages, nor are we responsible for loss of 
business or profits.
EXCEPT FOR THE EXPRESS WARRANTIES CONTAINED HEREIN, CLEVELAND 
CODONICS. INC. DISCLAIMS ALL WARRANTIES ON THE PRODUCTS FURNISH­
ED HEREUNDER, INCLUDING ANY AND ALL IMPLIED WARRANTIES FOR 
MERCHANTABILITY AND FITNESS. No agent, representative, dealer or employee of 
the company has the authority to increase or alter the obligations of this warranty. This war­
ranty gives you specific legal rights and you may also have other rights which vary from 
state to state.
This warranty does not cover damage resulting from misuse, abuse, incorrect assembly, or 
unauthorized modifications.


