
USER’S GUIDE MANUAL
for the

IMAGINATOR

MODEL 1-100
RETROFIT GRAPHICS

DISPLAY BOARD

CLEVELAND CODONICS, INC.
CLEVELAND, OHIO

REV A

Printed in the United States of America

TABLE OF CONTENTS

INTRODUCTION 1

HOST COMMUNICATIONS REQUIREMENTS 3

WELCOME 5

GENERAL 9

COMMAND FORM AND FUNCTION, ASCII 11

COMMAND FORM AND FUNCTION, BINARY 27

EXAMPLES 41

THEORY OF OPERATION 53

REPLACEMENT PARTS 57

REFERENCES 59

MODIFICATIONS 61

APPENDIX 63

SCHEMATIC 67

WARRANTY 68

INTRODUCTION

The Imaginator is an intelligent, high efficiency high resolution (504 by 247 pixel)
graphics retrofit unit for your Heath/Zenith H/Z-19 terminal and H/Z-89 computer

The Imaginator has its own onboard microcomputer to perform graphics processing in¬
dependent of the host computer This reduces the burden placed on the host processor
and therefore improves execution speed.

A 128 character communications buffer further improves execution speed. This buffer
permits the terminal and the host computer to perform their tasks asynchronously

A graphics command may be entered by typing on the keyboard when the terminal is
OFF-LINE or it may be sent via RS-232C from the host computer when the terminal is
ON-LINE.

The Imaginator’s transparent operation leaves all of the terminal's normal escape func¬
tions intact. The terminal's normal alphanumerics are totally independent of the Im¬
aginator’s graphics. The two displays can be overlayed on one another and may be in¬
dividually altered under software control. Both alphanumeric and graphics images can
be created in memory and restrained from being displayed on the screen. Once created
they can be displayed instantaneously Alternatively, the images may be displayed as
they are created.

The graphics command processor (GCP) can be invoked to accept commands in either
ASCII or BINARY format. ASCII mode has the advantage of easy user implementa¬
tion of the graphics command language. All of the commands can be directly output by
high level language programs which are executed in the host computer (e.g., PL/I, FOR-
TAN, PASCAL, BASIC, and of course ASSEMBLY languages). Standard, off-the-
shelf, interpreters and compilers are all that are required (those languages need not have
any special graphics instructions). No machine language driver programs are required.

The BINARY mode has the advantage of high efficiency A minimum of information
must be sent to specify an operation. Again, no special interpreters or compilers are re¬
quired but machine language drivers are suggested (even these are not required) for effi¬
ciency

An additional memory-mapped socket is provided for memory expansion. Up to 16K of
E/P/ROM can be mounted and addressed by the GCP, or 8K of E/P/ROM and 8K of R/W
RAM can be used. Custom programs can be downloaded from the host computer into
this memory for fast independent execution.

1

2

GRAPHICS INSTRUCTION SET

EnterGraphicsMode
MoveTo (X,Y)
PointAt (X,Y)
LineTo (X,Y)
AreaTo (X,Y)
PriLineStyle (Z)

30 Unique styles
SecLineStyle (Z)

30 Unique styles
LineType (Z)

On
Off
Complement
Read Bit
Toggle to Alternate LineStyle at Boundary
Read Byte

DisplayToggle (Z)
Enable/Disable Graphics
Enable/Disable Alphanumerics
Erase Graphics
or any of the eight combinations

BringlnProgram (Z0,Z,,...,Z127)
JumpToProgram
ExitGraphicsMode

Cleveland Codonics, Inc. reserves the right to discontinue products and to change
specifications at any time without incurring any obligation to incorporate new features
in products previously sold.

HOST COMMUNICATIONS
REQUIREMENTS

When operating at high baud rates, the graphics ter¬
minal will generally lag behind the host computer if
asked to execute a succession of commands with long
execution times (e.g., Erase, AreaTo, and LineTo
commands). The Graphics Command Processor
(GCP) will set the Request To Send RS-232C line
false when the terminal's input communications buf¬
fer is nearly full, preventing a loss of data resulting
from a buffer overflow (The terminal’s bell will tone
to indicate a loss of data.) The GCP will reset the Re¬
quest To Send line true when the buffer is ready to
receive additional data.

Therefore, it is important that the host computer or
MODEM is configured to respond to this signal. (The
terminal needs no modification because it is
manufactured with hardware handshaking capabil¬
ities.) A true RS-232C configuration will work fine,
but often the typical RS-232C’s handshaking por¬
tions are incomplete. Pin 4 of the 25-pin “D” connec¬
tor on the back panel of the terminal is the Request
To Send line (defined as Clear To Send at the com¬
puter end). A physical wire must connect the ter¬
minal’s pin 4 with the computer’s (MODEM's) pin 4.

The UARTs used in the host’s RS-232C serial ports
fall in two catagories. Some UARTs, such as the IN¬
TEL8251 Universal Synchronous / Asyncronous Re-
ceiver/Transmitter, respond directly to the Clear To
Send signal. A high or low on the Clear To Send line
with this type of UART will electronically disable oi

enable transmissions This type of UART requires n<
further modifications.

The other type of UART has a software flag that
represents the Clear To Send signal. Normally, the
computer’s operating system’s Basic Input/Output
System (BIOS) is responsible for interfacing with the
serial port hardware. Generally, the BIOS will check
to see if the transmitter is ready (TxRDY) before
loading the UART with a character to transmit to the
terminal. To add hardware handshaking, simply
modify the BIOS to check the Clear To Send flag
also. That is, make sure that TxRDY AND Clear To
Send are both true before loading the UART with a
new character to transmit.

Without this hardware handshaking, it is the pro¬
grammer’s responsiblity to add software timing
delays to prevent a buffer overflow

Hardware handshaking will in no way detrimentally
effect the operation of any of your existing programs.
Software handshaking is still present when running
the terminal in its standard alphanumeric mode.
Assuming that the process executing in the host
computer understands ctrl-S (stop transmitter) and
ctrl-Q (start transmitter), it is possible to suspend
graphics program output by typing a ctrl-S on the
keyboard, when the terminal is on line.

The GCP supports only one directional hardware
handshaking. It will send signals to control the
host's serial channel transmitter,but will not respond
to signals sent to the terminal’s serial channel
transmitter from the host.

3

This page intentionally left blank.

WELCOME

Welcome to the field of computer graphics. The human mind is the greatest known
graphics processor in existance. Thoughts can be instantly conveyed by means of a pic¬
ture. And in this time of information upheaval graphics is needed more than ever to
enable one to assimilate it all. As a result computer graphics is one of the fastest grow¬
ing disciplines in computer science.

Try typing in and executing the following demonstration programs. (We are assuming
that you have access to a BASIC interpreter or compiler.)

Note that the Imaginator is assumed to be installed in a terminal that is serving as the
console.

In case of error If nothing appears to happen or something very strange happens once
you have typed the RUN command give the terminal a hardware reset (right-SHIFT
RESET) followed by a ctrl-C (or whatever command stops program execution in your
particular version of BASIC). Type LIST and then double check the program for typing
errors.

Enter and run this program first:

DEMONSTRATION 1.
00010 DEFINTX,Y
00020 PRINT CHR$(27);“1”
00030 PRINT “I0,N255,D3”
00040 PRINT “M”;0;125
00050 FOR X = 0 TO 500 STEP 2
00060 Y = 100*SIN(X/13.27) + 125
00070 PRINT “L”;X;Y
00080 NEXTX
00090 PRINT “D6,E“
00100 STOP

5

6

Here’s another one.

DEMONSTRATION 2.
00010 DEFINTA-Z
00020 PRINT CHR$(27);“1”
00030 PRINT “D3,I2,N255”
00040 FORJ=1TO10
00050 X = 251
00060 Y =126
00070 PRINT “P”;X;Y
00080 FOR I = 0 TO 80 STEP 8
00090 X = 250-l
00100 Y = 125
00110 PRINT “L”;X;Y
00120 X = 254
00130 Y =121-1
00140 PRINT “L”;X;Y
00150 X = 258 + I
00160 Y =125
00170 PRINT “L”;X;Y
00180 X = 250
00190 Y = 133 + l
00200 PRINT “L”;X;Y
00210 NEXT I
00220 NEXT J
00230 PRINT “D6,E”
00240 STOP

Too simple? Try this one if you have some time.

This program requires the host computer to calculate over 30,000 coordinates so it
takes quite a while to complete. Start this program and relax, read the rest of theUser’s
Guide.

DEMONSTRATION 3.
00010 DEFINT F,I,L,N,O,X,Y
00020 DIM L(302)
00030 PRINT CHR$(27);"1”;‘‘D3,N255,l0,M0,0,A500247,H”
00040 FOR I=0 TO 301
00050 L(l) = 0
00060 NEXT I
00070 PRINT “P050023”
00080 OY = 23
00090 OX = 50
00100 FORY =0TO100
00110 FORX =0TO300
00120 ZX =(X-150)*(X-150)/1790.5
00130 ZY = (Y-50)*(Y-50)/199
00140 Z = COS(ZX +ZY)/(SIN((ZX + ZY + 48)/82))
00150 NX = X + Y + 50
00160 NY = Y + Z + 20
00170 IF F = 1 THEN PRINT “M”;NX;NY F=0 GOTO 200

00180
00190
00200
00210
00220
00230
00240
00250
00260
00270

IF NY >= L(X + 1) THEN PRINT “P”;OX;OY;“L”;NX;NY
IF NY < = L(X + 1) THEN L(X)= L(X + 1) GOTO 210
L(X) =NY
OX - NX
OY = NY
NEXTX
F=1
NEXTY
PRINT “D6,E”
STOP

7

GOTO 200

8

This page intentionally left blank.

GENERAL

COMPUTER GRAPHICS BASICS

This is an introduction to the general concepts of
computer graphics for those who may be unfamiliar
with the field. Basically, a graphics terminal in its
simplist form need only execute two commands:
MoveTo(X.Y) and LineTo(X,Y). A superset of com¬
mands can be formed from these two primitives.

Consider for the moment a hardcopy XY plotter The
MoveTolXj.Y,) command in this case will lift the pen
off the paper and move it to the absolute coordinate
(X„Y,). The LineTo(X2,Y2) command will drop the
pen onto the paper and move it in a straight line to
the absolute coordinate (X2,Y2) (i.e., it would draw a
line segment from (X^YJ to (X2,Y2)).

In a CRT style graphics terminal the commands
would be executed in a similar manner The
MoveTo(X,,Y1) command will move a virtual pointer
to the absolute screen coordinate (X^YJ. Nothing is
written on the screen. The LineTo(X2,Y2) command
writes a straight line on the screen from the absolute
coordinate (X^YJ to the absolute coordinate (X2,Y2)
by turning on the appropriate pixels (picture ele¬
ments). Almost any geometrical shape can be created
by a sequence of MoveTo and LineTo commands
(e.g., a circle can be approximated by a many sided
polygon). Several other primitive utility commands
are convenient, such as some means to erase the
screen and a command to reinitialize the graphics
terminal. To take some of the burden from the ap¬
plications programmer, this primitive instruction set
is usually expanded.

IMAGINATOR SPECIFICS
The graphics screen memory is composed of 131072
bit arranged in a 512 by 256 array (although only 504

by 247 are user accessible and displayed). The
positive X axis (horizontal axis) originates at the left
of the screen and terminates at the right. The
positive Y axis (vertical axis) originates at the bot¬
tom of the screen and ends at the top. Therefore, the
origin (0,0) is located at the lower left of the screen.
Since the alphanumeric screen is 80 characters wide
and the graphics screen is 63 characters wide, the
graphics screen’s left starts at the alphanumeric’s
9th character position.

To view the entire graphics screen, enable the 25th
line, ESC x 1 (ESC [1 h if in ANSI mode).

When the terminal is reset, either when powered up, a
keyboard reset right SHIFT-RESET , or a software
reset ESC z (ESC [z if in ANSI mode) the terminal
will perform as though it were unmodified. It will ex¬
ecute all of the escape functions it did before the addi¬
tion of the Imaginator—the functional existence of
the Imaginator is transparent to the user (At this
time the graphic’s video RAM will be cleared, and the
line type will be ON; the primary line style will be
solid, the secondary line style will be blank, and the
virtual pointer will be assigned as (0,0).)

To invoke the graphics command processor (GCP),
an “EnterGraphicMode” escape sequence is re¬
quired. (When graphics or "EnterGraphics Mode” is
referred to in this manual it should be connoted as a
reference to the capabilities of the Imaginator, not
the 33 special symbols stored in the terminal’s
character generator.)

The GCP can be invoked to accept commands in
either ASCII mode or as seven bit binary words
(BINARY mode). Both forms of each command will
be accompanied by a functional description.

9

10

A command may be entered either by typing on the
keyboard when the terminal is OFF LINE or it may
be sent via RS-232C from the host computer when
the terminal is ON LINE.

There is no good way to abort a command midway
(e.g., delete and backspace won’t erase a command).
Obviously, a keyboard reset right SHIFT-RESET is
one way to clear a half-created command, but is
rather drastic. The GCP expects to receive com¬
mands and data in certain fixed sequences; once a
command sequence is started it must be completed.

COMMAND FORM AND
FUNCTION, ASCII

ASCH COMMAND FORMATS

A complete description of the form and function of each command follows.

Upper case characters A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P represent commands (some
of these are unassigned).

X represents the absolute horizontal coordinate. It must be an integer between 0 and
999 inclusively, although it will be truncated to 503 if greater than 503.

Y represents the absolute vertical coordinate. It must be an integer between 0 and 999
inclusively, although it will be truncated to 246 if greater that 246.

Z represents an operand. It must be an integer between 0 and 999 inclusively.

[opt. delim]represents an optional delimiter A delimiter here is not required but may be
included. If included, it may be any number of ASCII characters except the charac¬
ters 0,1,2,3,4,5,6,7,8,9.

[delim] represents a delimiter A delimiter here is mandatory unless three consecutive
numerals preceed it (a delimiter is automatically assumed after a threedigit number; ad¬
ditional delimiters are optional). The delimiter may be any ASCII character except
0,1,2,3,4,5,6,7,8,9.

11

12

It will be assumed in the remainder of this manual that the language BASIC is
understood by the reader However only the most rudimentary of BASIC commands
will be used to prevent undue confusion to a novice.

The following examples illustrate a typical command format:

A PointAt command: P |oPt. delim) X [deliml Y fdelim) may be created in BASIC as:

PRINT “P”;X;Y The space will serve as the delimiter

or

PRINT “P”,X,Y The tab will serve as the delimiter, (note that in some BASICs a
tab may be represented as a series of spaces. This format would
then be inefficient.)

or

PRINT “P”
PRINT X
PRINT Y

The carriage return/line feed will serve as the delimiter

or

If X and Y are constants such as X = 25 and Y=39

PRINT “P”;25;39 The space will again serve as the delimiter

or

PRINT “P025039” The leading zeros create three digit numbers so the delimiter is
automatically inserted.

13

EnterGraphicsMode, ASCII

Command form: ESC 1

Command function:

This command signals the GCP to interpret all future information as graphics com-
mand/data. No graphics attributes are reinitialized. Commands and data will now be
assumed to consist of the ASCII characters A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P and
0,1,2,3,4,5,6,7,8,9 respectively ASCII mode has theadvantage of easy user implementa¬
tion of the graphics command language. All of the commands can be directly output by
high level language programs which are executed in the host computer No machine
language driver programs are required. The ASCII mode has the disadvantage of ineffi¬
ciency On the average, twice as many characters must be sent to the terminal than in
binary mode to perform the same operation. The disadvantage would be most evident
when communications speed, rather than vector drawing speed or host processor speed,
is the effective bottleneck.

EXAMPLE: 10 PRINT CHR$(27);“1”

14

MoveTo (X,Y), ASCII

Command form: M [opt. delim] X (delim) Y (delim)

Command function:

The virtual pointer is assigned the absolute coordinate (X,Y). Nothing is written to the
screen nor can it be interrogated.

EXAMPLE: 10 DEFINT X,Y

20 X = 25
30 Y = 210
40 PRINT “M”;X;Y

15

PointAt (X,Y), ASCII

Command form: P |opt. delim] X [delim| Y |delim|

Command function:

The virtual pointer is assigned the absolute coordinate (X,Y). The Pattern byte (see the
LineStyle commands) is rotated one position; if the carry contains a 0, the command is
treated as a MoveTo, command. If the carry contains a 1, the pixel is interacted with ac¬
cording to the pending line type (see LineType command).

EXAMPLE: 10 DEFINTX,Y

20 X = 25
30 Y = 210
40 PRINT “P”;X;Y

16

LineTo (X,Y), ASCII

Command form: L [opt. delim| X [delimj Y [delim]

Command function:

A line is drawn from, but not including, the virtual pointer’scurrently assigned absolute
coordinate to the absolute coordinate (X,Y). The line drawn is subject to the current line
style and line type attributes. This command will emulate a MoveTo command if the
line style is 00000000 (execution time will be considerably longer however). At the com¬
pletion of this command, the virtual pointer is assigned the absolute coordinate (X,Y).

EXAMPLE: 10 DEFINT X,Y

20 X = 25
30 Y = 210
40 PRINT “L”;X;Y

17

AreaTo (X,Y), ASCII

Command form: A |opt. deliml X [delim] Y |delim)

Command function:

The area inside a regular rectangle is filled. The rectangle is defined as having the virtual
pointer’s currently assigned absolute address as one verticeand the absolutecoordinate
(X,Y) as the diagonally opposite vertice. Starting at, but not including, the virtual
pointer’s currently assigned absolute coordinate,a horizontal line is drawn to the op¬
posite side of the rectangle. When possible, a second line starting at the original side of
the rectangle is drawn adjacent to the first line (a rectangle with a height of 1 will only
accept one line). This procedure is repeated until the rectangle is filled. The line drawn is
subject to the current line style and line type attributes. This command will behave as a
MoveTo command if the line style is 00000000 (execution time will be considerably
longer however). At the completion of this command the virtual pointer is assigned the
absolute coordinate (X,Y).

EXAMPLE: 10 DEFINT X,Y

20 X = 25
30 Y = 210
40 PRINT “A”;X;Y

18

PriLineStyle (Z), ASCII

Command form: N [opt. deliml Z [deliml

Where: Z is a number between 0 and 999 inclusively This number is converted to binary
format whose least significant 8 bits are used to define the Primary Pattern.

Command function:

This command permits dashed or dotted lines to be automatically generated by the
GCP

Preceeding any write to the graphics display, the pending Pattern byte is rotated one
position. The least significant bit is rotated into the carry and is used to determine
whether screen interaction is permitted or not. A logical 1 in the Pattern represents per¬
mission to interact with the pixel; a 0 disables interaction. The pending Pattern byte is
then updated with the new rotated pattern. The least significant bit is the first to be
tested to determine if interaction should occur Therefore, the eight bit line style pattern
is repetitively traced to the screen when drawing a line.

ROTATION

'—1010101 0-1-*- CARRY
PATTERN BYTE

The LineStyle and LineType commands are totally independent of one another The line
style will equally effect any line type attribute (except READ BIT and READ BYTE).
For instance, a line drawn with a 10101010 line style and a complement line type will
complement every other pixel.

When short line segments are used to construct long lines (e.g., curves), they should be
sent in a consecutive order There is no guarantee that a line segment patched into the
middle of an existing line will have a perfectly matched line style sequence. Of course, it
is possible to reset the sequence by executing another LineStyle command.

The pending line style pattern is always reset to Primary when entering any graphics
command.

Any portion of the graphics display may be selectively erased by executing an AreaTo
command with a line style of 11111111 and an OFF line type.

EXAMPLE: 10 PRINT “N255”

19

SecLineStyle (Z), ASCII

Command form: O |opt. deliml Z (delim)

Where: Z is a number between 0 and 999 inclusively This number is converted to binary
format whose least significant 8 bits are used to define the Secondary Pattern.

Command function:

Identical to PriLineStyle (Z), ASCII

EXAMPLE: 10 PRINT “0170”

20

LineType (Z), ASCII

Command form: I (opt delim] Z |delim|

Where: z
0
1
2
3
4
5

PIXEL ACTION

ON
OFF
COMPLEMENT
READ BIT
TOGGLE TO ALTERNATE LINESTYLE AT BOUNDARY
READ BYTE

Command function:

This command sets the type of line to be drawn, (Note, that a point is considered a short
line and an area is considered a long line). Consider each pixel of the line individually for
now

The different line types are explained below

ON— the pixel is turned on.

OFF—the pixel is turned off (i.e., erased).

COMPLEMENT—the pixel is complemented (i.e., the pixel is turned on if it was off and
it is turned off if it was on).

READ BIT—The pixel is interrogated to determine whether it is on or off but is not y
otherwise effected. An ASCII 0 or 1 followed by a carriage return is transmitted to the
host computer for a pixel that is respectively off or on.

This line type has some special restrictions.

This line type can only be used in conjunction with a PointAt command. LineTo and
AreaTo commands will imitate a MoveTo command.

Note that if the terminal is OFF LINE this attribute will perform no function except
that the PointAt, LineTo, or AreaTo command will act as a MoveTo command.

The line style will act as if it were set to solid (11111111) regardless of its actual value.
(See LineStyle command). This is to prevent the host computer from getting trapped in
an eternal wait loop for a terminal response if the line style contains a 0.

The process executing in the host computer that is responsible for reading the data sent
by the terminal must be fast enough to keep pace. The terminal will transmit the data as
fast as the baud rate selected will permit.

21

It is important that the host computer does not echo the terminal response (0 or 1 fol¬
lowed by a carriage return) back to the terminal. An echoed response will be treated by
the GCP as command/data information. (This is really only true if the GCP is in
BINARY mode,because in ASCII mode the 0 or 1 will be received when the GCP is ex¬
pecting an opcode (A— P) and will therefore be assumed to be a delimiter.) See the Ex¬
amples section of this manual to see how this can be implemented.

TOGGLE TO ALTERNATE LINESTYLE AT BOUNDARY—This line type is a very
simple, and therefore limited, algorithm that may be used for filling irregular polygons.

As the line is scanned,each pixel is interrogated in turn to determine whether it is on or
off. If it is off it is written to according to the pending line style. A single on pixel will be
left untouched, but the current line style pattern is exchanged with the alternate Pat¬
tern. For instance, if the line style is currently loaded with the Primary Pattern it will be
reloaded with the Secondary Pattern,or if the Linestyle is currently loaded with the
Secondary Pattern it will be reloaded with the Primary Pattern. If two or more adjacent
pixels are on they will be left untouched and line style pattern will NOT be exchanged.
At the completion of the LineTo or AreaTo command the line style is reloaded with the
Primary Pattern.

READ BYTE—The display byte is read and converted from binary to hexadecimal. The
ASCI I representation of this hexadecimal number is transmitted to the host computer
Display bytes are defined as8 consecutive horizontal pixel locations. The beginning of
a display byte is (X,Y) where X is 0,8,16 496 and Y is any integer between 0 and 246,
inclusively Each display byte is redundantly addressed by 8 coordinates. For example,
to access the display byte beginning at (0,0) any of the following coordinates could be
used: (0,0), (1,0), (2,0), (3,0), (4,0), (5,0), (6,0), or (7,0). The pixel at the beginning of the
display byte is the least significant and the pixel at the beginning +8 is the most signifi¬
cant.Notice that this means that, visually, a pattern on the screen will appear in reverse
significance with respect to its hexadecimal representation.

Leading zeros are transmitted (not suppressed).

This line type has some special restrictions.

This line type can only be used in conjunction with a PointAt command. LineTo and
AreaTo commands will imitate a MoveTo command.

Note that if the terminal is OFF LINE this attribute will perform no function except
that the PointAt, LineTo or AreaTo command will act as a MoveTo command.

The line style will act as if it were set to solid (11111111) regardless of its actual value.
(See LineStyle command) This is to prevent the host computer from getting trapped in
an eternal wait loop for a terminal response if the line style contains a 0.

The process executing in the host computer that is responsible for reading the data sent
by the terminal must be fast enough to keep pace. The terminal will transmit the data as
fast as the baud rate selected will permit.

It is important that the host computer does not echo the terminal response (00 to FF
followed by a carriage return) back to the terminal. An echoed response will be treated
by the GCP as command/data information. See the Examples section of this manual to
see how this can be implemented.

22

DisplayToggle (Z), ASCII

Command form: D (opt. delim] Z (delim)

Where: Z ENABLE ENABLE ERASE
ALPHA GRAPHICS GRAPHICS

0 NO NO NO
1 NO NO YES
2 NO YES NO
3 NO YES YES
4 YES NO NO
5 YES NO YES
6 YES YES NO
7 YES YES YES

Command function:

This command has two distinct functions. One function is to permit the user to block or
not block the display of alphanumeric or graphics information to the entire screen. The
other function of this command is to erase the entire graphics display memory This
command stays in effect even after executing an ExitGraphicsMode command.

EXAMPLE: 10 PRINT “D3”

This command would disablealphanumerics, enable graphics and erase the previous im¬
age.

23

BringlnProgram (Z0>, (Zl), ... ,(Z127), ASCII

Command form: B (opt. deliml ZO (opt. delim) Zl [opt. delim], ... ,Z127 [opt. delim]

Where: [opt. deliml in this case is any ASCII character except 0,1,2,3,4,5,6,7,8,9,A,B,
C,D,E,F

AND

Where: Z is a double-digit hexadecimal number between 00 and FF, inclusively A
leading zero must be present if a single digit number (i.e., 03 not 3). However, do not in¬
sert a leading zero in front of a two digit number (i.e., FF not OFF).

Command function:

This command loads 128 bytes of data (Z0-Z127) into the expansion R/W RAM U9B.
The data is converted from hexadecimal to binary format prior to loading into R/W
RAM. ZO is loaded into memory at address C001H, Zl is loaded into memory at C002H,
etc. After the128th byte is loaded,control is returned to the GCP for the next command.

This command is only useful if R/W RAM is mounted at U9B. Beware that once a
BringlnProgram command is initiated, the GCP will expect at least 256 characters
before accepting new commands (this is true regardless of whether R/W RAM is present
at U9B or not).

EXAMPLE: 10 PRINT “B”
20 PRINT “00”
30 PRINT “00”
40 PRINT “00”
50 PRINT “C3”
60 PRINT “04”
70 PRINT “CO”

1290 PRINT “00”

This example of data entry is correct with regard to format but is quite inflexible and
therefore not advocated as a good programming technique.

24

JumpToProgram, ASCII

Command form: J

Command function:

This command transfers control from the GCP to the program residing in U9B.
Transfer is accomplished by a JMP (JUMP) to address C004H. Control may be given
back to the GCP by a RET (RETURN) statement.

Before the transfer is made, a test pattern is written to location COOOH and then read
back. The pattern must match or no transfer is permitted and control is returned to the
GCP Therefore, physical memory must be mounted at U9B and it must be valid at
COOOH This prevents inadvertently jumping to a nonexistant program, resulting in a
runaway processor

EXAMPLE: 10 PRINT “J”

25

ExitGraphicsMode, ASCII

Command form: E

Command function:

This command instructs the GCP to release control back to normal alphanumeric pro¬
cessing. All previously set graphics attributes will remain valid (i.e., no attributes
revert back to default or reset values).

EXAMPLE: 10 PRINT “E”

26

This page intentionally left blank.

COMMAND FORM AND
FUNCTION, BINARY

BINARY COMMAND FORMATS

The binary command formats are described with each command. X and Y coordinates
and Z parameters are represented in binary notation. The ASCI I character representing
the binary number is transmitted to the terminal. For example, examine the bytes (P is
the parity bit):

P0100100 is represented by the ASCII character $
P0100000 is represented by the ASCII Space
Plllllll is represented by the ASCII Delete

See the Appendix for binary to ASCH conversions.

More stringent conditions are placed on the syntax of commands in BINARY mode
than in ASCII mode. In general,delimiters are not required and are not permitted, but
there is one exception. The binary codes P0000000 through P0001111 can serve as NOP
(no operation) commands when used as opcodes. This permits the inclusion of dummy
carriage-return and line-feed characters in transmissions. This is required because some
high level languages insert their own carriage-returns, regardless of whether the pro¬
grammer requested one or not. For instance, some releases of BASIC automatically in¬
sert a carriage-return and line-feed if the user does not specify one before 255 conse¬
cutive characters are transmitted. Unpredictable results may occur since this
automatic carriage-return may occur when the GCP is expecting a valid operand.
Therefore, it is important for the programmer to force occasional carriage-returns when
the GCP expects an opcode (if they are to be ignored) before the automatic one is trig¬
gered.

It is important to note that the binary codes P0000001 through P0001111 are valid
when used as operands (P0000000 is never used because nulls are filtered out by the ter¬
minal and most operating systems)

Since the binary code P0000000 can never be used a simple data conversion needs to be
performed when using MoveTo, PointAt, LineTo and AreaTo commands. The respec¬
tive subroutines need to add an offset of 8 to X and an offset of 2 to Y

27

28

• For instance, if the programmer wanted to MoveTo(0,0) a GOSUB 2000 would be
executed (see MoveTo, BINARY).

• The programmer would set X =0 and Y —0 before the call.

• The MoveTo subroutine would effectively add 8 to X and add 2 to Y

• The GCP will then subtract 8 from X and 2 from Y once it receives them.

Of course, these syntax restrictions apply only when in BINARY mode; these
restrictions do not exist when in ASCI I mode or when in the terminal's standard
alphanumeric mode. The driver routines presented take all of these requirements
into account.

To gain the most efficiency, BINARY mode was really designed to be driven by
assembly language routines. The routines should have the following features.

• They need to convert the X and Y coordinates or the Z parameter to the proper
binary format.

• The command identifier needs to be appended to the opcode.

• The ASCII character that represents the binary word needs to be formed.

• The routines should not echo back ANY of the characters that are sent from the
terminal. (As stated above, some characters can be echoed back without problem if
the GCP expects an opcode, but it is simpler to unconditionally avoid echoing back
any characters.) This is particuarly true for data received from the terminal when
the READ line types are set. Data should be read and processed but not echoed
back.

• The routines should return control back to the calling program once the command
and its data have been transmitted. When checking the serial channel status
remember that the Imaginator expects that the Clear To Send signal is being
monitored.

Example driver routines are included. More efficient driver routines can be written in
assemblylanguage but BASIC was chosen to help clarify the principles involved.

A note about the driver routines. These routines perform no X, Y, or Z parameter limit
checking. For example, these routines would accept a value greater than 503 for the X
coordinate without complaint and would pass an incorrect value to the terminal.

29

EnterGraphicsMode, BINARY

Command form: ESC 0

Command function:

This command signals the GCP to interpret all future information as graphics com-
mand/data. No graphics atributes are reinitialized. Commands and data will now be
assumed to be seven-bit binary words (the parity bit is not used). The BINARY mode
has the advantage of high efficiency because a minimum of information must be sent to
specify an operation. Binary mode has the disadvantage of requiring the information to
be condensed into a compact form by the host computer Actually, this is a rather simple
process, it requires only short subroutines. (Since the condensed information can cover
the complete range from 0000000IB to 01111111B inclusively, another problem may
arise if the Basic Input Output System (BIOS) of the host'soperatingsystem filters out
or modifies specific values. For instance, a DELETE may be changed to a
BACKSPACE-SPACE-BACKSPACE. Or a TAB may be changed to a string of 8
spaces. The GCP would misinterpret this corrupted data with unpredictable results.)

EXAMPLE: 10 PRINT CHR$(27);“0”

30

MoveTo (X,Y), BINARY

Command form: Command Opcode

First Operand

Second Operand

7 6 5 4 3 2 1 0
P 1 1 0 1 X2XiX„

7 6 5 4 3 2 1 0
P YOX8X7X9X5X4X3
7 6 5 4 3 2 1 0
P Y7Y9YSY4Y3Y2Y,

P parity

Command Function:

Identical to MoveTo (X,Y), ASCII

EXAMPLE: 10 DEFINT O,X,Y
20 X =25
30 Y = 210
40 GOSUB 2000

2000 REM MOVE TO COMMAND BINARY DRIVER
2010 REM
2020 REM X = X COORDINATE
2030 REM Y = Y COORDINATE
2040 REM
2050 OPCODE= (X AND 7) OR &H68
2060 OP1= ((X AND NOT 7)/8 AND 63) +1+ (Y AND 1)*64
2070 OP2= (Y AND 254)/2 +1
2080 PRINT CHR$(OPCODE);CHR$(OP1);CHR$(OP2)
2090 RETURN

31

PointAt (X,Y), BINARY

Command form: Command Opcode

First Operand

Second Operand

7 6 5 4 3 2 1 0
P 0 1 1 0 X2X,X»
7 6 5 4 3 2 1 0
P Y0X8X7X8X5X4X3
7 6 5 4 3 2 1 0
P y7y8y5y4y3y2y,

P parity

Command function:

Identical to PointAt (X,Y), ASCII

EXAMPLE: 10 DEFINT O,X,Y
20 X = 25
30 Y = 210
40 GOSUB 3000

3000 REM POINT AT COMMAND BINARY DRIVER
3010 REM
3020 REM X = X COORDINATE
3030 REM Y = Y COORDINATE
3040 REM
3050 OPCODE = (X AND 7) OR &H30
3060 OP1= ((X AND NOT 7)/8 AND 63) + 1 + (Y AND 1)*64
3070 OP2 = (Y AND 254)/2 + 1
3080 PRINT CHR$(OPCODE);CHR$(OP1);CHR$(OP2)
3090 RETURN

32

LineTo (X,Y), BINARY

Command form: Command Opcode

First Operand

Second Operand

7 6 5 4 3 2 1 0
P 1 1 0 0 X2X,X0
7 6 5 4 3 2 1 0
P YoX8X7X,XsX4X3
7 6 5 4 3 2 1 0
P Y,Y.Y5Y4YjY2Y1

P parity

Command function:

Identical to LineTo (X,Y), ASCII

EXAMPLE: 10 DEFINT O,X,Y
20 X = 25
30 Y = 210
40GOSUB4000

4000 REM LINE TO COMMAND BINARY DRIVER
4010 REM
4020 REM X = X COORDINATE
4030 REM Y= Y COORDINATE
4040 REM
4050 OPCODE= (X AND 7) OR &H60
4060 OP1= ((X AND NOT 7)/8 AND 63) + 1+ (Y AND 1)*64
4070 OP2= (Y AND 254)/2 +1
4080 PRINT CHR$(OPCODE);CHR$(OP1);CHR$(OP2)
4090 RETURN

33

AreaTo (X,Y), BINARY

Command form: Command Opcode

First Operand

Second Operand

7 6 5 4 3 2 1 0
P 1 0 1 1 X2X,Xo

7 6 5 4 3 2 1 0
P Y0X8X7X9X5X4X3
7 6 5 4 3 2 1 0
p y7y9y5y4y3y2y.

P parity

Command function:

Identical to AreaTo (X,Y), ASCII

EXAMPLE: 10 DEFINT O,X,Y
20 X = 25
30 Y = 210
40 GOSUB 5000

5000 REM AREA TO COMMAND BINARY DRIVER
5010 REM
5020 REM X = X COORDINATE
5030 REM Y= Y COORDINATE
5040 REM
5050 OPCODE= (X AND 7) OR &H58
5060 OP1= ((X AND NOT 7)/8 AND 63) + 1+ (Y AND 1)*64
5070 OP2= (Y AND 254)/2+1
5080 PRINT CHR$(OPCODE);CHR$(OP1);CHR$(OP2)
5090 RETURN

34

PriLineStyle (Z), BINARY

Command form: Command Opcode

First Operand

7 6 5 4 3 2 1 0
P 1 1 1 0 * Z.Zo
7 6 5 4 3 2 1 0
P Zj Zb Zb Z4 Za Zz 1

* don’t care
P parity

Command function:

Identical to PriLineStyle (Z), ASCII

EXAMPLE: 10 DEFINT O,Z
20 Z = 3
30 GOSUB8000

8000 REM PRIMARY LINE STYLE COMMAND BINARY DRIVER
8010 REM
8020 REM Z = ATTRIBUTE
8030 REM
8040 OPCODE= (Z AND 3) OR &H70
8050 OP1= (Z AND 254)/2 OR 1
8060 PRINT CHR$(OPCODE);CHR$(OP1)
8070 RETURN

35

SecLineStyle (Z), BINARY

Command form: Command Opcode 76543210
P 1 1 1 1 * Z, Z„

First Operand 76543210
P Z7 Z« Z5 Z4 Z3 Z2 1

* don’t care
P parity

Command function:

Identical to SecLineStyle (Z), ASCII

EXAMPLE: 10 DEFINT O,Z
20Z=3
30 GOSUB9000

9000 REM SECONDARY LINE STYLE COMMAND BINARY DRIVER
9010 REM
9020 REM Z= ATTRIBUTE
9030 REM
9040 OPCODE= (Z AND 3) OR &H78
9050 OP1= (Z AND 254)/2 OR 1
9060 PRINT CHR$(OPCODE);CHR$(OP1)
9070 RETURN

36

LineType (Z), BINARY

Command form: Command Opcode 76543210
Pl 00 1 Z2Z,Z0

P parity

z2 z, z0 PIXEL ACTION

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

ON
OFF
COMPLEMENT
READ BIT
TOGGLE TO ALTERNATE LINE STYLE AT BOUNDARY
READ BYTE

Command function:

Identical to LineType (Z), ASCII

EXAMPLE: 10 DEFINT O,Z
20Z= 3
30 GOSUB 7000

7000 REM LINE TYPE COMMAND BINARY DRIVER
7010 REM
7020 REM Z = ATTRIBUTE
7030 REM
7040 OPCODE= Z OR &H48
7050 PRINT CHR$(OPCODE)
7060 RETURN

37

DisplayToggle (Z), BINARY

Command form: Command Opcode 76543210
P 0 1 0 0 A B C

P parity
1 is logical true

A Enable Alphanumerics
B Enable Graphics
C Erase Graphics

Command function:

Identical to DisplayToggle (Z), ASCII

EXAMPLE: 10 DEFINT O,Z
20 Z = 3
30 GOSUB 6000

6000 REM DISPLAY TOGGLE COMMAND BINARY DRIVER
6010 REM
6020 REM Z = ATTRIBUTE
6030 REM
6040 OPCODE = Z OR &H20
6050 PRINT CHR$ (OPCODE)
6060 RETURN

38

BringInProgram (ZO), (Z1),...,(Z127), BINARY

Command form: Command Opcode 76543210
P 0 0 1 0 * * *

* don’t care
P parity

Command function:

Identical to BringInProgram (ZO), (Zl) (Z127), ASCII

EXAMPLE: 10 DEFINTO
20GOSUB 10000

10000 REM BRING IN PROGRAM COMMAND BINARY DRIVER
10010 OPCODE= &H10
10020 PRINT CHR$(OPCODE)
10030 PRINT "76”
10040 PRINT “F5”
10050 PRINT “F1”
10060 PRINT “C9”

11300 PRINT "00”
11310 RETURN

This example of data entry is correct with regard to format but is quite inflexible and
therefore not advocated as a good programming technique.

39

JumpToProgram, BINARY

Command form: Command Opcode 76543210
P 1 0 1 0 * * *

* don’t care
P parity

Command function:

This command transfers control from the GCP to the program residing in U9B. Trans¬
fer is accomplished by a JMP (JUMP) to address C001H. This command is otherwise
identical to JumpToProgram, ASCII.

EXAMPLE: 10 DEFINT 0
20 GOSUB 12000

12000 REM JUMP TO PROGRAM COMMAND BINARY DRIVER
12010 OPCODE = &H50
12020 PRINT CHR$(OPCODE)
12030 RETURN

40

ExitGraphicsMode, BINARY

Command form: Command Opcode 7 6 5 4 3 2 1 0
P 0 1 0 1 * * *

* don’t care
P parity

Command function:

Identical to ExitGraphicsMode, ASCII

EXAMPLE: 10 GOSUB 1000

1000 REM EXIT GRAPHICS MODE COMMAND BINARY DRIVER
1010 PRINT CHR$(&H28)
1020 RETURN

EXAMPLES

We recommend that you try some of these examples.

Hands on experience is a must for learning any new subject. Refer to the command form
and function sections for details. We recommend that you become acquainted with
ASCII mode first before attempting BINARY mode.There is no way to damage the ter¬
minal by accidentally giving it an invalid command, so experiment.

EXAMPLE 1

The following example is meant to be entered by typing the commands directly on the
keyboard rather than sending them from a host computer Lock down the OFF-LINE
key Type the commands as they appear, for instance, type a space where a space is
shown and a carriage return when a new line appears (the space and carriage-return will
serve as delimiters).

TYPE ANYTHING Type a few random characters.

CAPS-LOCK unlocked

ESCx1 Enable 25th line, this permits the entire graphics
display to be shown.

CAPS-LOCK locked down It makes it easier to enter the remainder of the
commands.

ESC1 EnterGraphicsMode command, ASCII.

D3 DisplayToggle command, disable alphanumerics,
enable graphics, and erase the previous graphics
image.

IO LineType command, the line type is ON
(Note that though a hardware or software terminal
RESET will reinitialize the line type to ON, it is
good practice to include initialization commands
such as this one in your graphics programs. This
permits graphics subroutines to be relocated with
out being concerned about the action of previously
executed routines.

41

42

N255 PriLineStyle command, 11111111 pattern (solid).
Again, it is good practice to include this type of ini¬
tialization command.

OO SecLineStyle command, 00000000 pattern (blank).
Again it is good practice to include this type of ini¬
tialization command.

P50 0 Point At (X.Y) command, X = 50, Y = 0

L50 200 LineTo (X Y) command, X = 50, Y = 200
Notice that the line was drawn before the carriage
return was keyed since 200 is a three digit number
(i.e.. the carriage return was really not needed).

P150 0 PointAt (X,Y) command, X = 150, Y =0
The space between the 150 and the 0 is unnecessary
since 150 is three digits long.

L150100 LineTo (X.Y) command, X = 150, Y = 100

M300 0 MoveTo (X.Y) command, X = 300, Y = 0
Notice that no point is drawn.

A400 200 AreaTo (X,Y) command, X = 400, Y = 200

PO 190 PointAt (X.Y) command, X = 0, Y = 190

L500 190 LineTo (X, Y) command, X = 500, Y = 190
The line type is ON

11 LineType command. Line type is OFF

PO 150 PointAt (X,Y) command, X = 0, Y = 150

L500 150 LineTo (X.Y) command, X = 500, Y = 150

I2 LineType command. Line type is COMPLEMENT

PO 110 PointAt (X,Y) command, X = 0, Y = 110

L500 110 LineTo (X.Y) command, X = 500, Y = 110

I4 LineType command. Line type is TOGGLE TO
ALTERNATE LINESTYLE AT BOUNDARY

PO 70 PointAt (X,Y) command X = 0, Y = 70

L500 70 LineTo (X,Y) command, X = 500, Y = 70
The secondary line style is 00000000 (blank).

MO 30 PointAt (X.Y) command, X=0, Y = 30

A500 0 AreaTo (X,Y) command, X = 500, Y = 0
READ BIT and READ BYTE line types only
operate when the terminal is ON-LINE.

43

D4 DisplayToggle command, disable graphics and
Enable alphanumerics.

D2 DisplayToggle command, Enable graphics and
Disable alphanumerics.

DO DisplayToggle command, Disable graphics and
Disable alphanumerics.

D7 DisplayToggle command, Enable graphics, Enable
alphanumerics, and Erase previous graphics image.

E ExitGraphicsMode command

TYPE ANYTHING Normal alpha mode.

44

The following examples are written in BASIC.

The graphics terminal will receive its commands via RS-232C from the host computer so
the terminal should be ON-LINE.

EXAMPLE 2

The following program will draw a simple XY axis with tick marks.

00010 DEFINTX,Y
00020 PRINT CHR$(27);“1”
00030 PRINT “D3”
00040 PRINT “I0”
00050 PRINT “N255”
00060 FOR X = 20 TO 500 STEP 10
00070 PRINT “M”;X;“103”;“L”;X;“98”
00080 NEXTX
00090 FOR Y = 20 TO 240 STEP 10
00100 PRINT “M”;“247”;Y;“L”;“252”;Y
00110 NEXTY
00120 PRINT “N170”
00130 PRINT “P250 240 L250 20 P20 100 L500 100”
00140 PRINT “D6”
00150 PRINT “E”
00160 STOP

Line 10 defines the variables X and Y as INTEGERS. The decimal point inserted in real
numbers would act as an unintentional delimiter

Line 20 sends an EnterGraphicsMode, ASCII command, ESC 1

Line 30 sends a DisplayToggle command that turns the alphanumeric display off, the
graphics display on and erases the graphics display memory

Line 40 is a LineType command. The line type is defined as ON

Line 50 is a PriLineStyle command. The primary line style pattern is defined as solid
(11111111).
128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255

Lines 60, 70 and 80 form a program loop that draws tick marks on the horizontal axis.
Line 70 consists of a MoveTo command (“M”;X;“103”) and a LineTo command
(“L”;X;“98”).

Lines 90, 100 and 110 form a program loop that draws the tick marks on the vertical
axis. Line 100 consists of a MoveTo command (“M “247 Y) and a LineTo command
(“L”;“252”;Y).

Line 120 is a PriLineStyle command. The primary line style pattern is defined as dotted
(10101010).
128 + 0 + 32 + 0 + 8 + 0 + 2+0 = 170

Line 130 draws the horizontal and vertical axis. It consists of a PointAt command

45

(“P250 240) a LineTo command (L250 20) a PointAt command (P20 100) and a LineTo
command (L500 100").

Line 140 is a DisplayToggle command that instructs the graphics terminal to enable
both alphanumeric and graphics displays.

Line 150 is an ExitGraphicsMode command.

Line 160 is the end of execution statement.

EXAMPLE 3

This program draws 256 lines each with a different line style. Though the patterns
00010001 and 00100010 are different, they appear identical when the pattern is re¬
peated (e.g., when drawing a long line). Using this criteria to disqualify similar patterns,
there remain 30 unique pattern styles.

00010 DEFINTA-Z
00020 PRINT CHR$(27);‘‘1D3,10"
00030 LS =0
00040 FOR I = 1 TO 32
00050 FOR J =1 TO 8
00060 PRINT “N”;LS
00070 PRINT "P";0;247-J*30
00080 PRINT “L";504;247-J *30
00090 LS = LS+ 1
00100 NEXT J
00110 PRINT "D3"
00120 NEXT I
00130 PRINT "D5,E"
00140 STOP

46

EXAMPLE 4

This program demonstrates a technique for generating cross hatched patterns easily
Bar charts are a typical application.

00010 DEFINT A-Z
00020 PRINT CHR$(27);“1"
00030 PRINT “D3'
00040 PRINT “M350,240’
00050 PRINT “10'
00060 PRINT N170"
00070 PRINT “A151,10’
00080 PRINT “I2”
00090 PRINT “A351,240"
00100 PRINT “IT’
00110 PRINT “A150,10”
00120 PRINT “I2”
00130 PRINT “A351,240’
00140 PRINT “11”
00150 PRINT “N17”
00160 PRINT “A150,10”
00170 PRINT “D6,E”
00180 STOP

Line 40 moves the virtual pointer to (350,240).

Line 50 sets the LineType to ON

Line 60 sets the PriLineStyle to dotted, 10101010.

Line 70 fills a rectangular area with (350,240) and (151,10) as the diagonally opposite
vertices. Since 350-151 is not an even multiple of 2 (the numerical distance between two
consecutive ones in the primary pattern byte, 10101010), the pixel pattern is diagonal.
If the 151 was changed to 150, a pattern of vertical lines would have been drawn.

010101010
101010101
010101010
101010101
010101010

Line 80 changes the line type to Complement.

Line 90 draws another rectangular area on top of the one just drawn. This time the dif¬
ference between old and new X coordinates (351-151) is an even multiple of 2. This re¬
sults in a pattern of vertical interactions. Every other pixel is complemented, since the
line style is still 10101010, resulting in the complete cancellation of every other row and
a filling in of the remaining rows.

010101010 ccc
101010101 c c c
010101010 ccc
101010101 ccc

c c 111111111
c c _ 000000000
c c 111111111
c c 000000000

47

Line 100 changes the line type to OFF

Line 110 makes an area pass over the existing pattern to selectively erase specific pix¬
els.

Lines 130-160 are more of the same.

Line 170 is the erase screen and exit command.

It probably is now evident that combining area overlays using different line types and
line styles can create some complicated but interesting patterns.

EXAMPLE 5

In case you are not convinced.

00010 DEFINTA-Z
00020 PRINT CHR$(27);“1”
00030 PRINT “D3”
00040 PRINT “M”;“350”;“240’
00050 PRINT “I0”
00060 PRINT “N1”
00070 PRINT “A151,10”
00080 PRINT “A352,240”
00090 PRINT “A151,10”
00100 PRINT “A350,240”
00110 PRINT “I2”
00120 PRINT “N170”
00130 PRINT “A151,10”
00140 PRINT “A351,240”
00150 PRINT “A150,10
00160 PRINT “A350,240”
00170 PRINT “N17”
00180 PRINT “A150,10”
00190 PRINT “A352,240”
00200 PRINT “A150,10”
00210 PRINT “D6,E”
00220 STOP

48

EXAMPLE 6

Here’s a different one.

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140

DEFINT X.Y
PRINT CHR$(27);“1”
FOR L=1 TO 2
PRINT I2,N17,D2”
FOR N = 30 TO 100 STEP 5
PRINT “M”;0;125
FORX =OTO 500 STEP 63
Y =100*SIN(X/N) + 125
PRINT “A”;X;Y
NEXTX
NEXT N
NEXT L
PRINT “D5,E”
STOP

Obviously this program demonstrates the overlay principle.but there is another concept
here. It is the fact that when strictly the complement line type is used,there is no loss of
information on the screen. No matter how many times a pixel is overlayed its original
state can be determined. There are some practical implications of this. Two independent
images can be overlayed to form a single image that can be totally separated later For
instance, a crosshair cursor can be drawn over an existing image if done with the comple¬
ment line type. It will always remain visible because it is complemented. The original
image can be restored by recomplementing the crosshair cursor Therefore, the
crosshair cursor can be scanned across the original image without destroying the im¬
age, as long as it is drawn an even number of times in the same location before it is
moved.

EXAMPLE 7

This program demonstrates an efficient method of generating graphics characters.
Though graphics character generation is slower than alphanumeric character genera¬
tion there are some advantages:

• The characters can be defined by the programmer (e.g., Latin and Greek symbols
can be produced.

• The characters can be practically any size (a 5 by 5 matrix is the minimum for a well
formed upper case character).

• The characters can be oriented in any direction— horizontal, vertical, inverted,
diagonally, etc.

• The characters can be positioned anywhere. For example, a label can be centered
directly under a graph’s axis tick mark, rather than the closest character block
position.

This program was written especially for generating upper casecharacters defined on a 5
by 5 grid. Label orientations are limited to horizontal (from left to right) and vertical
(from bottom to top) directions. Any direction is possible,but the computations would

be severely slowed down since the trigonometric functions required are slow when writ¬
ten in BASIC.

49

MAIN PROGRAM

00010 DEFINTA-Z
00020 DIM CGEN(4.5)
00030 GOSUB 21000
00040 PRINT CHR$(27)"1
00050 PRINT D3.I0'
00060 LABELS = '0123"
00070 STARTX = 5
00080 STARTY = 100
00090 LDIR = 0
00100 GOSUB 20000
00110 PRINT “D6,E"
00120 STOP

GRAPHICS CHARACTER GENERATOR SUBROUTINE

20000 IF LDIR = 0THEN ILDIR = 1 ELSE ILDIR = 0
20010 HEIGHT = 5
20020 COUNT = 0
20030 SPACE = 2
20040 FOR CHAR = 1 TO LEN(LABELS)
20050 CHARCODE = ASC(MID$(LABEL$,CHAR,1)) 48
20060 FOR I = 1 TO 5
20070 PRIPAT = CGEN(CHARCODEJ)
20080 PRINT N’’;PRIPAT
20090 BASEX =STARTX + COUNT*ILDIR
20100 BASEY = STARTY -t- COUNT*LDIR
20110 PRINT“P”;BASEX;BASEY
20120 X =BASEX + HEIGHT*-LDIR
20130 Y = BASEY + HEIGHT*ILDIR
20140 PRINT “L ;X;Y
20150 COUNT = COUNT + 1
20160 NEXT I
20170 COUNT = COUNT + SPACE
20180 NEXT CHAR
20190 RETURN

CHARACTER GENERATOR TABLE

21000 CGEN(0.1) = 31
21010 CGEN(0,2) = 17
21020 CGEN(0,3)=17
21030 CGEN(0,4) = 17
21040 CGEN(0,5) = 31
21050 CGEN(1,1) = 0
21060 CGEN(1,2) = 9
21070 CGEN(1,3) = 31
21080 CGEN(1.4)=1
21090 CGEN(1,5) = 0
21100 CGEN(2,1) = 23

50

21110 CGEN(2,2) = 21
21120 CGEN(2,3) = 21
21130 CGEN(2,4) = 21
21140 CGEN(2,5) = 29
21150 CGEN(3,1) = 17
21160 CGEN(3,2) = 21
21170 CGEN(3.3) = 21
21180 CGEN(3,4) = 21
21190 CGEN(3,5) = 31
21200 RETURN

• LABELS in the main program is the statement to be printed in graphics char¬
acters.

• STARTX and STARTY is the starting position for the label.

• LDIR (label direction) is the label orientation: 0 is horizontal; 1 is vertical.

• The character HEIGHT is 5, with 2 pixels (SPACE) skipped between each char¬
acter

• CHAR is the main loop which is indexed for each character in LABELS.

• CHARCODE stands for character code; it’s purpose is to identify the character
with its 5 by 5 pattern matrix (CGEN).

• The I loop performs the actual symbol drawing.

• Each of the 5 character generator (CGEN) matrix columns is in turn loaded into
the primary line style pattern (PriLineStyle command).

• A short (5 pixel) line is drawn.

• LDIR and ILDIR (Inverse label direction) are multiplied with the draw coordi¬
nates to determine direction.

• I is then indexed for the next character column.

• The between character space is skipped before the next character is drawn.

• The subroutine returns to the calling routine once the complete label is drawn.

• The table is truncated here for brevity; available memory is the only restriction to
its length.

51

EXAMPLE 8

This program reads a pixel from graphics memory and prints the result in alphanumeric
mode. The result will be zero unless a pixel is turned on at (100,50).

00010 DEFINT B-Z
00020 PRINT CHR$(27):"1'
00030 PRINT 13'
00040 PRINT P100050'
00050 A$ = INPUT$(2)
00060 PRINT E”;A$
00070 STOP

Line 30 sets the line type to READ BIT

Line 40 reads the pixel at (100,50).

Line 50 inputs the terminal 's transmission of a 1 or 0 followed by a carriage-return with¬
out echoing the characters back to the terminal.

Line 60 exits graphics mode and prints the state of the pixel at (100,50).

EXAMPLE 9

The program reads a display byte from graphics memory and prints its value in alpha¬
numeric mode. The result will be 00, unless a pixel is turned on between (96,50) and
(103,50), inclusively

00010 DEFINT B-Z
00020 PRINT CHR$(27);“1”
00030 PRINT “I5”
00040 PRINT "P100050”
00050 A$ = INPUT$(3)
00060 PRINT “E”;A$
00070 STOP

Line 30 sets the line type to READ BYTE.

Line 40 reads the display byte between (96,50) and (103,50).

Line 50 inputs the terminal's hexadecimal transmission followed by a carriage-return
without echoing the characters back to the terminal.

Line 60 exits graphics mode and prints the value of the display byte.

52

EXAMPLE 10

The following program is Demonstration program 1 rewritten to use the binary drivers
described under Command Form and Function, BINARY

00010 DEFINT X,Y
00020 PRINT CHR$(27);“0’
00030 Z = 0
00040 GOSUB 7000
00050 Z = 255
00060 GOSUB 8000
00070 Z = 3
00080 GOSUB 6000
00090 X = 0
00100 Y = 125
00110 GOSUB 2000
00120 FOR X = 0 TO 500 STEP 2
00130 Y = 100*SIN(X/13.27) + 125
00140 GOSUB 4000
00150 NEXTX
00160 Z = 6
00170 GOSUB 6000
00180 GOSUB 1000
00190 STOP

EXAMPLE 11

Demonstration program 1 is rewritten in ASCII mode and in FORTRAN

PROGRAM SINE
INTEGER ESC,X,Y
NO = 3
ESC = 27
WRITE(NO,10)ESC
WRITE(NO,11)
WRITE(NO,12)
DO 200 X = 0,500,2
Y = 100*SIN(X/13.27) + 125
WRITE(NO,13)X,Y

200 CONTINUE
WRITE(NO,14)

10 FORMAT(1X,A1,'19
11 FORMAT(' IO,N255,D39
12 FORMATS M0,1259
13 FORMAT('L',2(I3,1X))
14 FORMAT(' D6,E9

STOP
END

(Most FORTRAN compilers permit the mode conversion required in theY = 100*SIN(X/
13.27) + 125 statement, if yours does not,then use the FORTRAN IFIX command.)

THEORY OF OPERATION

This section is for those reader interested in the elec¬
trical operation of the Imaginator Information is
also available on the software including the complete
source code in the Imaginator Source Code and
Manual.
Remove the schematic from the Appendix and place
it where you can refer to it easily

POWER SUPPLY

The Imaginator is interfaced to the rest of the ter¬
minal by means of two ribbon cable assemblies and a
power harness The power harness delivers
unregulated + 16VDC, — 16VDC, T8.5VDC and
ground. VR1 and R2 form a simple zener voltage
regulator that supplies the — 5VDC. VR2 is a 3 ter¬
minal voltage regulator used to supply the +12VDC.
C2 is that regulator's input bypass capacitor to in¬
sure stable operation. VR3 is a +5VDC regulator
that provides the bulk of the power to the board. Cl 2
and C13 are used for that regulator's input and out¬
put bypass capacitors, respectively Capacitors CIO,
Cll and C9 are used for bulk decoupling of the
dynamic RAM's supply voltages. The remainder of
the capacitors are placed near each IC to serve as
decoupling capacitors. Reduced operating temp¬
eratures for VR2 and VR3 are maintained by heat¬
sinks For additional safety these integrated
regulators have internal thermal shutdown circuitry
The power is distributed to the IC's via a grided net¬
work to minimize the effective inductance.

MICROCOMPUTER

The Z-80 microprocessor on the TERMINAL
LOGIC board was moved to the Imaginator and in
its place a 40 conductor ribbon cable was connected.
The ribbon cable connects the Imaginator and the

TERMINAL LOGIC address buses, data buses, and
control buses together (.14).

U4C, U5, and U6 are non-inverting buffers used to
provide the supplementary source and sink drive re¬
quired by the additional loads on the address bus.
U35A and U35B are non-inverting buffers used to
provide additional drive on the microprocessor's
read (RD) and write (WR) lines.

E/P/ROM U9A contains the software for the
graphics command processor (GCP). U8 is a 128 by 8
bit scratchpad R/W RAM used by the graphics com¬
mand processor U9B is a memory mapped socket
that may be used for memory expansion.

GRAPHICS COMMAND PROCESSOR
MEMORY EXPANSION

Jumpers El thru E13 allow the Imaginator to be
reconfigured to accept up to 16K of E/P/ROM or a
maximum of 8K of E/P/ROM and 8K of R/W RAM
instead of the standard 2K E/P/ROM. The standard
jumper configuration of E12-E13 connects pin 23 of
socket U9A with Vcc. By changing the jumper to
E12-E11 pin 23 is connected to address line 11 (In a
similar manner E5-E7 can be changed to E5-E6 to
reconfigure U9B.) This permits MOSTEK or INTEL
family compatible 4K or 8K E/P/ROM to be used. A
maximum of 16 K of E/P/ROM may be addressed by
reconfiguring both jumper sets and adding an addi¬
tional E/P/ROM at U9B.

Alternatively U9B could be R/W RAM instead of
E/P/ROM. Strapping E5-E4 connects pin 23 of U9B
to the microprocessor write (WR) line. This con¬
figuration is used for 2K R/W RAM. Strapping
E9-E8 is used for larger 4K R/W RAM. Psuedostatic
RAM can be implemented by strapping E2-E3. This

53

54

connects pin 1 of U9B to the microprocessor refresh
(RFSH) line. Refer to Modifications for specific
strapping information.

MEMORY MAP

U22, U34B, U29B, and U28B form the memory map
decoding logic. Address lines A,,, A..„ and A,, are
decoded to divide the total address space of 64 K into
eight 8K banks.

The total address space is allocated as follows:

2000H-3FFFH pin 1 4 of 1'22, is allocated to the
graphics command processor E P ROM U9A.

6000H-7FFFH pin 12 of U22. is allocated to the
graphics scratchpad R W RAM U8.

8000H-BFFFH, pin 1 0 OR pin 11 (U29B) of U22,
is allocated to the graphics display dynamic R/W
RAM U10-U17

C000H-DFFFH pin 9 of LJ22, is allocated to the
optional graphics command processor memory
U9B.

The rest of the address space OOOOH-l FFFH.
4000H-5FFFH and E000H FFFFH pin 7 OR
pin 13 OR pin 15 (U28B) of 1122, is allocated to
memory on the TERM INAI LOGIC board.

The outputs of U22 are only enabled when pin 5 of
U22 receives an active memory request (MREQ)
from the microprocessor

INPUT/OUTPUT

An input/output request (IO HQ) is sent to the TER¬
MINAL LOO IC board only when both IORQ (pin 20
of U7) ANT) A, are low (U34C)

HARDWARE RESET

When the microprocessor receives a hardware reset
(pin 26 of U7) it instinctively knows to output ad¬
dress 0000H and fetch an opcode. Normally
0000H-1FFFH is allocated to the E P ROMs on the
TERMINAL LOGIC board. However since theclear
input of flip-flop U27A (pin 1) also receives the reset
signal it causes the output of U34B to go high. This
effectively moves a copy of the Imaginator's

E/P/ROM (U9A) at 2000H 3FFFH down to
OOOOH-l FFFH, while at the same time prevents a
MREQ (U28B) from being sent to the TERMINAL
LOGIC board The first instruction of the Im¬
aginator's E P HOM (U9A) is a JMP to 2003H. The
E P ROM program then accesses the R/W memory
at 6000H-7FFFH (pin 12 of U22) which presets U27
(pin 4) and the memory map configuration returns to
normal.

INTERRUPTS

The graphics command processor initializes the
microprocessor to accept both non-maskable inter¬
rupts (NMI) and software maskable vectored inter¬
rupts. The NMI originates on the TERMINAL
LOGIC board (pin 17 of U7). The software maskable
interrupt request is output from multiplexor U38B
pin 8. The multiplexor chooses between an interrupt
generated on the TERMINAL LOGIC board
(keyboard, asyncronous communications element or
break key) or a horizontal retrace interrupt generated
on the Imaginator U21A first inverts the interrupt
from the TERM I NAI LOGIC board to convert to
high true logic

The horizontal retrace interrupt pulse is generated
by U32A and U21C 10 24uS before the
microprocessor's time slot begins to allow for inter¬
rupt latency The horizontal retrace interrupt re¬
quest becomes active when both U32A pin 5 AND
U21C pin 6 are high (U38B pins 1 and 13). It is return¬
ed to an inactive state 5.12uS later when the inverted
(U21C) secondary address line A, goes low The
horizontal retrace interrupt is used to signal when
the microprocessor is permitted to access the
graphics display R/W RAM

The interrupt multiplexor (U38B) is controlled by the
outputs of U40B (pins 8 and 9). The microprocessor
can set the interrupt multiplexor (U38B) to pass an
interrupt generated on the TERMINAL LOGIC
board by performing an I/O write of port 00011000B.
Specifically this would happen with an active IORQ
(U21 B and U28A pin 2) AND an inactive Ml (U28A
pin 13) AND A4 high (U28A pin 1) while holding A3
high (U40B pin 1 2). Alternatively.it can set the inter¬
rupt multiplexor to pass the Imaginator generated
horizontal retrace interrupt by an I/O write to port
OOOIOOOOB (as before except A3 is low).

Once the microprocessor receives a software
maskable interrupt it will request an interrupt vector
to be placed on the data bus by making both IOQR
(U34D pin 1 2) and M 1 (U34D pin 1 3) active. The out-

55

put of U34D then enables the three-state buffers
U35D and U41C. D, of the vector is determined by
pin 9 of U40B with the other 7 bits permanently
assigned as zero. The graphics command processor’s
interrupt routine will then access the graphics
display memory located at 8000H to BFFFH caus¬
ing the output of U29B to go low presetting U40 (pin
10). The interrupt multiplexor (U38B) will then block
horizontal retrace interrupts and will pass only inter¬
rupts generated on the TERMINAL LOGIC board.

GRAPHICS REFRESH ADDRESS COUNTERS

Syncronous binary counters |U19,U26,U31,U25) are
cascaded to form the graphics display R/W RAM's
14 bit secondary address bus. These counters are
syncronized with the vertical and horizontal sync
pulses generated by the CRT controller on the TER¬
MINAL LOGIC board (J2/J3 pins 6 and 8, respec¬
tively). The output of the non-inverting buffer U4A
provides the clock signal used to syncronize these
counters.

Counter U20 is used to disable the cascaded address
counters from counting for a fixed number of clock
pulses past the receipt of the horizontal sync pulse
(U21E). This is done to center the graphics display on
the screen. Since a low on either enable P or enable T
disables the counter the cascaded address counters
are disabled until enable T (pin 10) of U19 goes high.
When U20 receives a horizontal sync pulse (pin 9) it
loads 0010 with the rising edge of the next clock pulse
(pin 2). 11then counts to 1111 at which time the ripple
carry out goes high. The ripple carry out is inverted
by U21D and input to the enable P pin on U20 (pin 7).
This disables further counting and holds the ripple
carry out high until the next horizontal sync pulse
(i.e., the next display line).

X COUNTERS

Counters U19 and U26 are cascaded to form the 6 ad¬
dress lines Ao-A5, that cover the range 0 to 63. Note
that these counters form addresses that are used to
access bytes of data, and that the horizontal width of
the graphics display is 512 pixels (i.e. 64 times 8).

Since the horizontal sync pulse loads counter U26
with 1100 a ripple carry out will be generated on pin
15 of U26 when U19 and U26 reach the count of 63.
This ripple carry out permits the cascaded counters
U31 and U25 to increment with the next positive
edge of the clock (pin 2).

Y COUNTERS

The next horizontal sync pulse restarts counter U20
and reloads counters UI9 and U26 with 11000000
but does not effect U31 or U25. The latter two
counters are loaded with 00000000 only when they
receive a vertical sync pulse (pins 9 on U31 and U25).
These counters count from 0 to 255 and logically
represent the vertical axis of the graphics display

DYNAMIC RAM ADDRESS MULTIPLEXORS

U 18, U24, U30 and U36 are 4 to 1 multiplexors used
to interface the graphics display's dynamic RAMs
(U10-U17) with the microprocessor’s address bus
and the graphics counter's secondary address bus.
These multiplexors have the dual task of selecting
between the microprocessor's and secondary address
buses and selecting between high and low order ad¬
dress bits on either bus. Select A (pins 14) are used to
specify which address bus is to be selected and select
B (pins 2) specifies the high or low order bits. The
microproce sor’s address bus is selected by U32B
(pin 9) only when the CRT's electron beam is outside
the graphics display region to prevent disturbing
displayed graphics data.

ROW ADDRESS STROBE (RAS) AND COLUMN
ADDRESS STROBE (CAS) LOGIC

The graphics display address counters and the
microprocessor are not syncronized together which
requires the high/low address line selection to be con¬
trolled independently of each other The multiplexor
(U38A) that selects between these independent con¬
trollers is itself controlled by an output (pin 8) of
U32B U40A U21F and U29D form the
microprocessor’s high/low address line controller
Address lines A„-A6 are selected until a positive edge
of the microprocessor clock (U40A pin 3) latches an
active read (RD) OR write (WR) (U29D) AND the
graphics display RAM at 8000H to BFFFH (U40A
pin 4) has been accessed. The microprocessor will ac¬
cess the graphics display RAM only after the states
on the address bus are stable. The output of U29B
will go low causing the output of U29C, the row ad¬
dress strobe (RAS), to go low The dynamic RAM’s
will latch addressesA0-A6 with the negative going
edge of the row address strobe (RAS). If the dynamic
RAM's are accessed (pin 4 of U40A), the positive go¬
ing edge of the microprocessor clock (pin 3 of U40A)
will latch an active read (RD) OR write (WR) (U29D)

56

resulting in a high output (pin 6 of U40A). This
causes the address multiplexor to select address lines
A7-A13. It also causes the output of U36 (pin 9) to
switch states. This signal is used as the column ad¬
dress strobe (CAS) after being delayed by the cascad¬
ed non-inverting buffers U35C and U35D. This delay
is present to insure that the address lines A7-A13 have
stabilized before the dynamic RAM’s read them.

U33 and U39 make up a sequential circuit that
generates the row address strobe and the address
selector signal for the address multiplexor The dot
clock (U4B) and the load clock (U4A) are used to syn-
cronize the generator with the graphics display
RAM’s secondary address bus counters and the shift
register (U2).

Series terminating resistors RI and R3-R11 are used
to prevent undershoot by matching the low level
source impedance with the line impedance.

DYNAMIC RAM ACCESS LOGIC

The dynamic RAM's are written to in 'early write’
mode which permits the input and the output of each
individual RAM to be connected without contentions
(the outputs are internally placed in a high im¬
pedance state.) The write signal is generated by U3C
when the graphics display RAM is selected (pin 9 of
U3C) AND when the microprocessor issues an active
write (WR) (pin 10 of U3C). The dynamic RAM’s data
lines form the secondary data bus and are connected
in parallel to the eight bit shift register (U2) and the
octal bus transceiver (U37).

DATA BUS TRANSCEIVER

The octal bus transceiver is used to isolate the
primary data bus from the secondary data bus. The
two buses remain isolated from one another unless
the microprocessor accesses the graphics display
RAM at 8000H-BFFFH (pin 19 of U37). The read
(RD) line from the microprocessor is used to deter¬
mine the direction of data flow through the tran¬
sceiver (pin 1 of U37).

GRAPHICS SHIFT REGISTER

The shift register (U2) loads these eight bits when the
load clock is active (pin 15 of U2) AND with the
positive going edge of the dot clock (pin 7 of U2). The
shift register shifts one bit out with each subsequent

positive going edge of the dot clock. Since the data
need only be stable on the secondary data bus when
the shift register loads, an extra stage of pipelining is
produced. The load clock and the dot clock are input
to both shift registers (pins 15 and 7, respectively, of
U1 and U2) before the non-inverting buffers U4A and
U4B to avoid the propagation delay through those
buffers.

ALPHANUMERIC SHIFT REGISTER

The 16 conductor ribbon cable carries the dot and
load clock as well as the eight data lines from the
character generator located on the TERMINAL
LOGIC board. These signals are input to the shift
register (UI) that was moved from the TERMINAL
LOGIC board to the Imaginator Unused lines 1, 6, 8,
9, and 16 of cable J1 are tied to the Imaginator’s sup¬
ply lines to prevent them from harmfully coupling
with the high frequency clock signals carried on the
ribbon cable.

DISPLAY ENABLE LOGIC

The output (pin 13) of shift register UI is forced low
when the clear input (pin 9 of UI) is brought low by
the output of U23B. The state of address line A, (pin
12 of U23B) is latched by flip flop U23B with the
positive going edge of IORQ (pin 2 of U28A) AND
NOT Ml (pin 13 of U28A) AND address line A4 (pin 1
of U28A AND address line A5 (pin 10 or U28C). The
output (pin 13) of shift register U2 is forced low when
either the output of LI23A is low (pin 2 of U29A) OR
the non-inverting output of U32B is low (pin 1 of
U29A). The state of address line A6 (pin 2 of U32A) is
latched by flip flop U23A in the same manner as
U23B.

The alphanumeric video output (pin 13) of U1 and the
graphics video output (pin 13) of U2 are ORed
together and then output to the TERMINAL
LOGIC board (U3B).

REPLACEMENT PARTS

INTEGRATED CIRCUITS VOLTAGE REGULATORS
CIRCUIT
NUMBER

INTERNAL
NUMBER

EXTERNAL
NUMBER

CIRCUIT INTERNAL
NUMBER NUMBER

EXTERNAL
NUMBER

U1 1550-0166 IC. 74LS166 VR1 1410-0100 ZENER DIODE,
U2 1550-0166 IC. 74LS166 1N751A
U3 1540-0032 IC. 74S32 VR3 1580-0100 REGULATOR, +5V
U4 1550-0367 IC. 74LS367 LM340K-5
U5 1550-0367 IC, 74LS367 VR2 1580-0110 REGULATOR, +12V
U6 1550-0367 IC, 74LS367 LM340T-12
U7 1530-0080 IC, CPU, Z-80
U8
U9A

1560-0310
1560-0116

IC, 68A10
IC, EPROM, CAPACITORS
UNPROGRAMMED * INTERNAL EXTERNAL

U10
U11

1560-0216
1560-0216

IC, 4116N-4
IC, 4116N-4 NUMBER NUMBER

U12 1560-0216 IC, 4116N-4 1300-0110 CAP, TANT 10uf1560-0216 IC, 4116N-4 1350-0110 CAP, CER, 0.1ufU14 1560-0216 IC, 4116N-4 1350-0821 CAP. CER, 820pfU15 1560-0216 IC, 4116N-4
U16 1560-0216 IC, 4116N-4
U17 1560-0216 IC, 4116N-4
U18 1550-0153 IC, 74LS153
U19 1550-0163 IC, 74LS163A
U20 1550-0163 IC, 74LS163A
U21 1550-0004 IC, 74LS04
U22 1550-0138 IC, 74LS138
U23 1550-0074 IC, 74LS74 RESISTORS
U24 1550-0153 IC, 74LS153 INTERNAL EXTERNAL
U25 1550-0163 IC. 74LS163A
U26 1550-0163

1550-0074
IC, 74LS163A
IC, 74LS74

NUMBER NUMBER
U27

1200-4330U28 1550-0011 IC, 74LS11 1/4W, 5%. 33 OHM
U29 1550-0008 IC, 74LS08 1200-2471 1/2W, 5%,470 OHM
U30 1550-0153 IC, 74LS163A
U31 1550-0163 IC, 74LS163A IC SOCKETS
U32 1550-0074 IC, 74LS74
U33 1550-0163 IC, 74LS163A INTERNAL EXTERNAL
U34 1550-0032 IC, 74LS32 NUMBER NUMBER
U35 1550-0367 IC, 74LS367
U36 1550-0153 IC, 74LS153 1100-0040 SOCKET IC, 40 PIN
U37 1550-0245 IC, 74LS245 1100-0028 SOCKET, IC, 28 PIN
U38 1550-0051 IC, 74LS51 1100-0024 SOCKET IC, 24 PIN
U39 1550-0074 IC, 74LS74 1100-0020 SOCKET IC, 20 PIN
U40 1550-0074 IC, 74LS74 1100-0016 SOCKET IC, 16 PIN
U41 1550-0367 IC, 74LS367 1100-0014 SOCKET IC, 14 PIN

57

58

POWER HARNESS HARDWARE MISCELLANEOUS
INTERNAL EXTERNAL INTERNAL EXTERNAL
NUMBER NUMBER NUMBER NUMBER

1110-0111 11-HOLE CONN. SHELL 0500-0000 CIRCUIT BOARD
1110-0211 11 PIN POLARIZING WAFER 0100-0000 ASSY MANUAL
1115-0000 CRIMP TERMINAL 0100-0001 USER MANUAL

0110-0000 3-RING BINDER

HEAT SINKS
H/Z-89 MODELS ONLY

INTERNAL EXTERNAL
NUMBER NUMBER INTERNAL EXTERNAL

NUMBER NUMBER
1700-0010 HEAT SINK. LARGE
1700-0020 HEATSINK, SMALL 1110-0103 3-PIN CONN. SHELL

1110-0203 3-PIN POLARIZING WAFER
HARDWARE 1710-0010 REAR BRACKET

INTERNAL EXTERNAL 1710-0011 FRONT BRACKET

NUMBER NUMBER 1710-0012 TO-3 BRACKET
1120-0000 TO-3 SOCKET

1806-0500 6-32 X 1/2 SCREW 1850-0025 NYLON SPACER
1806-0375 6-32 X 3/8 SCREW 1190-0003 40-COND. RIBBON ASSY
1810-0632 6-32 NUT

16-COND. RIBBON ASSY1820-0600 #6 LOCKWASHER 1190-0004

1700-0000 CARD GUIDE

RIBBON CABLES
INTERNAL

When ordering replacement parts be certain to
EXTERNAL specify the Internal Part Number

NUMBER NUMBER

1190-0001 40-COND. RIBBON ASSY Please mark all correspondence Attn: Parts Replace-
1190-0002 16-COND. RIBBON ASSY ment.

HOOKUP WIRE * For replacement of programmed EPROMs give us
INTERNAL EXTERNAL the part number and revision number that are im-
NUMBER NUMBER printed on the EPROM label.

1690-1801 WIRE #18 AWG, WHT
1690-1802 WIRE #18 AWG, BLACK
1690-1803 WIRE #18 AWG. RED
1690-1804 WIRE #18 AWG, GRN
1690-1805 WIRE #18 AWG, YEL
1690-1806 WIRE #18 AWG, BLU
1690-1808 WIRE #18 AWG, ORG
1690-1810 WIRE #18 AWG, VIO

REFERENCES

The following list of references is suggested for those who wish to explore the subject of
computer graphics in greater detail. The first three references listed contain extensive
bibliographies. Though the first two books listed have the same title,they are quite dif¬
ferent in content.

William M. Newman, Robert F Sproull. Principles of Interactive Computer Graphics.
McGraw Hill Book Company, 1973.
William M. Newman, Robert F Sproull. Principles of Interactive Computer Graphics.
Second Edition. McGraw Hill Book Company, 1979.
Sylvan H. Chasen. Geometric Principles and Procedures for Computer Graphic Applica¬
tions. Prentice-Hall, Inc., 1978.
Conrac Division, Conrac Corporation. Raster Graphics Handbook. Conrac Division,
1980.
Chris Rorres, Howard Anton. Applications of Linear Algebra. Second Edition. John
Wiley and Sons, 1979. (This book has one chapter devoted to computer graphics.)

59

60

7 his page intentionally lett blank.

MODIFICATIONS

The Imaginator may be easily reconfigured to permit the user to modify and enhance its
present capabilities. Up to 16K of E/P/ROM can be accommodated by simply restrapp¬
ing El through El3.
Alternatively, 8K of E/P/ROM and 8K of R/W RAM can be configured. This arrange¬
ment along with some of the special GCP commands permit the downloading of custom
programs from the host computer into the graphics terminal. Fast custom character
generators is a typical application.

NOTE: The information contained in this manual is not detailed enough to permit the
user to take advantage of these enhancements. An additional manual, Imaginator
Source Code and Manual, is required. However, the required strapping information is
included below. A detailed pictorial description is included with memory expansion ac¬
cessories.

MEMORY DEVICE SOCKET U9A SOCKET U9B

E/P/ROM
2716 E12-E13 E5-E7 E14-E15
2732 E12-E11 E5-E6, E14-E15
2764 E12-E11 E2-E1, E5-E6, E14-E15

STATIC R/W RAM
4118 NA E5-E4
4802 NA E5-E4

PSEUDO STATIC R/W RAM
4816 NA E2-E3, E9-E8

Only the indicated pads should bestrapped. Unmentioned pads should have noconnection.
Non-volatile memory is mandatory in socket U9A, therefore thestrappingfor the R/W RAM
is not applicable (NA).

61

62

This page intentionally left blank.

APPENDIX

Alphanumerics Mode Graphics Mode
Decimal

Code
Hex
Code

Octal
Code

Binary
Code Character

Control
Keys ASCII Mode Binary Mode Operand

0 00 000 00000000 NUL @ Unused Unused
1 01 001 00000001 SOH A Delimiters
2 02 002 00000010 STX B
3 03 003 00000011 ETX C No Operation
4 04 004 00000100 EOT D
5 05 005 00000101 ENQ E
6 06 006 00000110 ACK F
7 07 007 00000111 BEL G
8 08 010 00001000 BS H
9 09 Oil 00001001 HT I

10 0A 012 00001010 LF J
11 0B 013 00001011 VT K No Operation
12 OC 014 00001100 FF L
13 0D 015 00001101 CR M
14 0E 016 00001110 SO N
15 OF 017 00001111 SI O
16 10 020 00010000 DLE P
17 11 021 00010001 DC1 Q
18 12 022 00010010 DC2 R
19 13 023 00010011 DC3 S BringlnProgram
20 14 024 00010100 DC4 T
21 15 025 00010101 NAK U
22 16 026 00010110 SYN V
23 17 027 00010111 ETB W
24 18 030 00011000 CAN X
25 19 031 00011001 EM Y
26 1A 032 00011010 SUB Z
27 IB 033 00011011 ESC [
28 IC 034 00011100 FS \
29 ID 035 00011101 GS
30 IE 036 00011110 RS A
31 IF 037 00011111 US
32 20 040 00100000 SP
33 21 041 00100001 1

34 22 042 00100010 i * Delimiters

63

64

Alphanumerics Mode Graphics Mode
Decimal

Code
Hex Octal Binary Control
Code Code Code Character Keys ASCII Mode Binary Mode Operand

35 23 043 00100011 Delimiters
36 24 044 00100100 $ DisplayToggle
37 25 045 00100101 %
38 26 046 00100110 &
39 27 047 00100111
40 28 050 00101000 (
41 29 051 00101001 1
42 2A 052 00101010 *
43 2B 053 00101011 + ExitGraphicsMode
44 2C 054 00101100 1

45 2D 055 00101101
46 2E 056 00101110
47 2F 057 00101111 / Delimiters
48 30 060 00110000 0 Data
49 31 061 00110001 1
50 32 062 00110010 2
51 33 063 00110011 3 PointAt
52 34 064 00110100 4
53 35 065 00110101 5
54 36 066 00110110 6
55 37 067 00110111 7
56 38 070 00111000 8
57 39 071 00111001 9 Data
58 3A 072 00111010 Delimiters
59 3B 073 00111011 J

60 3C 074 00111100 <
61 3D 075 00111101 =
62 3E 076 00111110 >
63 3F 077 00111111 ?

64 40 100 01000000 @ Delimiters
65 41 101 01000001 A AreaTo
66 42 102 01000010 B BringlnProgram
67 43 103 01000011 C
68 44 104 01000100 D DisplayToggle
69 45 105 01000101 E ExitGraphicsMode
70 46 106 01000110 F
71 47 107 01000111 G
72 48 110 01001000 H
73 49 111 01001001 I LineType
74 4A 121 01001010 J JumpToProgram
75 4B 113 01001011 K LineType
76 4C 114 01001100 L LineTo
77 4D 115 01001101 M MoveTo
78 4E 116 01001110 N PriLineStyle
79 4F 117 01001111 O SecLineStyle
80 50 120 01010000 P PointAt
81 51 121 01010001 Q Delimiters
82 52 122 01010010 R
83 53 123 01010011 S JumpToProgram
84 54 124 01010100 T Delimiters

65

Alphanumerics Mode Graphics Mode
Decimal Hex Octal Binary Control

Code Code Code Code Character Keys ASCII Mode Binary Mode Operand

85 55 125 01010101 U Delimiters
86 56 126 01010110 V
87 57 127 01010111 W
88 58 130 01011000 X
89 59 131 01011001 Y
90 5A 132 01011010 Z
91 5B 133 01011011 [
92 5C 134 01011100 \
93 5D 135 01011101]
94 5E 136 01011110 A
95 5F 137 01011111 _
96 60 140 01100000
97 61 141 01100001 a
98 62 142 01100010 b
99 63 143 01100011 c

100 64 144 01100100 d
101 65 145 01100101 e
102 66 146 01100110 f
103 67 147 01100111 g
104 68 150 01101000 h
105 69 151 01101001 i
106 6A 152 01101010 j
107 6B 153 01101011 k
108 6C 154 01101100 1
109 6D 155 01101101 m
110 6E 156 01101110 n
111 6F 157 01101111 o
112 70 160 01110000 p
113 71 161 01110001 q
114 72 162 01110010 r
115 73 163 01110011 s
116 74 164 01110100 t
117 75 165 01110101 u
118 76 166 01110110 v
119 77 167 01110111 w
120 78 170 01111000 x
121 79 171 01111001 y
122 7A 172 01111010 z
123 7B 173 01111011 {
124 7C 174 01111100 |
125 7D 175 01111101 }
126 7E 176 01111110
127 7F 177 01111111 DEL Delimiters

AreaTo

LineTo

MoveTo

PriLineStyle

SecLineStyle

66

This page intentionally left blank.

WE WOULD LIKE YOUR COMMENTS ON THIS MANUAL

Did you find any errors in this manual? Where?

Was it complete? Should some areas be covered in greater detail?

Was it the right level? Too simple? Too difficult?

Was it clearly written?

Please rate this document with respect to similar ones.

CLEVELAND CODONICS, INC.
P.O. Box 45259
Cleveland, Ohio 44145

YOUR 90-DAY LIMITED WARRANTY
Cleveland Codonics, Inc. warrants that during the first ninety (90) days after purchase, this
product, when correctly assembled and used in accordance with our printed instructions,
will meet published specifications.
For a period of ninety (90) days after purchase, Cleveland Codonics, Inc. will repair or replace
(at our option) free of charge (excluding freight) any parts or assemblies that are defective in
either materials or workmanship. This warranty covers only Cleveland Codonics, Inc. pro¬
ducts. It does not include equipment used in conjunction with this product. We are not
responsible for incidental or consequental damages, nor are we responsible for loss of
business or profits.
EXCEPT FORTHE EXPRESS WARRANTIES CONTAINED HEREIN, CLEVELAND
CODONICS, INC. DISCLAIMS ALL WARRANTIES ON THE PRODUCTS FURNISH¬
ED HEREUNDER, INCLUDING ANY AND ALL IMPLIED WARRANTIES FOR
MERCHANTABILITY AND FITNESS. No agent, representative, dealer or employee of
the company has the authority to increase or alter the obligations of this warranty. This war¬
ranty gives you specific legal rights and you may also have other rights which vary from
state to state.
This warranty does not cover damage resulting from misuse, abuse, incorrect assembly, or
unauthorized modifications.

	INTRODUCTION
	HOST COMMUNICATIONS REQUIREMENTS
	WELCOME
	GENERAL
	COMMAND FORM AND FUNCTION - ASCII
	COMMAND FORM AND FUNCTION - BINARY
	EXAMPLES
	THEORY OF OPERATION
	REFERENCES
	MODIFICATIONS
	APPENDIX
	WARRANTY

