USER’'S GUIDE MANUAL

for the

IMAGINATOR

MODEL I-100
RETROFIT GRAPHICS
DISPLAY BOARD

CLEVELAND CODONICS, INC.
CLEVELAND, OHIO

REV. A

Printed in the United States of America

Copyright © 1982 by CLEVELAND CODONICS, INC.
All rights reserved

No part of this publication may be reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or computer language, in any form or
by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior written permission of Cleveland Codonics, Inc., Cleveland, Ohio.

However, permission is granted to reproduce or abstract from the example programs
supplied in the User's Guide section of this manual for inclusion within the user’s pro-
grams.

Although every effort has been made to insure the correctness of this
manual, Cleveland Codonics, Inc. assumes no responsibility for any
errors that may appear in this manual. Cleveland Codonics, Inc.
makes no commitment to update nor to keep current the information
contained in this manual.

The information in this manual is subject to change without notice.

TABLE OF CONTENTS

INTRODUCUTION ... c.oiiviniavsasairsrnisasotnindininmsmiss 1
HOSTCOMMUNICATIONSREQUIREMENTS 3
WELCOME e 5
GENERAL i i it e e 9
COMMAND FORM AND FUNCTION,ASCII 11
COMMAND FORM AND FUNCTION, BINARY 27
EXAMPLES . . 41
THEORY OF OPERATION 53
REPLACEMENTPARTS, 57
REFERENCES 59
MODIFICATIONS i i i e ien e an i enes 61
APPENDIX . . 63
SCHEMATIC e 67

WARRANTY 68

INTRODUCTION

The Imaginator is an intelligent, high efficiency, high resolution (504 by 247 pixel)
graphics retrofit unit for your Heath/Zenith H/Z-19 terminal and H/Z-89 computer.

The Imaginator has its own onboard microcomputer to perform graphics processing in-
dependent of the host computer. This reduces the burden placed on the host processor
and therefore improves execution speed.

A 128 character communications buffer further improves execution speed. This buffer
permits the terminal and the host computer to perform their tasks asynchronously.

A graphics command may be entered by typing on the keyboard when the terminal is
OFF-LINE or it may be sent via RS-232C from the host computer when the terminal is
ON-LINE.

The Imaginator’s transparent operation leaves all of the terminal’s normal escape func-
tions intact. The terminal’s normal alphanumerics are totally independent of the Im-
aginator’s graphics. The two displays can be overlayed on one another and may be in-
dividually altered under software control. Both alphanumeric and graphics images can
be created in memory and restrained from being displayed on the screen. Once created
they can be displayed instantaneously. Alternatively, the images may be displayed as
they are created.

The graphics command processor (GCP) can be invoked to accept commands in either
ASCII or BINARY format. ASCII mode has the advantage of easy user implementa-
tion of the graphics command language. All of the commands can be directly output by
high level language programs which are executed in the host computer (e.g., PL/I, FOR-
TAN, PASCAL, BASIC, and of course ASSEMBLY languages). Standard, off-the-
shelf, interpreters and compilers are all that are required (those languages need not have
any special graphies instructions). No machine language driver programs are required.

The BINARY mode has the advantage of high efficiency. A minimum of information
must be sent to specify an operation. Again, no special interpreters or compilers are re-
quired but machine language drivers are suggested (even these are not required) for effi-
ciency.

An additional memory-mapped socket is provided for memory expansion. Up to 16K of
E/P/ROM can be mounted and addressed by the GCP, or 8K of E/P/ROM and 8K of R/W
RAM can be used. Custom programs can be downloaded from the host computer into
this memory for fast independent execution.

GRAPHICS INSTRUCTION SET

EnterGraphicsMode
MoveTo (X,Y)
PointAt (X,Y)
LineTo (X,Y)
AreaTo (X,Y)
PriLineStyle (2)
30 Unique styles
SeclLineStyle (2)
30 Unique styles
LineType (Z)
' On
Off
Complement
Read Bit
Toggle to Alternate LineStyle at Boundary
Read Byte
DisplayToggle (Z)
Enable/Disable Graphics
Enable/Disable Alphanumerics
Erase Graphics
or any of the eight combinations
BringlnProgram (Z,,Z,,...,Z437)
JumpToProgram
ExitGraphicsMode

Cleveland Codonics, Inec. reserves the right to discontinue products and to change
specifications at any time without incurring any obligation to incorporate new features
in products previqusly sold.

HOST COMMUNICATIONS
REQUIREMENTS

When operating at high baud rates, the graphics ter-
minal will generally lag behind the host computer if
asked to execute a succession of commands with long
execution times (e.g., Erase, AreaTo, and LineTo
commands). The Graphics Command Processor
(GCP) will set the Request To Send RS-232C line
false when the terminal’s input communications buf-
fer is nearly full, preventing a loss of data resulting
from a buffer overflow. (The terminal’s bell will tone
to indicate a loss of data.) The GCP will reset the Re-
quest To Send line true when the buffer is ready to
receive additional data.

Therefore, it is important that the host computer or
MODEM is configured to respond to this signal. (The
terminal needs no modification because it is
manufactured with hardware handshaking capabil-
ities.) A true RS-232C configuration will work fine,
but often the typical RS-232C’s handshaking por-
tions are incomplete. Pin 4 of the 25-pin ‘D"’ connec-
tor on the back panel of the terminal is the Request
To Send line (defined as Clear To Send at the com-
puter end). A physical wire must connect the ter-
minal’s pin 4 with the computer’s (MODEM’s) pin 4.

The UARTS used in the host's RS-232C serial ports
fall in two catagories. Some UARTS, such as the IN-
TEL 8251 Universal Synchronous / Asyncronous Re-
ceiver/Transmitter, respond directly to the Clear To
Send signal. A high or low on the Clear To Send line
with this type of UART will electronically disable or
enable transmissions This type of UART requires no
further modifications.

The other type of UART has a software flag that
represents the Clear To Send signal. Normally, the
computer’s operating system’s Basic Input/Output
System (BIOS) is responsible for interfacing with the
serial port hardware. Generally, the BIOS will check
to see if the transmitter is ready (TxRDY) before
loading the UART with a character to transmit to the
terminal. To add hardware handshaking, simply
modify the BIOS to check the Clear To Send flag
also. That is, make sure that TxRDY AND Clear To
Send are both true before loading the UART with a
new character to transmit.

Without this hardware handshaking, it is the pro-
grammer’s responsiblity to add software timing
delays to prevent a buffer overflow.

Hardware handshaking will in no way detrimentally
effect the operation of any of your existing programs.
Software handshaking is still present when running
the terminal in its standard alphanumeric mode.
Assuming that the process executing in the host
computer understands ctrl-S (stop transmitter) and
ctrl-Q (start transmitter), it is possible to suspend
graphics program output by typing a ctrl-S on the
keyboard, when the terminal is on line.

The GCP supports only one directional hardware
handshaking. It will send signals to control the
host’s serial channel transmitter,but will not respond
to signals sent to the terminal’s serial channel
transmitter from the host.

This page intentionally left blank.

WELCOME

Welcome to the field of computer graphics. The human mind is the greatest known
graphics processor in existance. Thoughts can be instantly conveyed by means of a pic-
ture. And in this time of information upheaval graphics is needed more than ever to
enable one to assimilate it all. As a result computer graphics is one of the fastest grow-
ing disciplines in computer science.

Try typing in and executing the following demonstration programs. (We are assuming
that you have access to a BASIC interpreter or compiler.)

Note that the Imaginator is assumed to be installed in a terminal that is serving as the
console.

In case of error. If nothing appears to happen or something very strange happens once
you have typed the RUN command give the terminal a hardware reset (right-SHIFT
RESET) followed by a ctrl-C (or whatever command stops program execution in your
particular version of BASIC). Type LIST and then double check the program for typing
errors.

Enter and run this program first:

DEMONSTRATION 1.

00010 DEFINT X,Y

00020 PRINT CHR$(27):“1"
00030 PRINT ““I0,N255,D3"
00040 PRINT “M™;0;125

00050 FOR X=0TO 500 STEP 2
00060 Y =100*SIN(X/13.27)+ 125
00070 PRINT “L”;X;Y

00080 NEXT X

00090 PRINT “D6,E”

00100 STOP

Here's another one.

DEMONSTRATION 2.

00010 DEFINT A-Z

00020 PRINT CHR$(27);"1"
00030 PRINT “D3,12,N255"
00040 FORJ=1TO 10
00050 X =251

00060 Y =126

00070 PRINT “P"; XY
00080 FORI=0TO 80 STEP8
00080 X =250-1

00100 Y=125

00110 PRINT “L";X;Y
00120 X =254

00130 Y =121-|

00140 PRINT “L";X;Y
00150 X =258 + |

00160 Y =125

00170 PRINT “L";X;Y
00180 X =250

00190 Y =133+

00200 PRINT “L";X;Y
00210 NEXT |

00220 NEXT J

00230 PRINT “D6,E"
00240 STOP

Too simple? Try this one if you have some time.

This program requires the host computer to calculate over 30,000 coordinates so it
takes quite a while to complete. Start this program and relax, read the rest of the User’s
Guide.

DEMONSTRATION 3.

00010 DEFINT F,I,L,N,0,X,Y

00020 DIM L(302)

00030 PRINT CHR$(27);*1";*D3,N255,10,M0,0,A500247,11"
00040 FOR |=0TO 301

00050 L(l)=0

00060 NEXT |

00070 PRINT “P050023"

00080 OY =23

00090 OX =50

00100 FORY =0TO 100

00110 FOR X =0 TO 300

00120 ZX = (X-150)*(X-150)/1790.5

00130 ZY = (Y-50)*(Y-50)/199

00140 Z=COS(ZX + ZY)/(SIN((ZX + ZY + .48)/82))

00150 NX=X+Y+50

00160 NY =Y +Z+20

00170 IF F=1THEN PRINT “M";NX;NY : F=0: GOTO 200

00180
00190
00200
00210
00220
00230
00240
00250
00260
00270

IF NY>=L(X+ 1) THEN PRINT “P";0X;0Y;"“L";NX;NY : GOTO 200
IF NY<=L(X+1) THEN L(X)=L(X+1): GOTO 210

L(X)=NY

OX=NX

0Y =NY

NEXT X

F=1

NEXTY

PRINT “D6,E"

STOP

This page intentionally left blank.

GENERAL

COMPUTER GRAPHICS BASICS

This is an introduction to the general concepts of
computer graphics for those who may be unfamiliar
with the field. Basically, a graphics terminal in its
simplist form need only execute two commands:
MoveTo(X,Y) and LineTo(X,Y). A superset of com-
mands can be formed from these two primitives.

Consider for the moment a hardcopy XY plotter. The
MoveTo(X,,Y,) command in this case will lift the pen
off the paper and move it to the absolute coordinate
(X,,Y,). The LineTo(X,,Y,) command will drop the
pen onto the paper and move it in a straight line to
the absolute coordinate (X,,Y,) (i.e., it would draw a
line segment from (X,,Y,) to (X,,Y,)).

In a CRT style graphics terminal the commands
would be executed in a similar manner. The
MoveTo(X,,Y,) command will move a virtual pointer
to the absolute screen coordinate (X,,Y,). Nothing is
written on the screen. The LineTo(X,,Y,) command
writes a straight line on the screen from the absolute
coordinate (X,,Y,) to the absolute coordinate (X,,Y,)
by turning on the appropriate pixels (picture ele-
ments). Almost any geometrical shape can be created
by a sequence of MoveTo and LineTo commands
(e.g., a circle can be approximated by a many sided
polygon). Several other primitive utility commands
are convenient, such as some means to erase the
screen and a command to reinitialize the graphics
terminal. To take some of the burden from the ap-
plications programmer, this primitive instruction set
is usually expanded.

IMAGINATOR SPECIFICS

The graphics screen memory is composed of 131072
bit arranged in a 512 by 256 array (although only 504

by 247 are user accessible and displayed). The
positive X axis (horizontal axis) originates at the left
of the screen and terminates at the right. The
positive Y axis (vertical axis) originates at the bot-
tom of the screen and ends at the top. Therefore, the
origin (0,0) is located at the lower left of the screen.
Since the alphanumeric screen is 80 characters wide
and the graphics screen is 63 characters wide, the
graphics screen’s left starts at the alphanumeric’s
9th character position.

To view the entire graphics screen, enable the 25th
line, ESC x 1 (ESC [1 hif in ANSI mode).

When the terminal is reset, either when powered up, a
keyboard reset right SHIFT-RESET , or a software
reset ESC z (ESC [z if in ANSI mode) the terminal
will perform as though it were unmodified. It will ex-
ecute all of the escape functions it did before the addi-
tion of the Imaginator—the functional existence of
the Imaginator is transparent to the user. (At this
time the graphic’s video RAM will be cleared, and the
line type will be ON; the primary line style will be
solid, the secondary line style will be blank, and the
virtual pointer will be assigned as (0,0).)

To invoke the graphics command processor (GCP),
an “‘EnterGraphicMode’’ escape sequence is re-
quired. (When graphics or ‘‘EnterGraphics Mode” is
referred to in this manual it should be connoted as a
reference to the capabilities of the Imaginator, not
the 33 special symbols stored in the terminal’s
character generator.)

The GCP can be invoked to accept commands in
either ASCII mode or as seven bit binary words
(BINARY mode). Both forms of each command will
be accompanied by a functional description.

10

A command may be entered either by typing on the
keyboard when the terminal is OFF LINE or it may
be sent via RS-232C from the host computer when
the terminal is ON LINE.

There is no good way to abort a command midway
(e.g., delete and backspace won't erase a command).
Obviously, a keyboard reset right SHIFT-RESET is
one way to clear a half-created command, but is
rather drastic. The GCP expects to receive com-
mands and data in certain fixed sequences; once a
command sequence is started it must be completed.

COMMAND FORM AND
FUNCTION, ASCII

ASCII COMMAND FORMATS

A complete description of the form and function of each command follows.

Upper case characters A,B,C,D,E,F,G,H,L,J K,L,M,N,O,P represent commands (some
of these are unassigned).

X represents the absolute horizontal coordinate. It must be an integer between 0 and
999 inclusively, although it will be truncated to 503 if greater than 503.

Y represents the absolute vertical coordinate. It must be an integer between 0 and 999
inclusively, although it will be truncated to 246 if greater that 246.

Z represents an operand. It must be an integer between 0 and 999 inclusively.

[opt. delim|represents an optional delimiter. A delimiter here is not required but may be
included. If included it may be any number of ASCII characters exceptthe charac-
ters 0,1,2,3,4,5,6,7,8,9.

[delim] represents a delimiter. A delimiter here is manditory unless three consecutive
numerals preceed it (a delimiter is automatically assumed after a three digit number, ad-
ditional delimiters are optional). The delimiter may be any ASCII character except
0,1,2,3,4,56,7,8,9.

n

CA

-+

W

12

It will be assumed in the remainder of this manual that the language BASIC is
understood by the reader. However, only them most rudimentary of BASIC commands
will be used to prevent undue confusion to a novice.

The following examples illustrate a typical command format.

A PointAt command: P [opt. delim] X [delim] Y |delim] may be created in BASIC as:

PRINT “P";X;Y The space will serve as the delimiter.
or
PRINT “P" XY The tab will serve as the delimiter, (note that in some BASICs a

tab may be represented as a series of spaces. This format would
then be inefficient.)

or

PRINT “P” The carriage return/line feed will serve as the delimiter.
PRINT X

PRINT Y

or

If X and Y are constants such as X=25 and Y=39

PRINT “P";25;39 The space will again serve as the delimiter.

or

PRINT "“P025039” The leading zeros create three digit numbers so the delimiter is
automatically inserted.

13

EnterGraphicsMode, ASCII

Command form: ESC 1

Command function:

This command signals the GCP to interpret all future information as graphics com-
mand/data. No graphics attributes are reinitialized. Commands and data will now be
assumed to consist of the ASCII characters A,B,C,D,E,F,G,H,1.J, K,L M,N,O,P and
0,1,2,3,4,5,6,7,8 9respectively. ASCII mode has the advantage of easy user implementa-
tion of the graphics command language. All of the commands can be directly output by
high level language programs which are executed in the host computer. No machine
language driver programs are required. The ASCII mode has the disadvantage of ineffi-
ciency. On the average, twice as many characters must be sent to the terminal than in
binary mode to perform the same operation. The disadvantage would be most evident
when communications speed, rather than vector drawing speed or host processor speed,
is the effective bottleneck.

EXAMPLE: 10 PRINT CHR$(27);"1"

14

MoveTo (X,Y), ASCII

Command form: M [opt. delim] X [delim] Y [delim]

Command function:

The virtual pointer is assigned the absolute coordinate (X,Y). Nothing is written to the
screen nor can it be interrogated.

EXAMPLE: 10 DEFINT XY

20 X =25
30 Y =210
40 PRINT “M™:X:Y

15

PointAt (X,Y), ASCII

Command form: P [opt. delim] X [delim] Y [delim]

Command function:

The virtual pointer is assigned the absolute coordinate (X,Y). The Pattern byte (see the
LineStyle commands) is rotated one position; if the carry contains a 0, the command is
treated as a MoveTo, command. If the carry contains a 1, the pixel is interacted with ac-
cording to the pending line type (see LineType command).

EXAMPLE: 10 DEFINT X,Y

20 X =25
30 Y =210
40 PRINT “P":X:Y

16

LineTo (X,Y), ASCII

Command form: L [opt. delim] X [delim] Y [delim]

Command function:

A line is drawn from, but not including, the virtual pointer’s currently assigned absolute
coordinate to the absolute coordinate (X,Y). The line drawn is subject to the current line
style and line type attributes. This command will emulate a MoveTo command if the
line style is 00000000 (execution time will be considerably longer however). At the com-
pletion of this command,the virtual pointer is assigned the absolute coordinate (X,Y).

EXAMPLE: 10 DEFINT XY

20X =25
30Y=210
40 PRINT “L"; XY

17

AreaTo (X,Y), ASCII

Command form: A [opt. delim] X [delim] Y [delim]

Command function:

The area inside a regular rectangle is filled. The rectangle is defined as having the virtual
pointer’s currently assigned absolute address as one vertice and the absolute coordinate
(X,Y) as the diagonally opposite vertice. Starting at, but not including, the virtual
pointer’s currently assigned absolute coordinate,a horizontal line is drawn to the op-
posite side of the rectangle. When possible, a second line starting at the original side of
the rectangle is drawn adjacent to the first line (a rectangle with a height of 1 will only
accept one line). This procedure is repeated until the rectangle is filled. The line drawn is
subject to the current line style and line type attributes. This command will behave as a
MoveTo command if the line style is 00000000 (execution time will be considerably
longer however). At the completion of this command the virtual pointer is assigned the
absolute coordinate (X,Y).

EXAMPLE: 10 DEFINT X,Y
20 X = 25
30 Y = 210

40 PRINT “A™; XY

18

PriLineStyle (Z), ASCII

Command form: N [opt. delim] Z [delim]

Where: Z is a number between 0 and 999 inclusively. This number is converted to binary
format whose least significant 8 bits are used tc define the Primary Pattern.

Command function:

This command permits dashed or dotted lines to be automatically generated by the
GCP.

Preceeding any write to the graphics display, the pending Pattern byte is rotated one
position. The least significant bit is rotated into the carry and is used to determine
whether screen interaction is permitted or not. A logical 1 in the Pattern represents per-
mission to interact with the pixel; a 0 disables interaction. The pending Pattern byte is
then updated with the new rotated pattern. The least significant bit is the first to be
tested to determine if interaction should occur. Therefore, the eight bit line style pattern
is repetitively traced to the screen when drawing a line.

ROTATION

‘
‘[1 010101 o:L CARRY

PATTERN BYTE

The LineStyle and LineType commands are totally independent of one another. The line
style will equally effect any line type attribute (except READ BIT and READ BYTE).
For instance, a line drawn with a 10101010 line style and a complement line type will
complement every other pixel.

When short line segments are used to construct long lines (e.g., curves), they should be
sent in a consecutive order. There is no guarantee that a line segment patched into the
middle of an existing line will have a perfectly matched line style sequence. Of course, it
is possible to reset the sequence by executing another LineStyle command.

The pending line style pattern is always reset to Primary when entering any graphics
command.

Any portion of the graphics display may be selectively erased by executing an AreaTo
command with a line style of 11111111 and an OFF line type.

EXAMPLE: 10 PRINT “N255"

SecLineStyle (Z), ASCII

Command form: O [opt. delim] Z [delim]

Where: Z is a number between 0 and 999 inclusively. This number is converted to binary
format whose least significant 8 bits are used to define the Secondary Pattern.

Command function:

Identical to PriLineStyle (Z), ASCII

EXAMPLE: 10 PRINT “0170”

19

LineType (Z), ASCII

Command form: I [opt. delim] Z [delim]

Where: PIXEL ACTION

z

0 ON
1 OFF
2 COMPLEMENT
3
4
5

READ BIT
TOGGLE TO ALTERNATE LINESTYLE AT BOUNDARY
READ BYTE

Command function:
This command sets the type of line to be drawn, (Note, that a point is considered a short

line and an area is considered a long line). Consider each pixel of the line individually for
now.

The different line types are explained below.
ON—the pixel is turned on.
OFF—the pixel is turned off (i.e., erased).

COMPLEMENT—the pixel is complemented (i.e., the pixel is turned on if it was off and
it is turned off if it was on).

READ BIT—The pixel is interrogated to determine whether it is on or off but is not
otherwise effected. An ASCII 0 or 1 followed by a carriage return is transmitted to the
host computer for a pixel that is respectively off or on.

This line type has some special restrictions.

This line type can only be used in conjunction with a PointAt command. LineTo and
AreaTo commands will imitate a MoveTo command.

Note that if the terminal is OFF LINE this attribute will perform no function except
that the PointAt, LineTo, or AreaTo command will act as a MoveTo command.

The line style will act as if it were set to solid (11111111) regardless of its actual value.
(See LineStyle command). This is to prevent the host computer from getting trapped in
an eternal wait loop for a terminal response if the line style contains a 0.

The process executing in the host computer that is responsible for reading the data sent
by the terminal must be fast enough to keep pace. The terminal will transmit the data as
fast as the baud rate selected will permit. '

It is important that the host computer does not echo the terminal response (0 or 1 fol-
lowed by a carriage return) back to the terminal. An echoed response will be treated by
the GCP as command/data information. (This is really only true if the GCP is in
BINARY mode,because in ASCII mode the 0 or 1 will be received when the GCP is ex-
pecting an opcode (A—P) and will therefore be assumed to be a delimiter.) See the Ex-
amples section of this manual to see how this can be implemented.

TOGGLE TO ALTERNATE LINESTYLE AT BOUNDARY—This line type is a very
simple, and therefore limited, algorithm that may be used for filling irregular polygons.

As the line is scanned,each pixel is interrogated in turn to determine whether it is on or
off. If it is off it is written to according to the pending line style. A single on pixel will be
left untouched, but the current line style pattern is exchanged with the alternate Pat-
tern. For instance, if the line style is currently loaded with the Primary Pattern it will be
reloaded with the Secondary Pattern,or if the Linestyleis currently loaded with the
Secondary Pattern it will be reloaded with the Primary Pattern. If two or more adjacent
pixels are on they will be left untouched and line style pattern will NOT be exchanged.
At the completion of the LineTo or AreaTo command the line style is reloaded with the
Primary Pattern.

READ BYTE—The display byte is read and converted from binary to hexadecimal. The
ASCII representation of this hexadecimal number is transmitted to the host computer.
Display bytes are defined as 8 consecutive horizontal pixel locations. The beginning of
a display byte is (X,Y) where X is 0,8,186,...,496 and Y is any integer between 0 and 246,
inclusively. Each display byte is redundantly addressed by 8 coordinates. For example,
to access the display byte beginning at (0,0) any of the following coordinates could be
used: (0,0), (1,0), (2,0), (3,0), (4,0), (5,0), (6,0), or (7,0). The pixel at the beginning of the
display byte is the least significant and the pixel at the beginning +8 is the most signifi-
cant.Notice that this means that, visually, a pattern on the screen will appear in reverse
significance with respect to its hexadecimal representation.

Leading zeros are transmitted (not suppressed).
This line type has some special restrictions.

This line type can only be used in conjunction with a PointAt command. LineTo and
AreaTo commands will imitate a MoveTo command.

Note that if the terminal is OFF LINE this attribute will perform no function except
that the PointAt, LineTo or AreaTo command will act as a MoveTo command.

The line style will act as if it were set to solid (11111111) regardless of its actual value.
(See LineStyle command) This is to prevent the host computer from getting trapped in
an eternal wait loop for a terminal response if the line style contains a 0.

The process executing in the host computer that is responsible for reading the data sent
by the terminal must be fast enough to keep pace. The terminal will transmit the data as
fast as the baud rate selected will permit.

It is important that the host computer does not echo the terminal response (00 to FF
followed by a carriage return) back to the terminal. An echoed response will be treated
by the GCP as command/data information. See the Examples section of this manual to
see how this can be implemented.

21

DisplayToggle (Z), ASCII

Command form: D [opt. delim] Z [delim]

Where: z ENABLE ENABLE ERASE
 ALPHA 'GRAPHICS GRAPHICS
0 NO NO NO
1 NO NO YES
2 NO YES NO
3 NO YES YES
4 YES NO NO
5 YES NO YES
6 YES YES NO
7 YES YES YES

Command function:

This command has two distinct functions. One function is to permit the user to block or
not block the display of alphanumeric or graphics information to the entire screen. The
other function of this command is to erase the entire graphics display memory. This
command stays in effect even after executing an ExitGraphicsMode command.

EXAMPLE: 10 PRINT “D3”

This command would disable alphanumerics, enable graphics and erase the previous im-
age.

23

BringInProgram (Z0), (Z1), ... ,(Z127), ASCII

Command form: B [opt. delim] Z0 [opt. delim] Z1 [opt. delim], ... ,Z127 [opt. delim]

Where: [opt. delim] in this case is any ASCII character except 0,1,2,3,4,5,6,7,8,9,A,B,
C,DE/F.

AND

Where: Z is a double digit hexadecimal number between 00 and FF, inclusively. A
leading zero must be present if a single digit number (i.e., 03 not 3). However, do not in-
sert a leading zero in front of a two digit number (i.e., FF not OFF).

Command function:

This command loads 128 bytes of data (Z0-Z127) into the expansion R/W RAM U9B.
The data is converted from hexadecimal to binary format prior to loading into R/W
RAM. Z0 is loaded into memory at address C001H, Z1 is loaded into memory at C002H,
etc. After the 128th byte is loaded control is returned to the GCP for the next command.

This command is only useful if R/W RAM is mounted at U9B. Beware that once a
BringInProgram command is initiated the GCP will expect at least 256 characters

before accepting new commands (this is true regardless of whether R/W RAM is present
at U9B or not).

EXAMPLE: 10 PRINT “B”
20 PRINT “00”
30 PRINT *“00”
40 PRINT “00”
50 PRINT “C3”
60 PRINT “04”
70 PRINT “C0"

1290 PRINT 00"

This example of data entry is correct with regard to format but is quite inflexible and
therefore not advocated as a good programming technique.

24

JumpToProgram, ASCII

Command form: J

Command function:

This command transfers control from the GCP to the program residing in U9B.
Transfer is accomplished by a JMP (JUMP) to address C004H. Control may be given
back to the GCP by a RET (RETURN) statement.

Before the transfer is made a test pattern is written to location COO0H and then read
back. The pattern must match or no transfer is permitted and control is returned to the
GCP. Therefore, physical memory must be mounted at U9B and it must be valid at
CO00H. This prevents inadvertantly jumping to a nonexistant program resulting in a
runaway processor.

EXAMPLE: 10 PRINT “J”

ExitGraphicsMode, ASCII

Command form: E

Command function:
This command instructs the GCP to release control back to normal alphanumeric pro-

cessing. All previously set graphics attributes will remain valid (i.e., no attributes
revert back to default or reset values).

EXAMPLE: 10 PRINT “E”

25

26

This page intentionally left blank.

COMMAND FORM AND
FUNCTION, BINARY

BINARY COMMAND FORMATS

The binary command formats are described with each command. X and Y coordinates
and Z parameters are represented in binary notation. The ASCII character representing
the binary number is transmitted to the terminal. For example, examine the bytes (P is
the parity bit):

P0100100 is represented by the ASCII character $
P010000O0 is represented by the ASCII Space
P1111111 is represented by the ASCII Delete

See the Appendix for binary to ASCII conversions.

More stringent conditions are placed on the syntax of commands in BINARY mode
than in ASCII mode. In general delimiters are not required and are not permitted, but
there is one exception. The binary codes PO000000 through P0001111 can serve as NOP
(no operation) commands when used as opcodes. This permits the inclusion of dummy
carriage-return and line-feed characters in transmissions. This is required because some
high level languages insert their own carriage-returns regardless of whether the pro-
grammer requested one or not. For instance, some releases of BASIC automatically in-
sert a carriage-return and line-feed if the user does not specify one before 255 conse-
quative characters are transmitted. Unpredictable results may result since this
automatic carriage-return may occur when the GCP is expecting a valid operand.
Therefore, it is important for the programmer to force occasional carriage-returns when
the GCP expects an opcode (if they are to be ignored) before the automatic one is trig-
gered.

It is important to note that the binary codes P0000001 through P0001111 are valid
when used as operands (P0000000 is never used because nulls are filtered out by the ter-
minal and most operating systems)

Since the binary code PO000000 can never be used a simple data conversion needs to be

performed when using MoveTo, PointAt, LineTo and AreaTo commands. The respec-
tive subroutines need to add an offset of 8 to X and an offset of 2 to Y.

27

28

e Forinstance, if the programmer wanted to MoveTo(0,0) a GOSUB 2000 would be
executed (see MoveTo, BINARY).

e The programmer would set X=0 and Y =0 before the call.
¢ The MoveTo subroutine would effectively add 8 to X and add 2 to Y.
e The GCP will then subtract 8 from X and 2 from Y once it receives them.

Of course, these syntax restrictions only apply when in BINARY mode, these
restrictions do not exist when in ASCII mode or when in the terminal’s standard
alphanumeric mode. The driver routines presented take all of these requirements
into account.

To gain the most efficiency BINARY mode was really designed to be driven by
assembly language routines. The routines should have the following features.

e They need to convert the X and Y coordinates or the Z parameter to the proper
binary format.

* The command identifier needs to be appended to the opcode.
e The ASCII character that represents the binary word needs to be formed.

. The routines should not echo back ANY of the characters that are sent from the
terminal. (As stated above, some characters can be echoed back without problem if
the GCP expects an opcode, but it is simpler to unconditionally avoid echoing back
any characters.) This is particuarly true for data received from the terminal when
the READ line types are set. Data should be read and processed but not echoed
back.

e Theroutines should return control back to the calling program once the command
and its data have been transmitted. When checking the serial channel status
remember that the Imaginator expects that the Clear To Send signal is being
monitored.

Example driver routines are included. More efficient driver routines can be written in
assembly language but BASIC was choosen to help clarify the principles involved.

A note about the driver routines. These routines perform no X, Y, or Z parameter limit
checking. For example, these routines would accept a value greater than 503 for the X
coordinate without complaint and would pass an incorrect value to the terminal.

EnterGraphicsMode, BINARY

Command form: ESC 0

Command function:

This command signals the GCP to interpret all future information as graphics com-
mand/data. No graphics atributes are reinitialized. Commands and data will now be
assumed to be seven-bit binary words (the parity bit is not used). The BINARY mode
has the advantage of high efficiency because a minimum of information must be sent to
specify an operation. Binary mode has the disadvantage of requiring the information to
be condensed into a compact form by the host computer. Actually, this is arather simple
process, it requires only short subroutines. (Since the condensed information can cover
the complete range from 00000001B to 01111111B inclusively, another problem may
arise if the Basic Input Output System (BIOS) of the host’s operating system filters out
or modifies specific values. For instance, a DELETE may be changed to a
BACKSPACE-SPACE-BACKSPACE. Or a TAB may be changed to a string of 8
spaces. The GCP would misinterpret this corrupted data with unpredictable results.)

EXAMPLE: 10 PRINT CHR$(27);*0”

30

MoveTo (X,Y), BINARY

Command form:

Command Opcode 76543210
P1101 X:X,X,

First Operand 76543210
P YoXi X XeXs XX

Second Operand 76543210
P Y YeY:Y. Y, Y, Y,
P - parity

Command Function:

Identical to MoveTo (X,Y), ASCII

EXAMPLE:

10 DEFINT O,X,Y
20X=25
30Y=210

40 GOSUB 2000

éOOO REM MOVE TO COMMAND BINARY DRIVER
2010 REM

2020 REM X = X COORDINATE
2030 REM Y = Y COORDINATE
2040 REM

2050 OPCODE = (X AND 7) OR &H868

2060 OP1 = ((X AND NOT 7)/8 AND 63) + 1+ (Y AND 1)*64
2070 OP2 = (Y AND 254)/2 + 1

2080 PRINT CHR$(OPCODE),CHR$(OP1);CHR$(OP2)
2090 RETURN

PointAt (X,Y), BINARY

Command form:

Command Opcode 76543210
PO110 X:X\X,
First Operand 76543210
P YoXseX:XeXs XX,
Second Operand 76543210

P Y Y, Y: Y. Y, Y, Y,

P - parity

Command function:

Identical to PointAt (X,Y), ASCII

EXAMPLE:

10 DEFINT O,X,Y
20X=25
30Y=210

40 GOSUB 3000

3000 REM POINT AT COMMAND BINARY DRIVER

3010 REM

3020 REM X = X COORDINATE

3030 REM Y = Y COORDINATE

3040 REM

3050 OPCODE = (X AND 7) OR &H30

3060 OP1 = (X AND NOT 7)/8 AND 63) + 1 + (Y AND 1)*64
3070 OP2 = (Y AND 254)/2 + 1

3080 PRINT CHR$(OPCODE);CHR$(OP1);CHR$(OP2)
3090 RETURN

31

32

LineTo (X,Y), BINARY

Command form:

Command Opcode 76543210
P1100 X:X,X,
First Operand 76543210
P YoXo X: X Xs XX,
Second Operand 76543210

P Y1Y|Y5Y4Y:Y1Yl

P - parity

Command function:

Identical to LineTo (X,Y), ASCII

EXAMPLE:

10 DEFINT O,X,Y
20X=25
30Y=210

40 GOSUB 4000

4000 REM LINE TO COMMAND BINARY DRIVER

4010 REM

4020 REM X = X COORDINATE

4030 REM Y =Y COORDINATE

4040 REM

4050 OPCODE = (X AND 7) OR &H60

4060 OP1=((X AND NOT 7)/8 AND 63) + 1+ (Y AND 1)*64
4070 OP2=(Y AND 254)/2 + 1

4080 PRINT CHR$(OPCODE);CHR$(OP1),CHR$(OP2)
4090 RETURN

AreaTo (X,Y), BINARY

Command form:

Command Opcode 76543210
P1011 X:X,X,

First Operand 7654321 (
P YoXeX:XeXs XX,

Second Operand 76543210

P Y:YeY: Y. Y Y. Y,

P - parity

Command function:

Identical to AreaTo (X,Y), ASCII

EXAMPLE:

10 DEFINT O,X,Y
20X=25
30Y=210

40 GOSUB 5000

5000 REM AREA TO COMMAND BINARY DRIVER

5010 REM

5020 REM X = X COORDINATE

5030 REM Y =Y COORDINATE

5040 REM

5050 OPCODE = (X AND 7) OR &H58

5060 OP1=((X AND NOT 7)/8 AND 63) + 1+ (Y AND 1)*64
5070 OP2 = (Y AND 254)/2 + 1

5080 PRINT CHR$(OPCODE);,CHR$(OP1);CHR$(OP2)
5090 RETURN

33

PriLineStyle (Z), BINARY

Command form: Command Opcode 76543210
P1110* 22

First Operand 76543210

PZ2,22:2.2, 7,1

* . don't care
P - parity

Command function:

Identical to PriLineStyle (Z), ASCII

EXAMPLE: 10 DEFINT O,Z
20Z2=3
30 GOSUB 8000

8000 REM PRIMARY LINE STYLE COMMAND BINARY DRIVER
8010 REM

8020 REM Z = ATTRIBUTE

8030 REM

8040 OPCODE = (Z AND 3) OR &H70

8050 OP1=(Z AND 254)/2 OR 1

8060 PRINT CHR$(OPCODE),CHR$(OP1)

8070 RETURN

SecLineStyle (Z), BINARY

Command form: Command Opcode 76543210
P1111+*2Z2%2
First Operand 76543210
PZ2,2,2:2,2:Z,1
* - don't care
P - parity

Command function:

Identical to SecLineStyle (Z), ASCII

EXAMPLE: 10 DEFINT O,Z
20Z=3
30 GOSUB 9000

9000 REM SECONDARY LINE STYLE COMMAND BINARY DRIVER
9010 REM

9020 REM Z = ATTRIBUTE

9030 REM

9040 OPCODE = (Z AND 3) OR &H78

9050 OP1 = (Z AND 254)/2 OR 1

9060 PRINT CHR$(OPCODE);CHR$(OP1)

9070 RETURN

LineType (Z), BINARY

Command form: Command Opcode 76543210
P1001Z2Z1Z
P - parity

Z, Z, Z, PIXEL ACTION

0 0 0 ON

0 0 1 OFF

0 1 0 COMPLEMENT

0 1 1 READ BIT

1 0 0 TOGGLE TO ALTERNATE LINE STYLE AT BOUNDARY

1 0 1 READ BYTE

Command function:

Identical to LineType (Z), ASCII

EXAMPLE: 10 DEFINT O,Z
20Z=3
30 GOSUB 7000

7000 REM LINE TYPE COMMAND BINARY DRIVER
7010 REM

7020 REM Z=ATTRIBUTE

7030 REM

7040 OPCODE =Z OR &H48

7050 PRINT CHR$(OPCODE)

7060 RETURN

DisplayToggle (Z), BINARY

Command form: Command Opcode

76543210
P0O100ABC
P - parity

1is logical true

A - Enable Alphanumerics
B - Enable Graphics
C - Erase Graphics

Command function:

Identical to DisplayToggle (Z), ASCII

EXAMPLE: 10 DEFINT O,Z
20Z2=3
30 GOSUB 6000

6000 REM DISPLAY TOGGLE COMMAND BINARY DRIVER
6010 REM

6020 REM Z = ATTRIBUTE

6030 REM

6040 OPCODE =2 OR &H20

6050 PRINT CHR$ (OPCODE)

6060 RETURN

BringInProgram (Z0), (Z1),...,(Z127), BINARY

Command form: Command Opcode

Command function:

Identical to BringInProgram (Z0), (Z1),...,(Z127), ASCII

EXAMPLE: 10 DEFINT O
20 GOSUB 10000

10000 REM BRING IN PROGRAM COMMAND BINARY DRIVER
10010 OPCODE = &H10

10020 PRINT CHR$(OPCODE)

10030 PRINT “76"

10040 PRINT “F5”

10050 PRINT “F1"

10060 PRINT “C9”

11300 PRINT “00”
11310 RETURN

This example of data entry is correct with regard to format but is quite inflexible and
therefore not advocated as a good programming technique.

39

JumpToProgram, BINARY

Command form: Command Opcode

-t D
=R+
et | b
o |w
* b
|
» S

* - don’t care
P - parity

Command function:

This command transfers control from the GCP to the program residing in U9B. Trans-

fer is accomplished by a JMP (JUMP) to address CO01H. This command is otherwise
identical to JumpToProgram, ASCII.

EXAMPLE: 10 DEFINT O
20 GOSUB 12000

12000 REM JUMP TO PROGRAM COMMAND BINARY DRIVER
12010 OPCODE = &H50

12020 PRINT CHR$(OPCODE)

12030 RETURN

40

ExitGraphicsMode, BINARY

Command form: Command Opcode

* DO

=—=R-r)
= O
* | -
* O

S [
el L)

* . don’t care
P - parity

Command function:

Identical to ExitGraphicsMode, ASCII

EXAMPLE: 10 GOSUB 1000

.1000 REM EXIT GRAPHICS MODE COMMAND BINARY DRIVER
1010 PRINT CHR$(&H28)
1020 RETURN

EXAMPLES

We recommend that you try some of these examples.

Hands on experience is a must for learning any new subject. Refer to the command form
and function sections for details. We recommend that you become acquainted with
ASCII mode first before attempting BINARY mode.There is no way to damage the ter-
minal by accidentally giving it an invalid command, so experiment.

EXAMPLE 1

The following example is meant to be entered by typing the commands directly on the
keyboard rather than sending them from a host computer. Lock down the OFF-LINE
key. Type the commands as they appear, for instance, type a space where a space is
shown and a carriage return when a new line appears (the space and carriage-return will
serve as delimiters).

TYPE ANYTHING Type a few random characters.

CAPS-LOCK unlocked

ESCx1 Enable 25th line, this permits the entire graphics
display to be shown.

CAPS-LOCK locked down It makes it easier to enter the remainder of the
commands.

ESC1 EnterGraphicsMode command, ASCII.

D3 DisplayToggle command, disable alphanumerics,
enable graphics, and erase the previous graphics
image.

10 LineType command, the line type is ON.

(Note that though a hardware or software terminal
RESET will reinitialize the line type to ON, it is
good practice to include initialization commands
such as this one in your graphics programs. This
permits graphics subroutines to be relocated with
out being concerned about the action of previously
executed routines.

41

42

N255

00

P50 0

L50 200

P1500

L150100

M300 0

A400 200
PO 190

L500 190

b

PO 150
L500 150
12

PO 110
L500 110

14

PO 70

L500 70

MO0 30

A5000

PriLineStyle command, 11111111 pattern (solid).
Again, it is good practice to include this type of ini-
tialization command.

SecLineStyle command, 00000000 pattern (blank),
Again it is good practice to include this type of ini-
tialization command.

PointAt (X,Y) command, X =50, Y =0

LineTo (X,Y) command, X =50, Y =200

Notice that the line was drawn before the carriage
return was keyed since 200 is a three digit number
(i.e., the carriage return was really not needed).
PointAt (X,Y) command, X =150, Y =0

The space between the 150 and the 0 is unnecessary
since 150 is three digits long.

LineTo (X,Y) command, X =150, Y =100

MoveTo (X,Y) command, X =300, Y =0
Notice that no point is drawn.

AreaTo (X,Y) command, X =400, Y =200
PointAt (X,Y) command, X =0, Y =190

LineTo (X,Y) command, X =500, Y =190
The line type is ON.

LineType command, Line type is OFF.

PointAt (X,Y) command, X =0, Y =150

LineTo (X,Y) command, X =500, Y =150
LineType command, Line type is COMPLEMENT
PointAt (X,Y) command, X =0, Y =110

LineTo (X,Y) command, X =500, Y =110

LineType command, Line type is TOGGLE TO
ALTERNATE LINESTYLE AT BOUNDARY.

PointAt (X,Y) command X =0, Y =70

LineTo (X,Y) command, X =500, Y =70
The secondary line style is 00000000 (blank).

PointAt (X,Y) command, X=0, Y =30

AreaTo (X,Y) command, X =500, Y =0
READ BIT and READ BYTE line types only
operate when the terminal is ON-LINE.

D4

D2

DO

D7

E

TYPE ANYTHING

DisplayToggle command, disable graphics and
Enable alphanumerics.

DisplayToggle command, Enable graphics and
Disable alphanumerics.

DisplayToggle command, Disable graphics and
Disable alphanumerics.

DisplayToggle command, Enable graphics, Enable
alphanumerics, and Erase previous graphics image.

ExitGraphicsMode command

Normal alpha mode.

43

44

The following examples are written in BASIC.

The graphics terminal will receive its commands via RS-232C from the host computer so
the terminal should be ON-LINE.

W

£ \j‘l" ‘76;
EXAMPLE 2 Q (-«\19@‘“-(‘ L
S\
The following program will draw a simple XY axis with tick marks.

00010 DEFINT X,Y

00020 PRINT CHR$ (27);1"

00030 PRINT “D3"

00040 PRINT “10"

00050 PRINT “N255"

00060 FOR X =20 TO 500 STEP 10
00070 PRINT “M™;X:*“103";“L":X; 98"
00080 NEXT X

00090 FORY =20 TO 240 STEP 10
00100 PRINT “M";“247";Y; L™ 252":Y
00110 NEXTY

00120 PRINT “N170"

00130 PRINT “P250 240 L250 20 P20 100 L500 100”
00140 PRINT “D6"

00150 PRINT “E”

00160 STOP

Line 10 defines the variables X and Y as INTEGERS. The decimal point inserted in real
numbers would act as an unintentional delimiter.

Line 20 sends an EnterGraphicsMode, ASCII command, ESC 1.

Line 30 sends a DisplayToggle command that turns the alphanumeric display off, the
graphics display on and erases the graphics display memory.

Line 40 is a LineType command. The line type is defined as ON.

Line 50 is a PriLineStyle command. The primary line style pattern is defined as solid
(11111111).
128 4+64+32+16+8+4+2+1=255

Lines 60, 70 and 80 form a program loop that draws tick marks on the horizontal axis.
Line 70 consists of a MoveTo command (“M’'";X;*“103"”) and a LineTo command
(llLil;X;‘lgs I’).

Lines 90, 100 and 110 form a program loop that draws the tick marks on the vertical
axis. Line 100 consists of a MoveTo command (‘‘M’";**247"";Y) and a LineTo command
(l‘L”;l1252,';Y).

Line 120 is a PriLineStyle command. The primary line style pattern is defined as dotted
(10101010).
1284+0+4+32+0+8+0+2+0=170

Line 130 draws the horizontal and vertical axis. It consists of a PointAt command

(*'P250 240) a LineTo command (L250 20) a PointAt command (P20 100) and a LineTo
command (L500 100").

Line 140 is a DisplayToggle command that instructs the graphics terminal to enable
both alphanumeric and graphics displays.

Line 150 is an ExitGraphicsMode command.

Line 160 is the end of execution statement.

EXAMPLE 3

This program draws 256 lines each with a different line style. Though the patterns
00010001 and 00100010 are different, they appear identical when the pattern is re-
peated (e.g., when drawing a long line). Using this criteria to disqualify similar patterns,

there remain 30 unique pattern styles. ”
2,

00010 DEFINT A-Z . oM 1C EY

00020 PRINT CHR$(27);1D3,10" §f<’ A

00030 LS=0

00040 FORI=1TO 32
00050 FORJ=1TO8

00060 PRINT “N";LS

00070 PRINT *“P";0,247-J*30
00080 PRINT "“L";504;247-4*30
00090 LS=LS+1

00100 NEXT J

00110 PRINT “D3”

00120 NEXT |

00130 PRINT “D5,E”

00140 STOP

45

46

b
T L “

EXAMPLE 4

This program demonstrates a technique for generating cross hatched patterns easily.
Bar charts are a typical application.

00010 DEFINT A-Z

00020 PRINT CHR$(27);"1"
00030 PRINT “D3"

00040 PRINT “M350,240"
00050 PRINT “I0"

00060 PRINT “N170”
00070 PRINT “A151,10”
00080 PRINT “|2”

00090 PRINT “A351,240"
00100 PRINT “I1”

00110 PRINT “A150,10"
00120 PRINT “I2”

00130 PRINT “A351,240"
00140 PRINT “I1”

00150 PRINT “N17"
00160 PRINT “A150,10"
00170 PRINT “D6,E”
00180 STOP

Line 40 moves the virtual pointer to {350,240).
Line 50 sets the LineType to ON.
Line 60 sets the PriLineStyle to dotted, 10101010.

Line 70 fills a rectangular area with (350,240) and (151,10) as the diagonally opposite
vertices. Since 350-151 is not an even multiple of 2 (the numerical distance between two
consecutive ones in the primary pattern byte, 10101010), the pixel pattern is diagonal.
If the 151 was changed to 150, a pattern of vertical lines would have been drawn.

010101010
101010101
010101010
101010101
010101010

Line 80 changes the line type to Complement.

Line 90 draws another rectangular area on top of the one just drawn. This time the dif-
ference between old and new X coordinates (351-151) is an even multiple of 2. This re-
sults in a pattern of vertical interactions. Every other pixel is complemented, since the
line style is still 10101010, resulting in the complete cancellation of every other row and
a filling in of the remaining rows.

010101010 C 6 ¢ ¢ ¢ 111111111
101010101 + cC ¢ & ¢ ¢ - 000000000
010101010 c cC ¢c c ¢ 111111111
101010101 c ¢ & C ¢ 000000000

Line 100 changes the line type to OFF.

Line 110 makes an area pass over the existing pattern to selectively erase specific pix-
els.

Lines 130-160 are more of the same,

Line 170 is the erase screen and exit command.

It probably is now evident that combining area overlays using different line types and
line styles can create some complicated but interesting patterns.

EXAMPLE 5
In case you are not convinced.

00010 DEFINT A-Z

00020 PRINT CHR$(27);"1"
00<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>