
Issue #20/21 ™E STAUNCH 8/89 er Sep-Dec 1990

THE ADDRESS BUS

PORT TO PORTAL.. Below
THE 8-BIT R/W..1, 3
SOFTWARE LIST.. 2
A Pro. Method for Program Testing, Pt. 2......... 7

by Kirk L. Thompson
This *n* That..10

by Hank Lotz
VENDOR. UPDATE.. 11
Pete on CP/M.. 15

by Peter Shkabara
C/80, Longjumps, and Control Character Inter

rupts in HDOS..16
by Gary Appel

A Substitute for READ/OATA in CP/M MBASIC...20
by Hank Lotz

CONTACTS.. 22
Commercial ads:

TMSI (c/o Lee Hart)..12

PORT TO PORTAL — Editorial

My apologies for the protracted delay in getting
this "expanded" and final issue of the year to you.
As I inferred on that postcard mailed well over a
month back, the last half of the year has been
rather distracting! Anyway, here I am and I have
some "heavy" stuff to discuss.

Fi'-st, it’s renewal time again! Check the issue
number printed above your name and address on the
manila envelope that this issue came in. That's the
last issue you've paid for. If It's identical with
this issue number (a combined #'s 20 and 21), then
you must mail me a check for the '91 calendar year.
(You can make your check out either to me or to The
Staunch 8/89*er.) Rates are the same as for the
'90 calendar year: $12 in the U.S. and Canada, $16
overseas. I'll even take renewals for more than one
year; as examples, some of you have re-upped through
*93! I thank you for your confidence!

Also important is the present state of my
"article" reserves. They're getting low! Besides the
"regulars" (Hank Lotz, Peter Shkabara, Dan Jerome,
and myself), I have some HDOS-orlented reprints from
REMark and a few remaining articles that some of
you have submitted. After those, however, I have
nothing to run! 1 expect to run out of what I have
about mid-year!

Believe it or not, YOU are my most important
source of information about the H-8 and H/Z-89/90.
So if you've been working on an interesting project
recently, I'd like to hear from you. Of course, I'll
take articles of any length. But if yours exceeds
1,000 words. I'll pay you at least $50 for it.
That's better than any similarly-sized rag! If you
feel uncomfortable with your writing style or
spelling, I'll happily clean up your submission. So
when you send your renewal check, you might also ask
for an author's guide.

And speaking of articles, you'll see some
interesting ones in '91. The first issue of the new

year will have its customary hardware emphasis with
Lee Hart's perusal of how to add automatic key
repeat circuitry to the terminal logic board (TLB)
of an H/Z-19 or '89/90. I've also noticed from your
correspondence that repair is a area where some of
you are having difficulties. With all due respect to
Heath and Its continuing repair service of our
equipment, there are still some things you can do
yourself at less cost. In the spring, I'll begin a
series on hardware repair for the '19 and/or *89/90.
There's a lot you can perform yourself using just
some spare parts, replacement boards, and a minimal
number of instruments. At minimum, when the series
is complete, you'll be able to narrow the hardware
problem to a specific board or area. I'd also like
to see similar contributions for the H-8.

And although software listings have been a bit
lean of late, I expect to have major contributions
to announce next year. I have feelers out for some
specific Items and other packages have arrived
recently which only await final preparation and
packaging. So keep your eyes peeled for future
software. Further, past software announcements have
finally made it onto a pair of catalog disks. My
thanks to Ralph Money, who volunteered his spare
time to assemble the material from past issues. See
the Software Listing overleaf!

Finally, I have to express my "undying" thanks
to this rag's creator and first editor, Hank Lotz.
When he heard I was pulling together a "double
issue," he made some quick enhancements to the
custom utility he wrote for me to columnize and
print Staunch from a MAGIC WANO/PEACHTEXT output
file. And I used it to produce this issue (with, of
course, the usual minor paste-up).

Kirk L. Thompson

THE EIGHT-BIT R/V — Letters

Potpourri from Lee Hart (Continued). [From two
letters begun In #19.] "HIDDEN DISK SPACE. Did you
know Heath CP/M doesn't use all the sectors on a
disk? Depending on the disk format, there is at
least 1.25K of extra storage that is untouched by
CP/M.

"Take the H17 hard-sector format for example.
There are 40 tracks, each with ten 256-byte sectors.
256 x 10 - 2560 bytes • 2.5K per track. 40 x 2.5K is
100K total storage.

“So why can you only store 90K? First, CP/M
reserves 3 boot tracks to hold the boot loader,
BDOS, and CCP. These are hidden files installed by
SYSGEN that don't appear in the directory. That
leaves 37 tracks, or 37 x 2.5K - 92.5K. The CP/M
directory takes 2K of this (64 entries of 32 bytes
each), so 90K is actually available for your files.

"What happened to the extra .5K? It got ignored
because CP/M can't handle blocks smaller than IK!
This means that the last two sectors on the last
track (512K, or four CP/M 128-byte [logical]
sectors) are available for special uses.

(Continued after the Software Listing on p.-3)

Page 2 THE STAUNCH 8/89'er Issue #20/21

SOFTWARE LISTING
>—...............-.. .

General Software Catalog

I'm very pleased to announce a catalog disk of
Staunch software. This was initially prepared for
me by reader Ralph Money of Largo, FL. Of course,
it's available on either hard- or soft-sector,
5-1/4-inch. The catalog files are for both HDOS and
CP/M and are squeezed to conserve disk space. An
unsqueezer is provided to recover the information.
This requires one (1) disk in any format. I expect
to keep the catalog current as additions are made to
Staunch's library.

For CP/M Only

MUSIC EMULATOR
By Manfred Deffner

This is a music composition package written
specifically for the H-8. It should also run on a
suitably-equipped H/Z-89/90. It includes a music
compiler; wave, Fourier, and spectrum editors; a
Fourier analyzer; programs for wave revision, pitch
generation on either the tempered or natural tone
scales, a pitch and tuning activator; and a program
to play your compositions. Tempo may be set within
the play program. Included with the package are
sample music files and a 15-minute audio cassette of
compositions by J.S. Bach, John Williams, and Susato
prepared with similar software by Manfred Deffner on
a PC-clone. This package requires an analog-to-
digital (A/D) board to reproduce the music through a
speaker. It occupies 276K.

ANAPRO's Soft-Sector Formatting Utility
By Peter Shkabara

This is the formatting package Pete mentions in
VENDOR.UPDATE. It's only for the H-37 controller
and permits the following format combinations,
either from the menu or command-line: 40-track
(48-tp1) - SSDD, SSXD, DSDD, DSXD; 80-track (96-tpi)
- DSXD; Z-100 CP/M. Be sure to read the
documentation that comes with it before use for
specifics on command-line use. It comes with NULU to
recover the files from the .LBR file and occupies a
mere 15K.

Family Ties (FTU7)
By Computer Services, Provo, UT

This is the genealogy package Roger Dupuis briefly
mentions in his letter in issue #16. Of the
currently-available programs for CP/M, this is
apparently the best of the lot. User documentation
only comes when you register the package ($50.00)
with the developer. What documentation (.INS)
accompanies the distribution package is only enough
for installation purposes (and I've had to clean it
up some!). But registration gives you access to a
genealogy BBS. An on-disk registration form, ready
for printing, is included. This package occupies
130K.

MINIZAP and DENUM
By Hank Lotz

The first item is a disk file dump program, written
in compiled BASIC. It 1s intended for the user who
has no other such utility or doesn't want to make
the time to learn the other more complicated
programs available. Its limitations are that: it can
only access existing files (by name), altering
(patching) a file is done only one byte at a time,
and to patch you must give row and column of the
byte you wish to change. You may not move the cursor
with the keypad as you can do with more
sophisticated software. However, it does tell you
the length (in 128-byte logical sectors) of a file
and the location on disk of the sector being viewed
or patched. A menu lets you move randomly or
sequentially through the file. And you must confirm
a patch before it's written to disk. Your input is
error-trapped to prevent a premature abort of the
program. BASIC source code is included.

The second item is a utility intended to strip
unneeded line numbers from a Microsoft BASIC-80
source file when moving it to another BASIC (such as
BASIC-E or CBASIC) that doesn't require line numbers
except when needed for GOTOs and GOSUBS. Both
interpreted and compiled versions are included. The
BASIC source file must have been saved in ASCII.
Besides the source, an input file (named TARGFTS) 1s
needed to supply those line numbers which are
required by GOTOs and GOSUBs. You should use a
cross-reference utility (such as that on HUG's
#885-1231; CRG.BAS in RENark, June '85, p. 24; or
B-XREF, first listed in Staunch #9—see further
below) to determine these. The line numbers stripped
may range from 0 through 65529. A help screen is
embedded in the program. BASIC-80 source for both
the interpreted and compiled version is included.

This entire package occupies 71K.

Updates to Prior Releases

HDOS 3.02 Now with Printed Manual

The printed manual for HOOS 3.02 is now available.
Indeed, the first run is already sold out! I expect
to make a second print run in mid- to late-January.
The manual runs to 1,100 pages, comes in a 3-inch
0-ring binder with chapter separators and preprinted
index tabs, and includes system software and
utilities. Because of the higher than expected print
costs, I've had to raise the price for the package
to $75 (including U.P.S. shipping to the contiguous
48 states; HI, AK, and Canada please add $6 for air
parcel; overseas please add $8 for surface mail or
$30 for air parcel; write me about other shipping
arrangements). Payment should be in U.S. funds. If
you desire both printed and on-disk manuals (as
described in Staunch #18), add $30. Be sure you
indicate the media you require: standard
hard-sector, soft-sector (the system is suppled on
single-sided only, the on-disk manual may be on
double-sided if your system supports it), or
eight-inch. The system, as supplied, does not
support Magnolia Microsystems' soft-sector control
ler, but Quikdata's 0KFMDV4.0VD can replace the
standard soft-sector driver if necessary; see issue
#18, p. 12, and VENDOR.UPDATE in this issue. If you

Sep-Dec 1990 THE STAUNCH 8/89'er Page 3

need assistance setting up Quikdata's driver, let me
know.

B-XREF for Both HDOS and CP/M

Originally listed in issue #9, both versions of this
cross-reference utility by David Powers come as
stand-alone (.ABS or .COM) programs. BASIC is not
required to run them. I also still have a small
supply of the hardcopy documentation for this
package.

Placing an Order

With the exception of HOOS 3.02, your cost for this
software depends on what you supply:

Formatted disk(s) and self-addressed, stamped return
mailer ...

Formatted disk(s) without mailer
No disk(s) or mailer

$2.00 per disk
$4.00 per disk
$6.00 per disk

Disk formats available are standard (SS/SD) or
double-sided (DS/SO) hard-sector and single- or
double-sided soft-sector for both HDOS and CP/M.
All disks are 40-track (48 tpi) only. Please
clearly indicate the format you are supplying or
require. If you desire DS hard- or any soft-sector
format, I will pack multiple items onto one disk. If
you request it and there's space, I'll also pack the
ANAFORM package on standard hard-sector. If your
system only supports 80-track drives, I'll format
your disks at 40-track for you before the software
is transferred. I will not subdivide a disk. Send
mailorders to:

Kirk L Thompson / The Staunch 8/89'er / P.O. Box
548 / West Branch, IA 52358

THE EIGHT-BIT R/M (Continued from p. 1)
"The boot tracks have extra sectors, too. The BOOS
1s 3.5K, the CCP is 2K, and the boot loader Is
1.25K. That totals to 6.75K of 7.5K available,
leaving the last three 256-byte sectors on the third
track unused.
"You can't access these extra sectors with BOOS
calls because CP/M pretends they don't exist. But
you can access them with BIOS calls (select disk,
set track, set sector, read sector, write sector).
You can prove to yourself they exist with DU, ZDUMP,
or any other program that accesses the disk without
using the BDOS. Note that DU calls the first sector
1; ZDUMP [and many other dump utilities] call the
same sector 0.
"Double- and extended-density H37 disks have .875K
free in the boot tracks; seven 128-byte [logical]
sectors in track 1, sectors 21-27 for
double-density, sectors 13-19 for extended-density.
“I don't know if anyone has put this space to use.
One use would be for disk labels, an HDOS and MSDOS
feature that CP/M lacks. Since almost IK is
available, there is enough room for elaborate
sign-on screens like the Macintosh uses. Another
would be to put some or all of the BIOS.SYS file
[there] (which would have been in the boot tracks
anyway if it had fit).
"Another hint. There is no reason not to use SYSGEN

to make all your CP/M disks bootable. The boot
tracks just go to waste if you don't, and this way
you can put any disk in A:. BIOS.SYS is only
necessary on the disk you cold boot from the H:
prompt; warm boots and control-C don't need it. As
long as you don't mix up different versions or sizes
of CP/M, you can change the disk in A: freely
(remember to type a control-C after changing any
disk in CP/M)...

"H89 MEMORY EXPANSION. Did you know a stock H89
actually supports over 100K of banked memory? You
can install three 16K RAM expansion boards
simultaneously, for a total of 96K dynamic RAM, 2K
static RAM, and 6K of ROM. The address decoder PROMs
provide 8 different memory maps to allow the RAM to
be switched in 8K banks. Too bad Heath never used
this capability or even documented 1t. [Apple did a
lot with RAM bank switching to keep its aging Apple
II series alive. -Ed.]

Disk Packing Schemes. [Another extended
discussion by Lee Hart from a letter following up my
query in #19, p. 4.] "...Have you ever received a
disk with dozens of files with bizzare names, and no
hint of what they do, or how to use them?

"The CP/M User's group uses a method that's
crude, but effective. They include a catalog number
(a zero-byte file named something like
-CATALOG. 123), a READ.ME file that describes the
files on the disk, and a checksum file CRCKLIST.CRC
that has a checksum for each file so you can be sure
you've gotten them error-free). If any files are
packed, the unpacking program and Instructions for
its use are included...

Archived files are common in the PC-DOS world.
But they use a scheme that makes it easy for the
novice user. The disk has just one big .COM (or
• EXE) file. When you run this program, it unpacks
all the rest of the files.

"Here's a challenge for your readers: How can
you do this in CP/M or HDOS? I'll donate a copy of
Write-Hand-Man to the reader who submits the best
solution. Judgement criteria:

*1. How GENERIC is it? Will it work on ANY H8 or
H/Z89? Any number and type of disks (including
single-drive systems)? Any amount of RAM (32K to
64K) ? Any version of CP/M (2.202/3/4, Magnolia,
CDR, Z-system) or HDOS 1/2/3)?

"2. How much USER INTERACTION is needed? Does he
just type the program name, and watch everything
happen automatically? Or must he configure the
unpacking program, put up with excessive disk
swapping, etc. How knowledgeable must the user
be?

"3. How EFFICIENT is it? If the method 1s
excessively slow or wasteful of disk space,
nobody will use it.

"As an example to get you thinking, suppose a
distribution disk has the following files:

READ.ME A text file to describe what is on the
disk, and how to use it. It should be pure
ASCII so it can be displayed, edited, or
printed without difficulty (no TABs,
characters with the msb«l, lines longer
than 80 characters, etc.).

Page 4. THE STAUNCH 8/89'er Issue #20/21

HDIR.CZM The directory listing programs and their
HDIR.DZC documentation, in squeezed form.
XDIR.CZM
XDIR.CZM
UNCR.COM A public-domain program to uncrunch files

back to usable form.
H17.SUB A SUBMIT file to make 1st hard-sector

copy.
H17-2.SUB A companion to above, for 2nd hard-sector

copy.
H37.SUB same, for soft-sector copies.

"The READ.ME file contains the following:

Disk #123 - CP/M Disk Directory Programs

"This disk contains programs to list a directory of
files on a disk. Unlike CP/M's built-in DIR command,
these programs can 11st files alphabetically, show
file sizes, space remaining on the disk, and other
features.

"The programs have been crunched to save disk
space (as indicated by the ’Z' in their file names).
They must be uncrunched before use, and transferred
to a working disk. This will require extra disks as
indicated below. To do this:

1. Boot a CP/M disk that has the PIP, FORMAT, and
SUBMIT programs.

2. Put the distribution disk in your B: drive.
3a. To uncrunch the files, and save them on H17

hard-sector disks, have two formatted H17 disks
ready. Then type:

SUBMIT B:H17 B: C: (assuming B: is your source disk,
and C: is your destination disk).

3b. To uncrunch the files, and save them on H37
soft-sector disks, have one formatted H37 disk
ready. Then type:

SUBMIT B:H37 B: C: (assuming B: is your source disk,
and C: is your destination disk).

"The .SUB files do all the work. The H37.SUB file is
easy, because (I assumed) it all fits on one disk.
The H17 version is more interesting, because I
assumed the destination takes two disks. For
example, H17.SUB contains:

; H17-SUB — This SUBMIT file will automatically
; uncrunch the files from the designated distri-
; bution disk, save them on the first designated
; destination disk, then continue to the next.

; *** PUT 1ST H17 DISK IN DESTINATION DRIVE ***
; *** AND HIT RETURN ***
pip
$l:uncrunch $l:hdir.* $2
submit hl7-2

"The line containing only "pip” is used to make the
system pause while the user puts the first disk in
the destination drive. Operation resumes when he
hits the RETURN key, because it exits PIP and
continues with the SUBMIT file.

"The 'uncrunch’ command unpacks the first group
of files; I'll assume here that they fill the first

H17 disk. The last line ends the current SUBMIT
file, and starts the next one, H17-2.SUB, which
makes the second H17 disk:

; H17-2.SUB — This SUBMIT file will automatically
; uncrunch the files from the designated distri-
; bution disk, and save them on the second desig-
; nated destination disk.

; *** PUT 2nd H17 DISK IN DESTINATION DRIVE ***
; *** AND HIT RETURN ***
pip
$l:uncrunch $l:xdir.* $2

"When this SUBMIT file ends, you will have two H17
disks with the unpacked versions of the distribution
disk. It’s rather slow, especially if you don't have
3 drives (it will use ’phantom' drives, which
involve a lot of 'put disk C in drive A' disk
swapping). Can you do better?" [Readers, let’s hear
about alternative approaches. Lee has laid down his
gauntlet! -Ed.]

SaaaritaWare. [From Stephen H. Kaiser, Cambridge,
MA, concluded from #19] "Here are some thoughts on
the issue of putting CP/M in the Public Domain. I
haven't seen so much legal boloney flying around
since the lawyers prevailed over a decade ago on
software publishers to place those intimidating
legal notices on software, saying in effect, You-
Don't-Own-Anything-We-Don'tPromise-You-Anything-And-
If-You-Think-Otherwise-Have-We-Got-A-Gulag-For-You.
The real question is, how do we get the G@#DD	N
lawyers to crawl back under a rock and never be
heard from again? (At least on 8-bit software!)

"So let's review what we have:

1. Traditional up-front licenseware (typical commer
cial software)

2. Shareware (use first, pay later and get updates,
manuals, help)

3. Freeware (pay nothing and get no updates, manu
als or help)

*'...........to which I would like to add category #4:

4. SamaritanWare which means help without
obligation, but you can say thanks if you want.
With 8-bit programs, the original manufacturer
(still the 'owner') could make a gift to the
public domain, provided that there was no
obligation or liability attached to any use of
the software. Anyone satisfied or appreciative of
this effort could send a contribution of any
amount to the original manufacturer or a
designated charity.

"Any disk or program so released to the public
domain would be required to at all times carry a
READ.ME text file describing the conditions of the
release and the address for any contributions. There
would be no obligation to provide updates, manuals
or technical assistance.

"The disks could be released to the various
8-bit enthusiast groups and distributed from there.
We would have a situation where there would be 3
types of disks in circulation. Original purchased
software would still technically be owned by the
company and licensed to the user. There would be

UNCR.COM

Sep-Dec 1990 THE STAUNCH 8/89'er Page 5.

pirated copies and finally there would be user-owned
SamaritanWare. The software manufacturers would be
covered legally, would maintain good relations with
user groups and would reap the benefits of
contributions at minimal investment. The sounds like
a win-win situation for everyone. (P.S. I know the
Good Samaritan analogy is not perfect. The Biblical
case involved an open-ended offer of help and no
request for contributions, but)“

COBOL Tutorials and Resources. [In late July, I
ordered the COBOL compiler/educational course from
Lenny Geisler, editor of SEBHC Journal, that was
listed in issue #18 (p. 8). After receiving it and
working my way through part of the latter, I wrote
to Lenny:] "Thanks for shipping the COBOL compiler
and continuing-ed. package promptly. I've begun
digging my way through the latter and found it
somewhat disappointing. However, it appears to be
the first home-study course on computer programming
that Heath put together, dating as it does to 1977!
COBOL has a lot of features not covered in the
course and [the latter] also has a distinct
mainframe flavor, probably to be expected given Its
age. But the course should still provide the
fundamentals, although one topic definitely missing
is how to key data into a program from the keyboard.

"Once I finish it, I plan to move on to H.W.
Bauman's 17-part tutorial in REMark magazine
(running between Oct., '83, and Apr., ’86). This
series has the advantage of dealing directly with
the Microsoft compiler you provide and should supply
a lot of 'hands-on* experience in the language and
compiler/1 inker usage. Unfortunately, It too doesn’t
appear to cover data entry, although it does a lot
with reading and writing data files (COBOL's strong
points). So I plan to hunt for a suitable book. Once
I locate one. I'll pass along the reference.

"Finally, when I set up the compiler and linker
and used them for the first time last night, I
stumbled across a quirk your readers should know
about. The package includes a CRT driver for the
*19/89 terminal (CDWH19.REL) and this should be
copied to the disk containing the linker (L80) and
runtime library (COBLIB.REL) as CRTDRV.REL. The
driver will be automatically linked into programs.
Further, one of the demos programs provided with the
COBOL package is CRTEST, for checking out the
terminal. The keys expected by the latter are not
the 'conventional' ones (on the keypad) we've come
to expect for on-screen editing! CRTEST simply beeps
at you when you press the keypad keys, whether
shifted or unshifted. The table of expected keys is
near the beginning of the assembly language file,
CDWH19.MAC, in the section titled 'Keyboard Code
Definitions.' New users should print this table for
their reference. Of course, the driver could be
modified to bring up the keypad.

"Again, thanks for offering and shipping the
COBOL package. I'm sure knowledge of this language
will assist me at work. And I suspect COBOL
programmers will continue to be in demand as long as
IBM continues to manufacture mainframe computers!"
[For new users of the COBOL compiler, I should add
further items I've discovered about this compiler.
First, be careful of the text editor you use when
preparing source code. The compiler gags on
embedded tab characters (ASCII 9) and garbage is

sent to the screen or printer, whichever you've set
to receive the line listing during compile. The fix
is to use an editor that does not conserve disk
space by including tabs in a file.

[MAGIC WAND'S EDIT can be set to do this by
keying "MBN" at the command screen prompt. You can
also set tab positions to COBOL's (or your own)
preferences.

[If you use Software Toolworks' PIE, you will
have to change one byte in the program with a disk
dump utility. Check the program's manual and
distribution disk file, PATCHES.DOC, for details and
patching location for the version you're running.
PIE is probably the least convenient editor to use
because you can't change tabbing from the system
default of every eight. However, you could code
against the left margin of the page, then use a
macro to open up spaces where the compiler normally
expects the optional line numbers to be.

[Another editor, Newline's TXTPRO, has a TABS
function under the MODE (f2) key. Set the TABS to
display as reverse-video I's so you can see them if
you embed any. If you don't plan to use line
numbering (not really required) 1n your source code,
you can also set TXTPRO's left margin to column 7
permanently with the MODE and CONFIG keys. Further
tabbing is at the system’s default eight.

[In WORDSTAR, the non-document mode permits you
to set tabs, provided you use CTRL-OV to turn on
variable tabbing and CTRL-OI to set specific tabs
where you want them. You might even set up a "ruler
line" at the start of program development or code
entry to automatically set all tabs with CTRL-OF.
You will have to delete the ruler line before
compile since COBOL does not recognize dot command
comments. And whichever editor you use, you should
use the same one to produce manually-keyed data
files; compiled programs find tabs just an
indigestible as the compiler!

[You might also try to locate an alphabetically-
organized keyword reference book on the language. I
have ones for BASIC and Pascal and they're much
handier for quickly locating information on language
specifics than thumbing through the language manual.
For COBOL, I found Donald Sordillo's The Program
mer's ANSI COBOL Reference Manual (Prentice-
Hall, 1978, hardcover) at a used bookstore. It
doesn't cover everything in C0B0L-80 because
Microsoft made some extensions to the 1974 ANSI
language standard for programming on micros. But it
includes information on those "standard" features
that Microsoft didn't implement, so may be handy
when converting mainframe-der ived programs to
C0B0L-80.

[That book on data entry and screen handling I
mentioned to Lenny I was hunting for is LeBert and
Massoni's Advanced Interactive COBOL for
Micros: A Practical Approach (Prentice-Hall,
1988). It isn't cheap at 130, but will provide
information on interactive programming that neither
Heath's continuing-ed. course nor the REMark
magazine series supply. It is specific to Micro
soft's COBOL for IBM-compatibles, but much of it is
also applicable to Microsoft's earler C0B0L-80;
Microsoft seems to have rolled over many of the
extensions originally developed for C0B0L-80 to MS
COBOL. Further, it's an in termed iate-lev el book, so
you should have some COBOL already under your belt

Page 6 THE STAUNCH 8/89'er Issue #20/21

before digging into it. And almost all my remarks
above apply to the somewhat later (now very hard to
find) version of the compiler for HDOS if you should
stumble across a copy of it.

[Finally, I've made contact with H.W. Bauman,
author of RENark's tutorial. Regrettably, he no
longer has the on-disk material he prepared for that
series. So anyone using it to learn COBOL will have
to prepare their own input data files. -Ed.]

HOOS 3.02 Printed Manual, Etc. [Two letters by
Al Bjorling, Circleville, NY] "Kirk, I think I can
read between the lines the HOOS 3.02 project
has been a biggie for you, et al. Probably a lot
more than was expected, too. If it is any
consolation, my hat goes off to you all for this
effort. The HEATH 8-bit community owes a debt of
gratitude to you and the 'team*.

"In my request for printer assistance [in #19,
p. 5], I had response from a number of great guys.
Received much in the way of help that I needed and
now I can proceed. It really is a pleasure to be
associated with such a talented and well-meaning
group of people....” [Al, putting together the HDOS
3.02 manual was a "biggie;* in size, it's about
three times what I anticipated when I proposed the
package in issue #13. A load of thanks are, indeed,
due to system programmer Richard Musgrave, writer
Dan Jerome, tech, advisors John Toscano and Bill
Cordes, proofreader Terry Hall, and for the
production assistance provided by Bill Lindley.
Without their generous help, the package wouldn't
have seen the light of day (to say nothing of the
inside of a U.P.S. truck!). -Ed.]

"Received your card advising of some alleged
missing pages tn the HDOS 3.02 manual. Kirk, my Ch.
12 pages 1-49 are in manual. Decided to check the
chapter index against the pages that I had in my
manual and came up with a few deviations listed
below for your reference—

Missing pages:
1-34 Appendix 1-C Port Assignment sheets
3-9 ? (Intentionally)
9-14 ? (Intentionally)
13-150 Chapter 13 Index sheets

Add to Table of Contents:
Chapter 7 (after 7-56 two sheets)

Documentation
Background

Chapter 11 Appendix 11-C, page 11-77
Chapter 12 Index, page 12-103

Page # corrections to Table of Contents:
Chapter 11 Index, page 11-79
Chapter 12 Supplementary References, p. 12-101

“Kirk, I've been skimming through the manual and
it is really quite a fine job of documentation, well
organized, too. Very pleased with it. A side note,
when first working with HDOS there is so much to
learn and fully understand, it may be helpful for
some of us to reference more examples of the uses
for these new features/commands. Perhaps sell a
booklet of such later?” [Thanks for the feedback on
the manual, Al. Everyone who ordered the printed
manual has already received the missing port

assignment sheets for chpt. 1. The unnoted "MegaPIP”
supplement to chpt. 7 was accidentally included; the
same material is presented on pp. 7-7 thru 7-9. For
the other flubbs, Dan Jerome is working up chapter
indices where not currently present and correc-
tions/additions where necessary. These will be
mailed when available. This first print run (now
sold out!) has forced to light a very few minor
problems. See the “Software Listing" section for
information on the second run of the monster! -Ed.]

Terminal Chips, Libraries, and Patches. [From
Biff Bueffel, 19820 NW Metolius Drive, Portland, OR
97229] "This is a follow-up to my letter in ...
[#19, p. 2] regarding replacing the TLB TTLs with
CMOS ICs. Lee Hart's earlier article on cooling the
H-89 [in #16] dealt mostly with the CPU and said
nothing about the TLB. My machine is an H-89A,
whereas I think Lee discussed the H-89 [in his
letter in #19, p. 2-4]. There are differences in the
numbering of the ICs (e.g., H-19 U421 1s H-19A
U430).

"H-89A users should not replace the CPU U564
with a 74C04, just as Lee pointed out [that] U501,
also a 7404, cannot be replaced. The serial board
does not work if it is replaced. Below is a list of
H-89A TLB chips I have tried, with three that do not
work also noted:

H-89A old new notes

should work:

U406 74LS86 74HCT86
U407 74LS245 74HCT245
U413 74LS132 74HCT132
U416 74LS157 74HC157
U418 74LS74 74HCT74
U419 74LS273 74HCT273
U421 74LS166 74HC166
U422 74S74 74F74
U423 74LS08 74HCT08
U424 74LS273 74HCT273
U425 74S86 74F86
U426 7404 Do NOT change!
U427 74LS161 74HCT161 gave no beep at

'power on' and some
times no CRT filament

U428 74LS74 74HCT74
U431 74LS132 74HCT132
U432 74LS02 74HCT02
7434 74LS00 74HCT00 gave no beep at

'power on'
U435 74LS138 Replaced by 74S138 in

Fl icker-Free mod
U442 74LS138 74HCT138
U446 7404 74C04
U447 74LS132 74HCT132
U449 74LS244 74HCT244
U450 74LS244 74HCT244
U451 74LS74 74HCT74

"The fol lowing ICs were not tested as I did not have
the CMOS replacement in my inventory, but they

U443 74LS244 74HCT244
U414-6 74LS157 74HC157

"I purchased all the replacement ICs from Jameco for
around $25.

Sep-Dec 1990 THE STAUNCH 8/89'er Page 7

"My original letter contained two typos in
section 7. The address in the 2.2.03 version of
CONFIGUR should be 296E (not 2960. The address in
the 2.2.04 version should be 2C67 (not 2C267). There
is enough information in that paragraph so the
correct sites should have been found by those who
desire to try the patch.

"I think Lee Hart is wrong in his comments on
the use of libraries in CP/M [packages] you
distribute. Libraries save disk space and they are
an easy way of grouping related files. Most users of
plain CP/M do not use 'USER areas', an alternative
he suggested. Most who use a modified CCP or BOOS,
such as ZCPR3x and ZRDOS, have some understanding of
LBRs. Perhaps you could offer to include NULU, UNSQ
and UNCR on your distribution disks." [NULU and
UNCRUNCH are already included where appropriate;
UNSQ isn't because NULU has an internal command for
unsqueezing. -Ed.]

"If any of your readers use WordStar version 4
(WS4) and have not been able to implement function
keys and use [of] the keypad for cursor movement, I
can supply a patch I wrote. Similarly, if they use
ZCPR3 and have trouble using the *(R)un* a program
option or using It in a 'multiple command line,* I
can supply a patch."

PC89LIMK. [From James H. Dummer, Libertyville, IL]
"I have used the PC89LINK progrm from Lindley
Systems to transfer my HDOS files to the MSOOS
machine. It worked very well - very much better than
the TF89 program from Heath that I used to transfer
the CP/M files. Apparently Lindley Systems has since
added tne CP/M tranfer to their program. I wish I
had had it sooner."

A Professional Method for Program Testing:
Part 2 -- Background
By Kirk L. Thompson

In the first installment of this series on
software testing (issue *18), I discussed module
library construction, a "work bench" for testing
your subroutines, and an assignment for you to think
about and work through. Please bear in mind that
each successive portion of this series presumes
reading and doing the exercises given in the
preceding one!

Just as you cannot acquire an adequate
knowledge of a programming language from merely
reading a book, so the practice of software testing
is a skill you will acquire by reading my discussion
and working through the exercises I give. This
series will operate on the building-block principle;
each installment is a course of bricks in a larger
structure. You can't expect the structure to stand
if you omit bricks in the foundation. So 1f you
haven't done so before, go back and read Part 1.
Then dig out your favorite high-level language (be
it BASIC, FORTRAN, or Pascal) and explore the
features of its integer function as I described on
p. 11 of issue #18. If you're running some version
of Pascal, also fiddle with ROUND and TRUNC. And as
I wrote last time, think about “what kinds of tests
you should use to ensure [these functions are]
working properly." That question is the one I now
address.

You Can't Test Everything! For the sake of
argument, suppose I wish to test that INT function I
asked you to look at in order to ensure it works for
all one-decimal-place real numbers (that is, numbers
with one digit to the right of the decimal point,
such as 11.1 or 9900.5) that a typical home computer
is capable of handling. Usually real numbers (that
is, numbers with decimal points) on our machines
range (in scientific notation) from +1E+38 through
-1E+38. That is, these numbers extend from a maximum
of 1 followed by 38 zeros to a minimum of negative
1 followed by 38 zeros, no matter what the language.

So if I were to use a brute-force method of
testing I could set up a simple sample routine in
Pascal similar to:

Y :« 0;
FOR X :■ 1000 DOWNTO -1000 DO BEGIN

Y Y ♦ 1;
WRITE ((X/10):5:l, '—>', INT (X/10):5:l, ' ');
IF Y ■ 5 THEN BEGIN

Y 0;
WRITELN

END (if)
END; (for)
WRITELN;

Of course, the execution limits of the FOR-DO loop
would be expanded to something like "1E+38 DOWNTO
-1E+38". (There're other questions to be addressed
here, precision and accuracy; I'll turn to those
bel ow.)

But let’s back up a minute to look just at
execution time for such a routine. The above
section of code (for just +100 to -100) takes 54
seconds to run after compiled (as a part of TBENCH
from the last installment) by Turbo Pascal on my
souped-up '89 and displayed on the screen. If the
same routine is run under Lucidata Pascal (using the
REALINT routine I give at the end of this article),
the execution time is 3 min., 44 sec. (I mentioned
last time that Lucidata is slower than Turbo. But
Turbo's INT function is also built in and simpler
in execution, as we'll see next time.) Further, if
we extrapolate from the four orders of magnitude
(powers of 10) tested here (+100 to -100) to those I
proposed above (+1E+38 to -1E+38), we could expect
to see an increase in execution time of about a
factor of 19 ((38 * 2) / 4). For Turbo, such a
routine would take about 18 minutes to run; Lucidata
would require something like 70 minutes.

However, reviewing all that output on the screen
would be extremely tedious; hardcopy would
(undoubtedly?) be easier. But a suitably modified
routine to dump the output to the printer will take
much much longer simply because printers are slower
than the CRT. My C.Itoh Prowriter dot-matrix
requires almost 5 minutes when doing the +100 to
-100 routine with Turbo; all possible "computer"
real numbers could take about an hour and a half.
Lucidata takes somewhat longer: about 6-1/4 min. for
+100 to -100, an estimated two hours for all the
numbers! And there's still the time and effort you
would need to review the roughly 115 pages of
output!

A professional programmer doesn't do testing
this way! Usually he is under rigorous time and
financial constraints (imposed by his employer) and

Page 8 THE STAUNCH 8/89'er Issue #20/21

this “brute-force" approach is simply too time-con
suming and machine-intensive. (You and I, a»
hobbyist programmers, are actually in the same boat
when you think about it.) What the pro will usually
do (if he does much testing at all) is select a
small number of test cases.

But notice one implication the programmer makes
when he selects only that small number of cases:
trust in the language system to do the untested
"Intermediate" cases correctly. Generally, he (and
we) can do this because the manufacturer has been
reasonably thorough in the testing of his product.
Bugs in language systems, particularly in better-
known name-brands, are few. One such is the obscure
bug Hank Lotz reported for MBASIC 5.21 under CP/M 1n
issue #12, p. 5. Another is the problem with tabbing
in Microsoft's COBOL I mention earlier in this
issue. On the other hand, you should also know the
quirks in the language you are using so you don't
mistake wrinkles In it for bugs in your own code!
(I've done that; more on it next time!)

Formulating Test Cases. For this series of
articles, I'll be using "black-box" and "white-box"
approaches to determining test cases for the various
kinds of routines we'll be looking at. By
"black-box," I mean that we don't know (or don't
care) what the program code inside the routine is so
long as the output from 1t is correct. For many
subroutines, such as INT, ROUND, and TRUNC, this is
more than adequate because both input and output
are reasonably simple. In other situations, such as
when designing tests for the "lookup" tables we'll
be doing later on, we need to know what the code
Inside the routine 1s (or is supposed to be) in
order to adequately test it. This is called a
"white-box" approach because we can look inside the
module to determine a good share of the tests we'll
need.

Observe further that the tests I'll be
discussing would be the minimum required to assure
the correct functioning of a routine. Whether you're
writing your own or keying and modifying one from
some source, you may want to increase your
confidence level by more intensive testing beyond
these minimal tests. One definite example of such a
situation would be testing a pseudo-random number
generator, such as the one I expect to present in
the next installment. In some situations, a loop,
such as the one illustrated above to exercise the
function over several powers of 10, might be in
order. However, one thing you should do as you
write or key in the function is decide exactly what
tests you plan to use and write these down. A
"shot-gun" approach to testing, that is, selecting a
few arbitrary numbers to feed through a routine on
the spur of the moment, is an extremely poor method
for determining the quality of a module. One reason
for this is that you seldom hit the really critical
tests as I describe below. But I'll turn to test
planning and execution in the next installment.

Actually, for simple routines, all we need do is
test to be sure that the output is (within certain
limits described below) correct. For numeric,
single-input-parameter functions, these are few in
number indeed. The tests we need are “extremes,"
"typical (or mid-ranges)," "boundary conditions,"
and "close calls." The next few paragraphs discuss

these terms and two others of importance to testing.
Extremes are just that, the largest and/or

smallest number(s) you expect the routine to
process. For example the "extremes" for the short
routine given above are +100 and -100. When
considering all possible real numbers on a micro,
the extremes would be +1E+38 and -1E+38. This is
simple enough in concept, but there are two
important catches to bear in mind.

When you start handling numbers with a large
number of significant digits, you also have to know
how many of those digits a computer language can
reliably deal with. This is known as "precision" and
is not to be confused with "accuracy." Precision is
the maximum number of digits the computer can
handle when representing a number. As a non-Pascal
example, in Microsoft's BASIC interpreters and
compilers, you have "single-" and "double-precision"
variables at your disposal. The former have a
precision of seven digits; the latter have 16. The
choice is yours to select what precision you require
in your program. You might well ask, why not do all
calculations with double-precision? The reason is
that calculations with double-precision numbers are
significantly slower than with single-precision
because the computer has to deal with more digits.
Further, your program may not need all of those 16
digits of precision in its answers.

Accuracy, on the other hand, is the error in a
calculation. How close is it to an absolutely
correct answer? If your BASIC program requires the
most accurate calculation your computer can produce,
you will have to sacrifice speed of execution in
order to use double-precision numbers. (Few programs
actually require calculations of that accuracy.)
When dealing with numbers with many significant
digits, both precision and accuracy get jumbled
together because of basic limitations in computing
equipment, no matter how large or small the system
might be.

You can get some feel for both of these issues
on your own system by keying the following Pascal
(or equivalent) code into TBENCH:

WRITELN;
WRITE ('Enter a positive REAL number: ');
READLN (R);
WRITE ('The SQUARE of the SQUARE ROOT is ');
WRITELN (SQR (SQRT (R)):18:9);
WRITELN; WRITELN ('End of routine.');

Notice the boldfaced section of code. This tells
Pascal how to display the result of the
calculation. Here, I'm asking for 18 characters in
the answer (including the decimal point) with nine
digits to the right of the decimal point. For you
MBASIC programmers, this is equivalent to PRINT
USING "########.#########". Run this inside TBENCH
and, in response to the prompt, key in 10.666 and
notice the result of the computation. Repeat the
routine, but key 100.666. Continue repeating and
keying, inserting another zero before the decimal
point. At some point the last "6" to the right of
the decimal point will round to "7". Count the
number of digits in the calculation from the left
through that "7" you now have. This count is the
precision of your language. For example, Lucidata
has a precision of 9 digits; Turbo has 11. Precision

Sep-Dec 1990 THE STAUNCH 8/89'er Page 9

also imposes limits on the accuracy of a
computation. If the number of digits in an
intermediate calculation exceeds precision,
overall accuracy of the final result goes down. The
language with the best precision I've seen on our
systems is the ZBASIC compiler for CP/M (from Elliam
Assoc.; see VENDOR.UPDATE 1n this Issue), with a
phenomenal 54 digits!

The above three-paragraph excursion was
necessary to give you a better feel for some of the
basic limitations in computing equipment. You must
be cognizant of these during testing.

Now, to pick up were I left off, the second kind
of minimal test is that of a "typical" or
"mid-range" input value. Approximately what value do
you expect the function will usually have to
process? Or what is the value in the middle of the
range you expect the routine to accept? Observe,
though, that in the sample function for +100 to -100
above and similar ones, the mid-range is not zero
(0). Zero is a boundary condition (as I'll discuss
shortly) and we're interested in mid-range values
between boundary conditions and/or extremes. For
the above routine, there would be two mid-ranges to
test, +50 and -50. For all real computer numbers,
these could be +1E19 and -1E19. Of course, if your
routine isn't supposed to handle positives or
negatives, you need not worry about numbers with
those signs. However, in your program you should
also ensure that these numbers don't reach the
routine. This can be done by trapping them someplace
in the program. Locations could be during key-entry,
external to the routine in question (such as part of
the code immediately preceding a call to the
routine), or inside the routine itself. Certain
built-in functions (such as the square root) in most
languages also expect only positive numbers. If
using these, your program should Include traps for
negatives before these functions are called,
otherwise the program may crash! As an example, I've
had commercial software crash because of an
untrapped division by zero. Very aggravating!

The third type of test is the boundary
condition. A boundary condition marks a transition.
For example, zero (0) is the boundary between
positive and negative numbers. Indeed, one thing
you'll have to watch for as you program is that a
numeric function works correctly when processing
numbers close to and equal to zero. For that reason,
as you'll see, a professional will usually cluster
several tests around zero.

Another boundary condition for routines that
process real numbers is the highest and lowest
integer numbers the computer is able to process.
For most languages, these are +32,767 and -32,768.
None of the material on testing I've perused treats
these two as boundary conditions, but I strongly
recommend you include them in your tests. As with
zero, I suggest testing numbers immediately
contiguous to them as well (these are "close
calls"). One thing their inclusion checks is whether
you have properly specified the type of variables
(Pascal's integer or real, BASIC's Integer or
single-/double-precision, etc.) inside your
routines. Of course, if your function only processes
integers, these two numbers will be "extremes"
rather than "boundary conditions."

The fourth type of test is the close call. You

might consider this type as one that is Intentional
ly “not quite on the money." In numeric routines,
strange things can happen at a boundary,
particularly around zero. If your routine is for
positive and negative integers, you should test not
only the boundary itself (zero), but the close-calls
(+1 and -1). For real numbers, how you test close
calls around zero depends on what the routine does
and on how many decimal places you expect to display
on the output (whether screen or printer). If the
routine is processing decimal dollar amounts, you
should at minimum include tests with inputs of
♦0.01, zero (the boundary), and -0.01. Beyond these
examples, which ones to use is something of a
judgment call. Actually, over-testing around zero is
better than under-testing since strange things are
known to happen here!

Close-calls around other boundary conditions and
extremes don't need to be tested quite so
thoroughly. If your routine uses positive and
negative real numbers, you should include +32768.0
and +32766.0, -32766.0 and -32769.0 as close calls
to +32767 and -32768, respectively. You should also
test a number one less that the maximum positive and
one greater than the minimum negative permitted by
the precision of the language you're using. For
example, since Turbo Pascal has a precision of 11
digits, the maximum and minimum numbers that
preserve all decimal digits are +99,999,999,999 and
-99,999,999,999. So Include numbers that are one
less than the former and one greater than the
latter.

Assignment. But that's all I have space for in
this Installment. In the next one I begin guiding
you through practical application of this
professional program testing method. I had planned
to discuss that quirk in Turbo's INT function here,
but must postpone it till then. In the meantime, key
in or adapt the function (REALINT) I give below.
Although specifically written for Lucidata Pascal,
it will run under Turbo as presented. Read the
introductory comments so you know how the function
is supposed to operate. Now test it as I've
described above. Be sure you write down the tests
you used, the results you got, and whether these
were what you expected! This is interactive
testing, so you will get immediate feedback from
the routine to check against your expected answers.

Further, this function has one or more bugs I
want you to find! If you apply what I covered above,
you'll undoubtedly discover them. Next time I’ll
describe the tests I would use (to compare with
your own) and a somewhat formal table-like layout I
suggest you use for planning all testing you do.
I'll also present fix(es) to the bug(s) in REALINT.
Of course, if you have any questions about this or
previous material, feel free to write.

LISTING

FUNCTION REALINT (X : REAL) : REAL;
{

Rounds a real number (X), negative or positive;
based on Greg Davidson, PRACTICAL PASCAL PROGRAMS
(0sborne/McGraw-H1l1, 1982), p. 199f.

Input is a number of type REAL; output is a
number of type REAL.

Page 10 THE STAUNCH 8/89'er Issue #20/21

For positive numbers, it rounds to the larger
whole number when the fractional part is .500..
or larger (that is, 99.5 rounds to 100.0), to
the smaller whole number when the fractional part
is .499.. or smaller (that is, 9.49 rounds to 9.0).
For negative numbers, it rounds to the larger
whole number when the fractional part is -.499..
or larger (that is, -99.49 rounds to -99.0), to
the smaller whole number when the fractional part
is -.500.. or smaller (that is, -9.5 rounds to
-10.0).

Input should be limited by Lucidata's precision
to the range +/- 99,999,999.9.
)

FUNCTION REALTRUNC (NUM : REAL) : REAL;
{truncates a real number (NUM) to zero (0) decimal
places)

CONST EPSILON » IE-7;

VAR
ACCUM : REAL;
NEGATE : BOOLEAN;
DIGIT, EXP, PLACES : INTEGER;

BEGIN
NEGATE NUM < 0;
IF NEGATE THEN NUM -NUM;
EXP :■ 0; PLACES 0;
WHILE NUM >- 1 DO BEGIN

NUM NUM I 10;
EXP :« EXP + 1;
PLACES :» PLACES + 1
END;

IF PLACES <■ 0 THEN REALTRUNC :■ 0.0
ELSE BEGIN
ACCUM :• 0;
WHILE PLACES > 0 00 BEGIN

NUM :■ NUM * 10;
OIGIT TRUNC (NUM + EPSILON);
NUM NUM - DIGIT;
ACCUM :■ ACCUM * 10 + DIGIT;
EXP :« EXP - 1;
PLACES : = PLACES - 1
END;

WHILE EXP > 0 DO BEGIN
ACCUM :- ACCUM * 10;
EXP EXP - 1
END;

WHILE EXP < 0 DO BEGIN
ACCUM ACCUM / 10;
EXP :« EXP + 1
END;

IF NEGATE THEN ACCUM :- -ACCUM;
REALTRUNC := ACCUM

END
END; (realtrunc)

BEGIN {realint}
REALINT :» REALTRUNC (X + 0.5)

END; (realint)

This *n* That
by Hank Lotz I 2024 Sampson St. I Pgh, PA 15221

Color Me Puzzled: Steven W. Vagts described a

perplexing problem in REMark of February 1987,
p.52, where he continued his discussion of his
PAINT.ASM program for CP/M. (For the original
version, see REMark, March 1986.) The problem he
noted was a failure to transfer properly to disk
certain strings of graphic bytes 1f they contained
too many graphic-mode-switching escape sequences.
Many of the bytes didn't get written to disk. His
article says he worked on the problem but finally
decided to live with it, as it was minor, occurring
only with complicated lines. Even so, if something
doesn't work right I want to know why. I've since
learned from Steven that “the problem seems to have
gotten lost or modified" in the continuing develop
ment of the program. We may never know the cause,
but if anyone knows any way such a phenomenon could
be related to hardware or system software, please
contact Kirk or me.

I typed in that whole thing (the one from March
1986), and modified it for my own purposes. It's a
great program! And I think it was that educational
March 1986 article that made me see how CP/M's BOOS
function 6 could serve to reliably read the H-19/89
function keys, even in MBASIC programs! This led to
my write-up ("Function Keys..." in Staunch #2,
p.7) which, I think, satisfied a long-felt (and
loudly proclaimed!) need among hobbyists, if they
were willing to do the one-time preparation of my
easily callable assembly-language subroutine for
their libraries. So, since I failed to say it
before: my very belated thanks to Steven Vagts for
the revelation of function 6 and h1s use of it in
context! In the said Staunch #2 article, I extended
the idea to embrace also the 3-byte alternate-keypad
keys, and I also showed how to pass multiple
parameters back to the FORTRAN or MBASIC calling
program.

But getting back to PAINT.ASM, I still want to
add new features to my copy. One of my hopes is to
implement a mod of it that will sign on with no
screen output (except possibly the 25th line), the
aim being that if the screen is thus undisturbed, it
will be possible to copy any preexisting display to
a disk file! The necessary presence of a command
line on-screen (you need it in order to Invoke
PAINT) is no great blemish.

If you want the PAINT program (now "PAINT89" I
believe), and you don't relish all that typing (it
is a task, you know), Steven may still be
distributing the COM and source files on disk. I
suggest you write him to find out, and enclose an
SASE. (I should mention he has an extremely busy
schedule, but always gets back to you if you allow
enough time!) His new address: Steven W. Vagts /
2409 Riddick Road / Elizabeth City, NC 27909.

Typos in the H-89A Op Manual: I noticed some
typos in Section 11 of the H-89A Operation Manual.
If you have the older "H-89" manual, I can't say
whether these mistakes are present or not; and also,
in the older manual, the same info may appear under
a different section number. (Can you enlighten us on
all that, Kirk, being that you have the Neanderthal?
[The typos are in the H-88 manual, too, but in
Section 12! -Ed.])

But in the H-89A manual, Section 11 is an
APPENDIX. There are four errors in the ANSI escape
sequences on page 11-18 — the first four lines on

Sep-Dec 1990 THE STAUNCH 8/89'er Page 11.

that page are wrong. Everywhere you see a lowercase
j in those lines, make it an uppercase J. Likewise,
change the lowercase k (fourth line) to an uppercase
K. The same info appears correctly elsewhere in
the same appendix.

LP Utility for CP/M: I have an H-14 printer I
don't often use, but I do read of people still using
them. If you use your H-14 and also run CP/M, you
should be made aware of a few facts about my LP.COM
program (in addition to what was said back in
Staunch #7, p.8). LP.COM is available from Kirk,
free but for shipping and handling. LP.COM does
everything claimed for it, but I'd like to bring out
a point or two in particular.

When you use the FEED FWD switch on an H-14 to
advance the paper a few lines, the H-14 forgets
where you had your top-of-form set, and you always
have to realign it, which is a pain! Also, try
holding in the FEED FWD button to move the paper up
about 30 lines, and see how long it takes! But with
LP.COM all you do is type "LP E30" (as a command
line after a CP/M prompt) and your paper shoots
right up! Moreover, when it stops, the H-14 still
remembers where the top-of-form is! You can line
feed any number of lines from 1 thru 99. The program
takes only about 3 seconds to load and run, and is
thus the quickest (and easiest) way I have to
handle the H-14, whether I'm setting horizontal or
vertical pitches, sending those line feeds, ejecting
forms, or flushing the printer's Internal buffer. On
that latter feature, I take it you've noticed how
the H-14 retains characters sometimes when you
aren't aware, and you get the tall end of the last
thing you printed — the next time you go to print!
Solution: flush the buffer in a flash with LP.COM
(command: "LP FL"). Also, thorough doc is supplied
with this utility. LP.COM makes life easier for
H-14'ers.

Old Floppies Never Die, They Just...?: In
Staunch #17, Gary Appel brought up the question of
the lifespan of data on floppy disks. The disks
themselves may last, but could drop a few bits If
magnetism weakens over time. I too am concerned
about this problem -- I have been ever since I read
Bob Ellerton's original Feb 1981 article 1n REMark
#14, p.14, where he stated that data on "quality"
diskettes has an “average shelf-Hfe" of "about five
years." And in the March 1986 Pittsburgh HUG
Newsletter, I myself published a short piece on
the subject. Basically all my article did was point
to Mr. Ellerton's write-up, comment that 5 years is
no time at all where stored data is concerned,
suggest a procedure to refresh disks, and ask if
anyone had further dope. At that time, I had never
seen any of my distribution disks "fade," and I
still haven't! Nevertheless, we're all in a
position to make more meaningful observations now
than we could four years ago, because more “decay
time" has elapsed!

In my case I use only 48-TPI hard-sector
diskettes and I store some distribution copies in a
steel box, and some in a steel filing cabinet. The
conditions of storage may be affording slight
protection against long-term stray magnetic fields;
however, as far as the lower radial density (48

TPI) is concerned, I've come to suspect (by roughly
considering what I know of the parallel phenomenon
of decay of the higher-frequency analog signals on
audio tape) that It adds little to longevity.

I sometimes suspect that "panic time" is longer
than 5 years for some disks, but I feel that since
we cannot know before the fact when or if a
given disk will fade, we must refresh, as there's
no easy alternative after the fact.

I've corresponded with both Gary Appel and Kirk
Thompson about this. Gary also feels he needs to do
a refresh, but he has such a large number of disks,
I think he'd like to rationalize putting it off "for
just a bit longer."

Kirk finally put an end to my own speculation on
whether disks will or won't fail. To quote from his
letter: "I've certainly had disks, even old
hard-sectors, 'fade.' Much depends, I think, on the
quality of the media. For example. I've had no
problems with the 3M's and Dysans I've bought over
the years. Some of the really old commercial stuff I
got...are also still good, such as the distribution
set for HDOS 2.0 (which goes back almost ten
years!). On the other hand, cheaper media have been
a problem, including some 'no-name brands.'" End
quote.

But if you glance back, you'll notice Bob
Ellerton meant "quality" disks when he gave that
five-year figure! Therefore, even though quality
disks probably do help matters, I won't let that
dissuade me from refreshing even my "quality"
diskettes.

I already began my own preventative "refreshing"
with a few disks in August 1987, and I've done a few
more since that. (I should mention, I make DUP
backups of my distribution disks at the time of
purchase.) Here is my refresh procedure:

1. Verify dist. disk with existing DUP disk.
2. OUP from the dist. disk to a 3rd-party disk.
3. Verify the 3rd-party with dist. disk.
4. Verify the 3rd-party with old DUP disk.
5. Copy 3rd-party disk to old DUP disk. (This is

the actual "refresh.")
6. Verify refreshed backup disk with dist. disk.
7. Release 3rd-party disk (or keep as 2nd backup)

You might stop after Step 3 or 4, labeling the
"3rd-party" disk as the new backup DUP -- one reason
for my "overkill" here Is that the old backup disk
has already stood the test of time, so why switch to
an untried 3rd-party floppy for permanent storage?
Another is, this checks things every step of the
way.

Notice I do not rewrite to the distribution
originals. This is on general principles; besides, a
good backup DUP will suffice. (And keeping the
D.D.'s as-1s gives us a relatively risk-free
barometer on when they will decay. You could even
keep two backup DUPs. That way if the verify
against the original (Step 1) some day does fall,
the 2 DUPs can then be compared to check if it
really was the original that changed!)

VENDOR.UPDATE

ERRATUM. I misspoke (or rather, miss-wrote) when I
added my bracketted comment about source code to Dan
Jerome's review of Lindley's PC89LINK in issue #19.

LP.COM
LP.COM
LP.COM
LP.COM
LP.COM
LP.COM

Page 12 THE STAUNCH 8/89•er Issue 20/21

H89/Z9-: PASTS AND A''CESSO»’*S

Don't know wnat to give? How about a real Christmas
“cart"? It’s a 6“ lien circuit aoaro shaoec line a
Christmas tree, with colorful parts ano blinking LEDs.
It "uns for weeks on a 9v battery, which couoies as a
stanc. Best of all, you get to say “I pace it myself"!
Manual *1, Soard and manual *3.95, comolete kit *9.95.

Of course I still nave plenty of HB9/Z98 goodies reacy
for Christmas giving. Availability of usee items is
naturally on a first-come first-served basis, so call if
you have any Questions or to check availability. All
rices include shipping, so order now1

NEK PRODUCT!
444+61 cecoder 090* puts ZS9-37 instead of ri7 *1?

in nghtisost I/O slot
L3881 L04-OGWER KIT includes MTR-90, cuts power 29

by 250mA, Soecify if non-Keath ROMs at 0516-1328
JJ002 TR-90A (M’R-98 ♦ 30480 baud support) lets ... 18

Superset boot at 38488 baud for 4X faster screen
Fttl FLICKER-FREE Kit eliminates screen flicker, .. 29

cuts power consumption for cooler operation.
c-882 SUPERSET TLB upgrade adds prog.function keys, 49

30400 baud, screen-saver, on-screen time/date,
help menus, white screen, interlace, and more'

PF003 SUPERFONT adcs 8 fonts including G’DRO*, Z1M, 29
IT-100, IBM-PC, 168x100 AAA graphics, math, g-eek,
Tight/dir, oounle-wice chars, suaer/subscripts

:c004 SuPERCi-OCK adds cattery bacxuo for docK, 29
2nd page screen RA*, screen save/restore. user
cefined menus, fast animation, ano wi wows'

FF005 SUPERKEV uses CAPS4.DW for "typewriter shift" 10
No need for SHIFT key in BASIC or C3/* commands

USED EQUIPMENT
Magnolia 77316 soft-sector controller, complete *98
Zenith 269-37 soft-sector control.er, complete 75
-89A 64K, 3 serial, *37, I 4$T DS drive, Superset 15?
rfl9A 64K, 3 serial, -17—37, 1 40T DS drive 125
rfl9A 64K, 3 serial, "37, 1 40’ DS drive 188
"89 64K, 2 serial. "17, 1 48’ SS drive. Ricner-f^ee 65
w9 48K, 2 serial, r-7, 1 48T S3 drive 50
-77 with 2 40T SS drives and cables....................... 5?'
-77 dual drive cabinet with cables, less enves 38

(free drive installation if you puy drives'
non—«ath dual drive caomet ano bowe- supply........ . 25

fcr 2 Fu 5-1/4" c+ives sice-by-sice horiiirta'
-ayes 388 baud Smartmode" !tne real t^ing1) 35

DISK DRIVES
TD180-5 Siemens 48’ S3 5-1/4'' cist crive 18
’”100-2 'awon W D3 -- 5-1/4' ci5'< prive 3?
7*180-4 ’andon S8’ CS 5-1/4“ disk c^ive 53

SOFTWARE (specify dis< format)
CPZ", neatn vers. 2.284................................... *29
Supercalc screaesheet program for CP/*.................... 29
■*-Wl #RITE--AND-MAN "sidekick" for C3/M. Kit BREAK 39

for calculator, noteoac, calendar, phonebook, etc.
WH«00 wkK ver. 2.4 update for Superset/Superclock ., 10

-ull-screen VIEJi/EDF, 2xCLFB0ARD, screen dumps

INTEGRATED C1RCLITS
4116 16K dynamic RAM 258 rSec (set of 8) *5
4164 64K dynamic RA* 288 nSec (set of 8) 18
444-19 CPU *17 boot ROM ... 3
444-29 TlB character generator 1
444-37 TLB keyboard cecoder 1
444-42 CPu stemory PROM (48K, HDDS only) 1
444-43 CPU I/O PRO* (Hl 7, 3-oort) 1
444-46 TLB orocram RO* ... 2
444-61 CPU I/O'cecoder PROM (H17/37/47/67, 3-oort) . 6
444-62 CPU *’R-89 boot ROM (K7/47) 2
444-66 CO’J "org-0" memory W (64K CP/« or -DOS) .. 4
444-81 285-37 I/O control 5
444-82 Z89-37 interrupt control PAL 5
444-83 CPU bank 0 decoder PROM for MTR-90 4
444-H2 Gt WT9-90 boot 93* (80T ^(7/37/47/67) ... 5

CABLES
134-1074 34-oin internal disk Crive cable *8
134-1144 34-oir. mternal/external drive cable 10
134-1158 16-pir Z89-37-to-C3U cable 5
134-1163 34-oin external crive cable !'

BOARDS
u19/89 Terminal _ogic Boarc *38
-19A/69A ’erminal Logic Boarc 35
-09 CPU board (with 48k ROM and latest RM) 50
u890 C*t coarc (48K RA*. latest ROMs) 68
-68-1 r!7 marc-sector controller 20
-S8-3 3-x-rt serial I/O 15
-68-16 16K Ra* boa-d (P-:ws -89 up to 64k) 38
239-11 3-oo-t I/O (2 serial, i pa-allei) 48
Z85-37 -37 soft-sector controller 50

.i-art . m2- W, 5+re<?-. Hoi 1 i’T . NT 49423, -5085

Sep-Dec 1990 THE STAUNCH 8/89'er Page 13

Bill Lindley asked me to print the following to
correct the erroneous information I gave:

"Source code for PC89LINK is provided for the
HDOS version only. This is the same as the source
code for the CP/M version, but because of space
limitations on the diskette, we could only fit one
copy. Users wishing the CP/M source may simply
transfer the HDOS files to CP/M, un-comment 'fdefine
CPM 1', and compile." The 8-bit versions of PC89LINK
are written in Toolworks C/80; the MSDOS version is
written in Microsoft C and Bill tells me that source
for it is not available. My apologies for any
inconvenience my misstatement may have caused you.

ANAPRO Moves, Again! "Extra! Extra! Flash news
bulletin, read all about it. ANAPRO moves again!
Well, 1f Lee Hart can do it, why can't we? Yes, we
have moved a lot of times, but for the past 3 years,
we have been in the same city. Isn't it time for a
move?

"Kidding aside, I accepted a full-time teaching
position at a community college in Blythe,
California. Where is Blythe? It is a small town
(8200 population) on the California/Arizona border.
It is 100 miles from anything. I know that some of
you out there are in similar situations, but it is
the first time for this city-raised boy. Yes, it IS
a real college. I am THE computer science
instructor. The town is known for its HEAT. My wife
says she likes the heat. We have had a hard time
finding suitable housing. A new state prison was
built near Blythe a couple of years ago and the
influx of workers caused a housing crunch. After
many frustrating false starts we have now found a
house and are moving In. For the past 9 weeks I had
been commuting each weekend (1000 miles round trip).

"So now you all know why there was silence from
my end for a while. As soon as things get settled,
more articles will appear. I do have an announcement
to make. Triggered by comments which Lee Hart made
in a letter to me, I created a new formatting
program for the H89 under CP/M. It is a variation of
the EMULATE EFORM program and allows selection of
formats from a menu or entry of the selection from
command line. No more answering awkward prompts. I
have supplied Kirk Thompson with the package as
ANAFORM.LBR - use NULU or LU to extract the members
from the library. [Readers will find this described
in the Software Listing. The package will also be
available from SEBHC Journal. -Ed.)

"The development of the new format program
uncovered a defect in the EMULATE EFORM program.
EFORM has not yet been changed to fix the potential
problem area, but a modification is in the works
(just as soon as I have a home). If any EMULATE
owners have had problems with EFORM, let me know (at
the new address below) and describe the
difficulties.

"That's all for now. The new address for ANAPRO
(and for me) is: Peter Shkabara, Box 1987, Blythe,
CA 92226 (619) 922-3919.

SEBHC Journal Raises Subscription Rates. Lenny
Geisler, editor of the "friendly" competition,
announced an increase in his subscription rate after
August of this year. Regrettably, as he noted in his
October issue (p. 6), declining circulation has
forced a conversion from bulk-mail rates to first

class. The new rate is: one year — $24.00, two
years — $44.00; overseas, add $5 for one year, $9
for two. Of course, payment must be in U.S. funds
and checks made out to "L.E. Geisler". Lenny also
noted that actual expiration dates are now printed
on the address label so subscribers know exactly
where they stand.

Also worthy of note 1s that Lenny now carries a
functioning version of Newline's old editor,
TXTPRO ver. 4.1, for both HDOS and CP/M. This is a
comparatively easy-to-use, WYSIWYG, ASCII editor.
Lenny uses it to prepare the Journal and I've used
it for certain projects myself. One thing it permits
is creation and editing of files larger than working
memory (a limitation in Software Toolworks' PIE, the
other, simple, popular ASCII screen editor available
for our machines). On-line help is available inside
the program and documentation is on disk. Recommen
ded if you don't already have a screen editor. Order
codes, description, and prices are as follows:

HTXTH For HDOS 2.0, 3.Ox, on standard hard-sector
(two disks), $32.00

CTXTH For CP/M-80, on standard hard-sector (two
disks), $32.00

HTXTS For HDOS 2.0, 3.Ox, on SS soft-sector (one
disk), $29.50

CTXTS For CP/M-80, on SS soft-sector (one disk),
$29.50

To order subscriptions, software, or for informa
tion, contact:

Leonard Geisler / Editor, SEBHC Journal I 895
Starwick Drive / Ann Arbor, MI 48105 /
313-662-0750 (9 to 6 Eastern, weekdays)

HUG Software Sale. HUG is presently running its
annual 30%-off software sale. And there's quite a
bit of good stuff not listed in REMark that's
still available. I ordered one myself in late
November, HDOS W.I.S.E (#885-1038-37). If you'd like
a list of what's available for both HDOS and CP/M
from HUG, send ae a long, stamped, self-addressed
envelope and I'll return a three-page list compiled
by reader Parks Watson. To order the software,
contact:

HUG I P.O. Box 217 / Benton Harbor, MI 49022-0217 /
616-982-3463

And I might add that HUG is now officially a part of
Zenith Data Systems; Heath is up for sale, again!

The Z-Letter. I noted the existence of this
newsletter a year ago in issue #15. It continues to
specialize in the Z-System, but recently underwent
some changes. Its connection with Alpha Systems has
been severed, the editor having started his own
company (Lambda Software), and beginning 1n November
this year, 1t shifted from an irregular to a monthly
publishing schedule. Its format has also ballooned
from a half-sized booklet to 20+ pages of 8-1/2 x
11. Subscriptions continue at $24 per yr.

As I remarked in #15, there's nothing
specifically H/Z here, but if you're interested in
or are running Z-System, I think you should at least
give it a college try. This first monthly issue (#7)

Page 14 THE STAUNCH 8/89’er Issue #20/21

included a thorough review of the Z-Festival,
sponsored by the Connecticut CP/M Users' Group
(CCP/M), held late last October. One of the
references included in this article was to:

Lee Bradley / Small Computer Support I 24 Cedar
St. / Newington, CT 06111 / 203-666-3139
(voice), 203-665-1100 (data)

as source for a $2 software catalog (actual disks go
for $5 apiece) and a booklet of reprints from the
CCP/M newsletter for $5.

And as a parenthetical paragraph, H-SCOOP #127
included information also from Lee Bradley about a
new CP/M bimontly newsletter, Eight Pieces &
Change, for $15 a year. If you belong to a users'
group, you qualify for a 20X discount. Like
Staunch, it pays for articles, though not so
"munificently"! I haven't had a chance to check this
new publication out myself, though. More later!

Anyway, The Z-Letter also included ads from
The Computer Journal, Herbert R. Johnson (S-100-
and SS-50-bus used equipment), Lambda Software,
Davidge Corp., Logic Associates, and the “Socrates"
Z-NODE 32 BBS. (Wow! Real 8-bit advertising!) For
further information about The Z-Letter, contact:

David A.J. McGlone / Lambda Sofware Publishing /
720 S. 2nd St. / San Jose, CA 95112 /
408-293-5176

I found issue #7 much more impressive that the prior
ones I'd received.

Quikdata. "...I would appreciate it if you would
let your readers know that our new 7/90 catalog has
been prepared and mailed out. If any of your readers
are not on my mailing list, they can simply write to
me at the ... address [below] or call and request a
free no-obligation catalog. There Is a hefty section
on the H89, both hardware and software. A collection
of some pretty good stuff, continuing our tradition
of supporting the H/Z 8-bit machines. If they also
request our liquidation list we will gladly send
that also. It also has some 8-bit stuff being
liquidated at good prices. Or they can call our
Bulletin board at (414) 452-4345 and download the
liquidation list. - Henry Fale" I 2618 Penn Circle /
Sheboygan, WI 53081 / 414-452-4172

Micronics Technology. "I've enclosed a current
catalog. The news for 89'ers is the price drop to
$329 for the WIN89 [harddrive]. I need to clear some
stock by the end of the year, so now's the time to
buy. I've also got about 500 Speed Mod boards left.
My last Speed Mod sale was six months ago. I am
thinking of offering the kits again at $20 each or
the boards with instructions and software for $10.
Speed Mod works fine with HOOS 3.0 as long as you
don't access the hard sector disks. I am sure that
the H-17 drivers could be modified like the HDOS 2.0
versions, but I haven't attempted it. Guess I might
have to finally break down and buy the Gibson
assembler. I am still working on the next version of
MTMDM and hope to have it completed by the end of
September along with HDOS 3.0 support for the WIN89.
I'll keep you posted on upcoming events."

For a catalog, contact:

Darrell C. Pelan / Micronics Technology / Suite 159,
54 Dalraida Road / Montgomery, AL 36109 /
205-244-1597 (voice, 6 - 8 pm Central,
weekdays), 205-244-0192 (data)

PAINT* CP/M Graphics Editor and HDOS 2.0/3.0
Clock or Ramdisk drivers. Some material from Lee
Hart that appeared in H-SCOOP #128 is of interest
to us. Lee announced a new graphics editor, intended
for Superset users, by Steve Vagts. The editor is an
enhanced version of the one Steve wrote about in a
series of articles for REMark. With it you can
create, edit, and print pictures using any of the
Superset's character sets. You can also define and
print your own character set. PAINT* includes
on-line help screens and uses the function keys. It
requires TMSI's Superset and Superfont. No price for
the software was given.

For the moment, the editor only supports the
Panasonic KX-P1092 and KX-P1124 printers. But Lee
and Steve are requesting information from users
about printers in current use and the codes used to
select graphics and other modes. To contact Steve,
write to:

Steven Vagts / 2409 Riddick Road / Elizabeth City,
NC 27909

Lee also announced two device drivers for HDOS
2.0 and 3.Ox, provided by Terry Hall. One of these
(CLOCK.DVD) is a real-time clock/calendar using
TMSI's Superclock to set the current time/date. The
other (GH.DVD) is a RAMdisk driver for users of the
H-1000 CPU board: "It uses all RAM above 64K as a
super-fast disk. An H-1000 with 1 meg of RAM has a
RAM disk of over 900K." These two are free if you
send an HDOS-formatted disk and postage-prepaid,
addressed mailer to:

TMSI / c/o Lee Hart / 323 W. 19th I Holland, MI
49432

Elliam Associates. I mentioned this outfit a
couple years ago (#9), but I ran into another ad
from 1t this last summer. The line of CP/M software
Elliam Assoc, carries has grown since my last
reference to it. It now can supply a rather detailed
catalog of its public domain (CP/M User Group, C
Users' Group, Pascal/Z User Group, and SIG/M)
holdings. This catalog costs $8.50 plus $1.50
shipping.

Elliam's commercial holdings catalog costs $1.00
and lists such things as WordStar 4, the MagicSeries
laser printer package, T/Maker, Z-System,
BackGrounder ii, Z80 and 8080 assemblers, Super-
Calc2, dBASE II, Tarbell Database System, various
language packages (including Turbo Pascal, Micro
soft's BASIC interpreter and compiler, Toolworks
C/80, BDS C, ZBASIC, LISP/80, and apparently the
Nevada language set [COBOL, Pilot, BASIC, FORTRAN,
and Pascal]), education programs for elementary
through high school levels, and quite a bit more.
But be warned that much of this software is no
longer supported by the manufacturers. Further,
better prices for some items are available
elsewhere, especially for WordStar 4 directly from
WordStar International (see issue #14, p. 12). Some
commercial software is still outrageously priced,

Sep-Dec 1990 THE STAUNCH 8/89'er Page 15

too.
But this material is definitely worth the look.

To order the catalogs or request further infor
mation, contact:

Elliam Associates / P.O. Box 2664 / Atascadero, CA
93423 / 805-466-8440

PETE ON CP/M
By Peter Shkabara

Those readers that follow my contributions may
have noticed that there has been a delay in my
writing. I started writing this installment in May,
but suffered writer's block. Perhaps it would be
more correct to say that I had a form of writer's
cramp since I did not run out of things to write
about, but ran out of time to do it in!

Let's start off by correcting an error in the
FORMAT patch listing which appeared in issue #17.
Corky Kirk wrote to point out the transposition of
the values 94 and 01. The corrected list of DDT
operations should be:

DDT VERS 2.2
-S0267
0267 01 94
0268 13 .
-S07A6
07A6 DI 94
07A7 13 .
-S0C6B
0C6B 01 94
0C6C 13 .
•‘C
A>save 25 FORM.COM

the
The
the

This correction is particularly important if
abort with control-C patch was also installed,
later patch was placed at address 13D1 which is
old density logo location. Just goes to show that
you can't trust anyone!

A note for those who may have seen the similar
density display patch in
patch was correct, but
locations where density
patching all locations, the new logo would appear
only on the initial pass when running the program.
Repeat questions for density would
logo.

In response to my last article,
from Lee Hart and Hank Lotz. Since
mentioned should be of interest to your readers

issue #13 tp. 2]. That
it did not patch all
is referenced. Without

show the old

I got letters
the items they

. I
chose to respond to both of them herein.

Lee asked if my FORMAT patches were a reprint
from somewhere else. Other articles had mentioned
some of the patch locations, but the set of patches
I supplied were never published before.

To continue on the subject, I noticed in my
collection of assembly notes that there is still one
more patch to be had for the FORMAT program. This
one has to do only with the formatting of H17 hard
sector disks.

to extended double density, anotherIn addition
hidden feature is the formatting of hard sector
disks without the verify process. Pat Swayne
revealed this option a long time ago in Remark. To

activate the option, Include an asterisk '*'
following the FORMAT command. For example:

A>F0RMAT *

At this point, it may be useful to discuss what
exactly a verify is. When a disk is formatted, a set
of identifying marks is written to the blank disk in
order for the system to locate individual sectors of
information. Just as in a tape recorder, until you
play back the information, you cannot be sure that
the write took place properly. In most cases there
should be no problem, but if there Is a defect in
the recording media, the sector marks may be lost.

The verify operation simply rereads the track
just written to see if all the sectors can be found.
In some programs the verify is a separate option of
the FORMAT program so that disks can be formatted
and verified as separate operations. Verify can take
place as each track if formatted, or it can be done
after the entire disk is done. Instead of using the
FORMAT verify sequence, you may wish to run FINDBAD
instead. [FINDBAD is in the utilities package listed
on p. 2 of issue #18. -Ed.] FINDBAD is a public
domain utility which checks for bad data area on the
disk as well as the sector marks.

Getting back to the Heath FORMAT program. I
found that there was a significant speed improvement
in formatting hard sector disks when the verify
option was turned off. Since this was the most
common way I would format the hard sector disks, I
wanted the no-ver ify to be the default mode.
Fortunately, this is a very simple thing to do if
you understand even a bit of assembly language.
Using DDT, I located the instruction which checks
for the •*' option. Then I changed the result of the
comparison test to be the complement of what it was.
The following patch will do it for FORMAT version
03.

A>DDT FORMAT.COM

DDT VERS 2.2
-S01FE
01FE 20 28
01FF 04 .
-■c
A>save 25 FORM.COM

The change in code (with Intel mnemonics) 1s as
f o 11 ows:

original new

OlFC CPI '*'
01FE JNZ 0204h JZ 02 04h
0201 STA 170Eh

For those interested, the flag stored at 170Eh is
used by a section of code located at address 0497h.
So there you have a new patch for the FORMAT
program!

Since I have been presenting a bit' of
information on the formatting of disks, it may be
appropriate to continue on this theme till we are
mostly done. In my last installment, I explained
that formatting marks out the sector boundaries to
be used later for writing information. The size of

FORM.COM
FORMAT.COM
FORM.COM

Page 16. THE STAUNCH 8/89'er Issue #20/21

sector is controlled by the format program as
designed by the originator of the system. I will now
add to your knowledge of what other details take
place inside this mysterious (to most) program.

We first need to distinguish between the H37
soft sector and the H17 hard sector controllers. The
H37 uses an industry standard Western Digital 1797
controller IC, while the H17 is a proprietary
configuration of standard IC parts. Because of the
H17 design, it is not capable of reading double
density disks. [Single-density soft-sector is
possible. See Lee Hart's "800K on a HARD-SECTOR
DISK* in SEBHC Journal, vol. 1, #5, p. 10-13.
-Ed.] Conversely, the H37 can't read the hard sector
H17 disks either. Since most current work is with
double density formats, I will provide information
on that particular format. In general, the same
would apply to the H17, but the hardware does not do
as much and more needs to be done in the software.

Let us start off at the beginning with the
design of the disk format. This means that we need
to select the physical sector size, the block size,
the number of system tracks and several other items.
Before you start feeling lost, bear with me and I
will try to explain it all in simple terms (at least
to the degree of my own understanding).

The total capacity of the disk depends on the
number of tracks, the number of sides and the number
of bits per track (the recording density). The
number of sides and tracks 1s usually dictated by
the construction of the drive mechanism. Sometimes
the innermost tracks of a drive are not used on
purpose to improve reliability. This was done by
C.D.R. in the high-density drive option they offered
with their FDC880H controller. In addition to more
reliable operation, the restriction to 77 of the 80
available tracks made the 5-1/4 inch configuration
software compatible with 8 inch drives.

The number of bits per track are dictated by the
rotational speed of the drive and the clock speed
and design of the controller. Note that the system
designer needs to consider the tolerances of the two
parameters, drive speed and clock speed. If the
drive is rotating slowly, more bits can be recorded
in each revolution. On the other hand, if the drive
is fast, then fewer bits will fit. I might mention
that the reason for not running the drive more
slowly is that signal degradation will result. The
clock speed of the controller has a similar effect.
If the clock is fast, more bits can be recorded per
revolution and vice versa. What dictates the design
concept of the hardware is the number of bits that
can reliably be recorded per linear inch of
recording medium. This is the BPI (bits per inch)
rating for the floppy disk material. High density
disks such as used in the IBM AT computer have a
different recording material to allow greater BPI
figures.

With the hardware considerations out of the way,
we look at the software designers part in the disk
format. If we consider the fastest allowable (within
tolerance) rotational speed combined with the
slowest controller clock speed we will have the
worst case condition for safe assumption of
available total bits per track. Let's go through
some rough calculations. The nominal rotational
speed of a standard disk drive is 300 RPM. This
translates into 5 revolutions per second, or 200 ms

per revolution. The controller system clock is
normally 1 MHz and is divided by 2 internally in the
Western Digital 1797 type controller. The data rate
is thus 500 KHz or a 2 microsecond bit spacing. So
in 200 milliseconds of revolution, we can
potentially get 100,000 bits. Taking 8 bits per
byte, the 100K bits translates into 12,500 bytes per
track. For a sided 40 track drive this results in 40
x 2 x 12,500 ■ 1,000,000 bytes of raw recording
capacity. If the rotational speed is 5% high and the
clock 5% low, we can loose roughly 10% leaving 900K
bytes. Since the average 40 track DS disk only holds
360K, you can appreciate the recording overhead
needed to store the information!

There are different ways to record information
on disk, but most of the CP/M world (and the IBM PC
for that matter) conforms to the standard format
developed by IBM for the 3740 (single density) and
later the system 34 configuration. The Western
Digital ICs allow formatting only in variations of
the IBM standard. Apple [and Commodore] computers
used a different controller (GRC - group code
recording) and thus it is not physically possible to
read those disks on Heath or IBM type computer.
Incidentally, the GRC method is a technically
superior method but is less supported in the
microcomputer world. For those interested in
calculating the true overhead in floppy recording, I
would refer you to the Western Digital technical
specifications for the 179x series of ICs.

I could go on and explain the specifics of the
CP/M disk format parameters, which is what was
originally planned. However, I am running short on
time and if I continue this article will never get
to Kirk in time for publication. So stay tuned for
the rest of the story. [A somewhat technical
introduction to soft-sector formatting and reading
Kaypro disks on our systems with Pete's EMULATE
package was presented by Ludo Van Hemelryck in issue
#12.

[And speaking of EMULATE, Pete tells me he's
working on a new version. It'll combine the disk
read/write utility (EMULATE) with the foreign disk
formatter (EFORM) in one program. I expect to have
more information about it when Pete releases the
package. -Ed.]

C/80, Longjumps, and Control Character
Interrupts in HDOS

By Gary Appel

The HDOS operating system supports the use of
control character interrupt handlers for the control
A, B, and C characters. These handlers, if defined,
are executed whenever the corresponding control
character is struck. These interrupt handlers can
provide instant keyboard interrupts to the user, to
an extent not offered even under MSDOS.

The HDOS version of C/80 incorporates the ctrl-C
interrupt to provide an abort function. Not too
exciting. Other than this, no control character
interrupt processing is performed by C/80. And the
ctrl-C abort may cause problems, if ctrl-C is struck
while the display is in some unusual mode.

The addition of a few simple functions can
enhance the capabilities of C/80 to handle the
control A, B, and C interrupts under HDOS, using
them as intended by the creators of HDOS.

Sep-Dec 1990 THE STAUNCH 8/89'er Page 17

When the user hits a control A, B, or C
character, HDOS will attempt to execute a user
defined service routine (the 'handler'). If the
handler address is zero (the default), execution
will continue as if no interrupt had occurred. If a
routine address has been provided to the operating
system, HDOS will enter the service routine with the
interrupted PC value and the interrupted PSW on the
stack, along with a return address into HDOS.

The user routine would normally save the other
registers, execute its code, restore the saved
registers, and finally return control to HDOS with a
return instruction. HDOS will take care of restoring
the interrupted PSW and return control to the
interrupted program.

As an alternative, control can be transferred
directly back to the executing program. This is a
bit trickier, and requires the use of the setjmp and
longjmp functions to be described later.

In the case of C/80, the start up code installs
the address 'exic' Into the ctrl-C handler address.
When the ctrl-C character is struck execution will
immediately be transferred to the point 'exic' in
the runtime library. C/80 will first clear the
console buffer, and then perform the standard C/80
exit. No return is ever executed back to the user
program.

The simplest way to incorporate the control
character interrupt handlers into a C/80 program is
to provide a service routine which simply sets a
flag when the control character is pressed. The C/80
program can test the flag as required, and take an
appropriate action. While this may seem to defeat
the use of Interrupts, It does provide the user the
ability to Interrupt the program even if the program
never looks at the keyboard. For instance, examine
the following code:

do
{ calculations }
while (!done and ! control C_Flag);

The calculations loop will continue to execute until
done, unless the user strikes the ctrl-C character,
which will cause an abort at the end of the present
iteration. Crude, but effective. We require two
functions to accomplish this level of handling:

set_int(which) Used to enable the routine.
tst_1nt(which) Used to test the flag.

Where 'which' is the character 'A', 'B', or 'C',
corresponding to the desired control character.
The function set_int is called initially to set up
the service routine, and to clear the flag. It may
be called at any later time, with the effect of
clearing the flag.

The function tst_int is called to determine the
condition of the flag. It returns a 1 if the control
character has been struck, and a 0 otherwise. It
also resets the flag before returning. The above
loop now becomes:

set_1nt('C');
do
(calculations)
while (Idone and ! tst int('C'));

The ctrl-C character will abort the calculations
loop if struck. These functions could be used in
this way to follow the HDOS practice of aborting a
command whenever the ctrl-C character is struck, so
long as the tst_int function is executed regularly.

In many cases we would like the control
character interrupt to force the program to resume
execution at some pre-defined location. In order to
do this we must have the ability to mark this
location, and later jump to it. This ability is
provided by the long jump.

Two functions have been defined in C to enable a
long jump. These functions are the 'setjmp'
function, and the 'longjmp' function. C/80 does not
support the long jump functions, so we'll have to
write our own.

The setjmp function is used to 'mark' a point in
the program. At a later time, a jump may be executed
to the 'marked' point in the program, continuing
execution. When the setjmp function is executed it
will return a value of zero.

The longjmp function is used to accomplish the
jump In the program flow. The long jump appears to
resume execution within the setjmp function, which
now returns a non-zero value which was passed as a
parameter to the longjmp function. This returned
value can be used to determine where the long jump
originated. Consider the following example:

if (value • setjmp(here))
printf(“Long Jump number Xd/n", value);

if (value == 20)
exitO;

for (;;)
longjmp(here, value+1);

When setjmp is initially called, it returns a value
of zero, which is stored in the variable 'value'.
Because the result of the expression is zero, the
printf statement will not be executed. Since value
does not equal 20, the exit will not be executed.
Control then passes to the infinite for-loop.

The only statement contained in the for-loop is
a long jump back to the location marked with the
setjmp function. But longjmp returns a value of
'value+1', which is equal to 1 on the first
execution of longjmp. Although the value of 1 is
returned by longjmp, it appears to be returned by
the setjmp function. The returned value is assigned
to 'value', and the printf statement is now
executed, flagging a successful long jump.

Again the exit function is not executed, and
control passes to the infinite for-loop which
executes longjmp with a value of 2. This loop is
repeated twenty times printing out the value of
'value* as it is assigned values from 1 to 20.
Finally, with 'value' equal to 20, the exit function
is executed, and the program terminates.

The infinite for-loop is actually not required,
as the body of the loop is executed only once per
long jump. It does, however, serve to show that a
long jump can be used to execute from a loop at any
time.

The pointer here passed to both the setjmp and
longjmp functions is a pointer to an 'environment
block*. This is a structure which is used to store
values of certain CPU registers at the time when the
setjmp function is executed. The long jump is

Page 18 THE STAUNCH 8/89’er Issue #20/21

accomplished by having the longjmp function restore
these values to the CPU registers, in effect
allowing the program execution to continue just
where it was when the setjmp function returned, but
returning a non-zero value passed to the longjmp
function. In our case we need only restore the
contents of the program counter, and the stack
pointer, and return a value which is left in the HL
register.

There are a few restrictions to our version of
setjmp. The setjmp function must be executed before
attempting a long jump to that location. If setjmp
had not yet been executed, the destination point
would not yet be defined. A program crash would
almost certainly result.

The function which called setjmp must still be
active when longjmp is executed. If the function has
already returned the stack will no longer be valid,
including what was the return address from the
setjmp function. A crash will again most likely
occur.

Finally, we require that setjmp not be used in
an expression, except as an expression by itself.
This is required because any evaluation of the
expression prior to the execution of setjmp may not
be restored during the execution of longjmp, and
even if it 1s, the values of any variables may have
changed.

Now that we have examined the long jump
functions, we can use them for our control character
interrupt processing. It should be noted that the
long jump is very similar to a goto statement in
function, but is of a global nature. The destination
of the goto statement must be within the same
function as the goto statement. The long jump is not
so restrictive. So long as we have not returned from
the function in which the destination was defined
using the setjmp function, we can jump to that
destination from anywhere. The only requirement is
that the longjmp function be passed the environment
structure. We may execute the long jump from within
the same function, or from a called function, at any
depth, and even from a separately compiled function.

Our Interrupt service routine can use a long
jump to resume program execution at some predefined
point. Consider the following code:

static abort_menu();
main()
(/* main */

setjmp(restart);
instalK'C, abort_menu);
choice « master menu();
switch(choice) ~
I

case 0:
sub menu 0;
break; ~

case 1:
sub menu 1;
break;

etc.........
}

} /* main */

abort menuO

I

longjmp(restart, 1);
1

I have introduced a new function, called 'install'.
The purpose of install 1s to install the address of
a control character interrupt handler Into HDOS
(accomplished with the HDOS .CTLC System Call). Once
installed, striking the selected control character
will result in execution of the interrupt handler.
In this code segment we have set up the function
'abort menu' as the interrupt handler. Our handler
will simply execute a long jump back to the start of
'main'.

Once the user has selected a choice from the
master menu, he is dumped into a sub menu function,
and whatever happens beyond there. But at any time
he can strike the ctrl-C key and be immediately
returned to the master menu. That can be pretty
useful.

The interrupt handler does not have to execute a
long jump to exit. It can perform some interrupt
time processing, then simply return, resuming
execution at the point where the program was
interrupted. Because this happens at interrupt time,
we would have to be very careful with the coding of
the function.

The first requirement would be to save the CPU
registers immediately. The last step before exiting
the function would be to restore the CPU registers.
Although not specifically stated in the HDOS
documentation, I assume that you cannot issue any
system calls from within the Interrupt handler. This
restriction exists because the interrupt may have
occurred during HDOS processing. Another call to
HDOS would most likely destroy the state of the HDOS
call that was interrupted.

It would be best to limit the use of the
interrupt handlers to the first two cases, simply
setting a flag, or executing a long jump back into
the user program. While the ability to write a
complex user interrupt handler function exists, it
is a technique full of pitfalls.

Listing 1 is a listing of the functions written
to provide control character interrupt handling
under HDOS. These functions were compiled as a
separate module under C/80, and assembled using M80.
I would strongly recommend using the Microsoft
assembler when developing programs. When the
functions have been debugged they can be added to a
library (as described later), and linked with the
main program, greatly reducing the compile and
assemble time.

The three globally accessible functions are
set int, tst int, and install. These functions have
already been defined. Also included in this module
are the three local functions Ctrl A, Ctrl B, and
Ctrl C. These are the interrupt handlers for setting
a flag during a control character interrupt. The
interrupt flags are contained in the three element
array 'flag'.

The set int function simply resets the interrupt
flag and installs the appropriate handler function
address. Although the handlers need to be installed
on only the first execution, the repeated
installation each time the function is called causes
no problem.

The tst int function returns the value of the
appropriate”?lag, and resets it if required.

Sep-Dec 1990 THE STAUNCH 8/89'er Page 19

The install function interfaces directly with
HDOS. The desired control character to install is
passed as an 'A', 'B‘, or 'C' character, which is
mapped to a binary 1, 2, or 3 in the HL register.
This value is placed in the A register with the MOV
instruction. The address of the handler function is
then placed in the HL register with the 'addr;'
statement. System call 41Q is executed to install
the handler, and the function returns. HDOS will now
recognize the corresponding control character
interrupt.

The actual handlers simply set the appropriate
flag and return. Upon examining the compiler output
it can be seen that only the HL register is affected
by the assignment statement. We must therefore save
and restore only the contents of the HL register
during the handler execution. Remember, the handlers
are executed during interrupt time.

Listing 2 1s a listing of the setjmp and longjmp
functions. The setjmp function saves the PC and SP
values into the environment block whose address was
passed in the function call. Upon entry to the
setjmp function the stack contains the return
address, which is where longjmp will resume
execution, and the address of the environment block.

The address of the environment block is
retrieved with the 'blk;' statement, and placed into
the DE register with the 'XCHG' instruction. The
return address is then retrieved from the stack and
saved in the environment block. Finally the value of
SP plus 2 is saved as the stack location, which will
be correct after the setjmp function returns.

The longjmp function again retrieves the address
of the environment block and places it into the DE
register. The return address saved in the
environment block is then retrieved and placed into
the 'JMP' instruction. The saved SP value is
retrieved and placed on the stack for temporary
storage.

Next the return value (passed as a parameter to
'longjmp') is obtained from the stack and placed in
the DE register. Finally SP is restored with a 'POP'
and 'SPHL' instruction, and the return value is
placed into the HL register. The 'JMP' instruction
is executed, returning control to the location where
the setjmp function returned.

Upon returning SP is set two bytes too high.
This will be taken care of by a 'POP' instruction
supplied by C/80 following the setjmp call, used to
pop off the address parameter passed to the setjmp
function. The BC, DE, and AF registers are
undefined, and therefore did not need to be saved in
the environment block and restored.

The standard definition of longjmp states
longjmp cannot return a value of zero. As
implemented here, the return value is not tested,
and a zero value may be returned.

Listing 3 is the header file "longjump.h", used
to define the environment block structure. It must
be included in the source code for the setjmp and
longjump functions, and in any programs or modules
calling them.

After compiling these modules, they are linked
in with any program using them. The link process can
be simplified by adding them to a library. This can
be accomplished for HDOS by copying the .REL files
and libraries over to CP/M using an HDOS to CP/M
file transfer program. The relocatable modules can

then be added to the libraries as desired using the
CP/M librarian. The finished libraries are then
copied back over to HDOS using a CP/M to HDOS file
transfer program. Its awkward, but saves a lot of
time later. I have incorporated all the C/80
functions including the long and floating point
libraries into a library called 'CLIB.REL', and my
own functions into a library call 'MYLIB.REL'.

The control character interrupt functions
presented here should allow C/80 programs to be
written to recognize user interrupts using the
control A, B, and C characters. The ctrl-C interrupt
can be used to abort commands in process, as
implemented in many system programs. The long jump
functions can be incorporated in programs either in
conjunction with the interrupt functions, or
simply to implement a global form of the goto
statement.

I hope these functions prove useful to other
programmers still programming under HDOS, and bring
some of the benefits of HDOS into C/80 programs.

Listing 1
[Note: These listing have been edited to fit a 52-
character column width and to conserve space
vertically. If you'd like these listings on disk,
just send me a formatted disk with postage-prepaid
mailer
charge.

and I'll transfer
-Ed.]

them for you free

/•interpts.c: Ctrl Character Interrupt Handlers */
static char flag[3]; /* Interrupt Flags */
static int ctrl_A(); /* Interrupt Handlers */
static int Ctrl B();
static Int Ctrl CO;
set int(code) /* Enable Interrupt Handler */

char code; /♦ Control Character */
{ /* set_int ♦/

static int i; /* Index flag */
static (*loc){); /♦ Store Handler Address */
i = toupper(code) - 'A';
flag[i] - 0; /* Reset Interrupt Flag */
switch (1) /* Set up Correct Handler Address */
{

case 0:
loc » ctrl_A;
break;

case 1:
loc • ctrl_B;
break;

case 2:
loc = Ctrl C;
break;

)
instalKcode, loc); /* Install Handler */

) /* set_int */
tst_1nt(code) /* Test for Interrupt 6/27/89 */

char code; /* Control Character */
{ /* tst_1nt */

static int 1; /* index into flags */
i = toupper(code) - 'A';
if (flag[1]) /* Has the flag been set ? */
(flag[i] = 0; /* Yes.Reset flag and return */

return(l);
}
return(O); /* No Interrupt */

) /* tst int */
instalKcode, loc)/*Instal 1 Intrpt H'dler 6/27/89 */

Page 20 THE STAUNCH 8/89'er Issue #20/21

Nothing so remarkable here. When we run the program

int code; /* Control Character */ INX HL
int (*loc)(); /♦ Pointer to Interrupt Handler*/ MOV A.M

{ /* Install */ STAX DE
static int i; /* Code to pass to SCALL */ INX DE

/* (1, 2, or 3) */ INX HL
static int (*addr)(); /‘Pointer to Interrupt*/ MOV A,L /* Save Stack Position */

/* Handler, Local */ STAX DE
addr ■ loc; /* Save Address */ INX DE
1 » toupper(code) - '8'; /* 1, 2, or 3 */ MOV A,H
1; /* Move Code (1, 2, or 3) into A */ STAX DE

lasm LXI HL,0 /* Return 0 */
MOV A,L lendasm

lendasm } /* setjmp '*/
addr; /* Address into HL */ longjmp(blk, val)

lasm struct env blk *blk; /‘Environment Block*/
/* And Call HDOS */ /* Address */

RST 7 int val; /* Return Value */
DB 41q { /* longjmp */

lendasm blk; /* Get Address of Environment Data */
} /* install */ lasm
static Ctrl A() /* Set Control A flag */ XCHG /* Save Address in DE */
{ /* Ctrl T */ LDAX DE /*Set up Jump to Old PC Address*/
lasm INX DE

PUSH HL /* Must Save HL */ MOV L.A
lendasm LDAX DE

flag[0] - 1; /* Set the Flag */ INX DE
lasm MOV H,A

POP HL /* And Restore HL */ SHLD jmploc+1
lendasm LDAX DE /* Get Old SP Value */
} /* Ctrl A */ INX DE
static Ctrl B() /* Set Control B flag */ MOV L,A
{ /* Ctrl 7 */ LDAX DE
lasm MOV H,A

PUSH HL PUSH HL /* And Save it on Stack */
lendasm LXI HL,4 /* Get Return Value */

flag[l] - 1; DAD SP
lasm CALL h.ll

POP HL XCHG /* Save It in DE */
lendasm POP HL /* Restore Old SP Value */
} /* Ctrl B */ SPHL
static Ctrl CO /* Set Control C flag */ XCHG /‘Return with Passed Value*/
{ /* ctrlJT */ jmploc: JMP 0
lasm lendasm

PUSH HL } /* longjmp */
lendasm

flag[2] - 1; Listing 3
lasm

POP HL /* longjump.h: Environmental Block 6/22/88 */
lendasm struct env blk
} /* ctrl_C */ (

int *old PC ; /‘Saved Pgrm Counter Value */
Listing 2 int

i.
old_SP ; /‘Saved Stack Pointer Value/

/* longjump.c: C80 longjmp/setjump functions */
J.

33338

♦include "longjump.h" /* Definition of env blk */
setjmp(blk) A Substitute for READ/DATA in MBASIC (CP/H)

struct env blk *blk; /* Environmental Block*/ by Hank Lotz
/* Address */

{ /* setjmp */ Consider, for a moment, a program using the
blk; /* Get Address for Environment Data */ READ/DATA feature:

lasm
XCHG /* Save Address in DE */ 10 DATA 65,66,67,68,69,70,71 ,72,73,74
/* Get Address of Next Instruction */ 20 FOR J«1 TO 10

LXI HL,0 /* Address is Last on Stack */ 30 READ I
DAD SP 40 PRINT I
MOV A,M /* Move it into Envrnmt Block */ 50 NEXT J
STAX DE 60 RESTORE : GOTO 20
INX DE

Sep-Dec 1990 THE STAUNCH 8/89'er Page 21

the DATA in line 10 is READ at line 30. Line 40
prints it out. Line 60 just illustrates a way you
could reset (restore) the DATA pointer and loop the
program, if you wanted to.

But now let's look a little deeper. When we
originally enter line 10 into the computer, we have
to type a "6" and then a *5" for 65 (the first DATA
value). That ASCII representation uses up two bytes
to describe the "65". And, in the same way, it needs
two more bytes for each of the other data items in
line 10. (Actually, counting all those commas, it
eats up three bytes for most of the items.) But
keep in mind that our 8-bit systems need only 1 byte
to contain the value 65 once 1t's converted from the
ASCII to the numerical ("binary") value. So I'm
contrasting the 1 byte the computer needs, to the 2
bytes MBASIC commandeers.

If we put those same values into hexadecimal,
line 10 would stretch out to:
10 DATA 4H41 ,4H42,4H43,4H44,4H45,4H46,4H47,4H48,

4H49.4H4A
The computer still needs only 1 byte to store the
"binary" equivalents, but we're now eating up 4
bytes to express each value, not counting commas!
And did you know that even if you compile this
MBASIC program, the object (COM) file still stores
these values in the same 4-byte ASCII form? The
compiler does not convert these to their numerical
counterparts!

What all this means is that, when you have a
large quantity of data, you'd save a lot of space
(and probably some execution time) if you could
store each data item as 1 "binary" byte instead of 4
(or the earlier 2) ASCII bytes. I concede that
MBASIC always uses up more than 1 byte (even for a
lowly 65 in "binary") once it READS from the DATA
area into a variable. But despite this we would
still benefit in the DATA storage area itself by
storing the data items as single "binary" bytes. And
we can indeed do this!

Now, in the following assembly-language
subroutine source you're "sure 'nuff" going to
notice a bulky spread of ASCII values (in the DB
lines near the end). But, after the assembly
routine is assembled and loaded as an object file,
those values will occupy only 1 byte each!

So, when you're using integers from 0 through
255, this method has an advantage over DATA
statements. And of course, values within this range
can also represent character-string data.

We now approach a setup/demo for this idea. In
this case, making a COM file is actually the more
straightforward way, so we'd learn little or
nothing new by that route! Instead let's do an
interpreted version; it's a trickier exercise and,
as such, might teach us something extra along the
way! We'll assemble the assembly-language
subroutine, load it into memory, and then CALL it
with an MBASIC program being run under the MBASIC
interpreter!

To do this, we'll trot out Microsoft's M80
assembler and L80 loader. At last, this is the
method I promised you back in Staunch #12, p.6,
under the section headed "A By-product..."! (And do
dig out that issue, because in the sentence just
above that same heading, I made an error. "DEFINT
CHAR" should read simply "DEFINT C". Please mark it
in your copy.) But to return to the matter at hand,

our MBASIC source, called RDEMO.BAS, will be:

100 REE0-4HCC00 ' SETS UP ADDRESS OF ASM SUBROUTINE
110 IX-4HFF
120 PRINT "DECIMAL • * •• »
130 FOR J-l TO 10
140 CALL REED(IX) : PRINT IX;
150 NEXT J
160 IX-4HFF
170 PRINT : PRINT "ALPHA: 11 »»
180 FOR J-l TO 10
190 CALL REED(IX) : PRINT CHR$(IX);
200 NEXT J
210 END

The variable 1% is an integer variable; the X sign
makes 1t so. This routine will not work unless you
use an integer variable. (Another way to declare the
"I" to be an integer is with the statement "DEFINT
I", but be aware this makes all variables starting
with "I" integers.)

The assembly source file, which you must call
REED.MAC ("MAC" for the M80 assembler, later), is:

REED.MAC (SUBROUTINE REED) by Hank Lotz
READS A BYTE FROM DATA BLOCK BELOW AND RETURNS
IT TO MAIN PROG IN AN INTEGER VARIABLE, SAY IX.
THE MAGNITUDE OF A RETURNED VALUE IS LIMITED TO
WHAT IS EXPRESSIBLE IN A SINGLE BYTE. THE MOST
SIGNIFICANT BYTE (MSB) OF IX IS ZEROED OUT IN
CASE IT WAS SET 8Y CALLING PROG. ONLY 1 VALUE
IS RETURNED PER CALL.

MBASIC CALL: CALL REED(IX)

ENTRY REED
REED: PUSH PSW

PUSH B
PUSH D
MOV A,M
PUSH H
CPI OFFH
JNZ CONTIN
INX H
MOV A,M
CPI 0
JNZ CONTIN
LX I H,RES TOR
SHLD POINTR

CONTIN: LX I B,POINTR

LDAX B

MOV L,A

INX B

LDAX B
MOV H,A

MOV A,M

INX H
SHLD POINTR

POP H
MOV M,A

; Save accumulator, flags.

; See what was sent in IX.

; Is It FF hex?
; No, read next value.
; Yes, but check hi byte.
; Look at MSB of CALL var
; Is it zero?
; No, FF was not intended.
; Yes, restore pointer.
; Pointer restored.
; Put ADDRESS of
; pointer-low-adr into BC
; Put low pointer byte,
; pointed to by BC, into A
; From there, put it into
; L (low of HL).
; Increment BC, point to
; high pointer byte.
; Put hi pointr byte in A
; From there, put it into
; H (high of HL).
; HL now has entire pointr
; Char pointed at by
; pointer goes into A.
; Move pointr to next char
; Store new pointr address
; for next subroutine CALL
; Get adr of CALL variable
; Transmit byte to var LSB

Page 22. THE STAUNCH 8/89'er Issue #20/21

PUSH H ; Resave HL so we can play
INX H ; Point to MSB of CALL var
MV I M,0 ; Zero out hi byte of var,

; as this routine returns
; only 1-byte integers.

POP H
POP □
POP B
POP PSW
RET

; START DATA BLOCK

RESTOR: DB 53H.55H ,43H,43H,45H,53H,53H,21H,0DH
DB OAH
DB OFFH ; Recognition byte (Reset)

POINTR: DW RESTOR ; Store currnt pointr value
END

You can replace the data after the RESTOR: label
with your own data — and as much of it as you
like. A "recognition byte", OFFH, comes last and is
optional but recommended. When you type "RUN" in
MBASIC everything is initialized, but the assembly
subroutine's local data pointer is not. In other
words, MBASIC doesn't restore our data pointer in
the ASM subroutine the way it does for its own
pointer in REAO/DATA applications. You can use an FF
hex byte to do this at any time, by setting IX»&HFF
before the CALL; see lines 110 and 160 of ROEMO.BAS.
When you do this, the first item in the data block
is returned from the subroutine.

If your program doesn't reset the local pointer
(i.e., doesn't have IX-&HFF), and you RUN the
program multiple times, the pointer may eventually
be left after the end of your formal data block, by
a previous run. The next read would then be
attempted past your last useful DB item. That's when
the subroutine's built-in FF hex is encountered, and
that FF does get returned! Your program can use it
to test for end of data, and also thereby prevent
using the FF itself as false data. The same FF hex
will also serve as a pointer reset — but only on
the following CALL (and assuming your program
doesn't reassign IX). The routine could be modified
to do an automatic reset on the same CALL, and not
return the FF. (Note that any value can be used in
place of FF. Just go through and change the FF's to
something you aren't using for anything else. But
you must change them in REED.MAC as well as in
RDEMO.BAS.)

Assemble the subroutine. For example:
B>A:M80 "REED

This gives REED.REL which you can now load with:
B>A:L80 REED/P:CCOO/E

Here the hex CCOO needs no base-defining prefix
because hex is the default base with the L80
loader's P: switch.

If you ever change that address, be sure to make
corresponding changes in ROEMO.BAS (line 100) and in
the following command line, which you should now
type to invoke MBASIC:

B>A:MBASIC /M:&HCBFF
With MBASIC, decimal is the default base with the
M: switch. Hence, the &H prefix is needed here to
define the CBFF as hex. And according to the MBASIC
manual, the number after the M: switch is the
highest memory location MBASIC will use, so I

chose CBFF because it is 1 less than CCOO, where our
assembly subroutine starts occupying memory.

By the way, I arbitrarily chose the CCOO as a
pretty low starting address for the subroutine. But
depending on your data block size, the size of your
operating system, how much hardware memory you have,
and what other memory-resident programs you may have
installed, you might be able to set this higher
-- or you may need to set it lower. But again, if
you do change the CCOO, make the associated changes
mentioned a moment ago.

After MBASIC loads, type LOAD "RDEMO", and
you're ready to RUN! Experiment and study the
listings to get a better grip on what's happening.

If you want to make the COM file for this demo,
the REEO.REL file you already have will work, but
remove or comment out line 100 in RDEMO.BAS before
compiling it. And for that compile you should use
the command:

B>A:BASC0M "RDEMO/O ("oh"—not zero)
When you link the relocatables, RDEMO.REL and
REEO.REL, omit the /P:CCOO switch this time. A good
command is:

B>A:L80 RDEMO/N,RDEMO,REED,A: BASCOM/ S/ E
COM file.)
version,
operation
in the

(For me, this results in about a 10K
Depending on your MBASIC

relocatable library name and/or
switch(es) may differ from those
command lines.

the
of

above

CONTACTS
(A Wanted/For Sale/Swap Column)

David A. Shaw (11059 Overrun Drive, Manassas, VA
22111, 703-368-8243 after 7 pm Eastern) "I guess
this is a 'for sale' item, although I'm really get
ting depressed just thinking about it. Please allow
me to explain.

"I've had my H8 since 1979 — 11 years. It has,
in the last few years, become somewhat unreliable.
I've had a number of RAM chip failures. My H19
terminal was in the shop all last summer. The
tractor on my Diablo 630 preinter recently broke.
But I always managed to keep the machine going.
People thought I was odd, and Ipve never denied it;
I love that machine.

"Well, about two month ago (see how long it took
to get the courage to write?) I 'smoked' the H8. The
RUN lamp wouldnt* even light, and when I went about
trying to track down the cause of the failure, I
heard a loud 'snap!* and the power light went out.

"This problem is beyond me. And, in any case, I
can no longer justify the cost and effort involved
in keeping the old war horse running.

“I have some good equipment, some sort-of good
equipment, and some questionable equipment. I would
like to see any or all of it go to a good home where
it might get some use. Here's the list:

o One H19 terminal, white screen, recently repaired
by Heath (it got a new flyback transformer,
whatever that is). It's got a "Superl9" firmware
upgrade in it. It's in real good shape.

o One Diablo 630 daisy wheel printer. The
bidirectional form tractor is broken; I tried to
get it fixed, but I can't seem to track Diablo
down. (Did they go out of business?) [Diablo was

Sep-Dec 1990 THE STAUNCH 8/89'er Page 23

acquired by Xerox some years back. -Ed.] It also
has a small and unimportant break on the
paper-guide system on the top-back of the case It
still prints good, though, and I have a number of
new wheels and ribbons. [Staunch camera-ready
copy is printed on a 630. -Ed.]

o An original H17 with three Mitsubishi
half-height, DS (200 Kbyte) drives. The drives
are around six years old and running real well.

o And, of course, the H8 Itself, serial number
3815. It has a gold 50-pin Trionyx motherboard,
original Heath 8080 CPU (very questionable
condition since the 'smoke' job), H8-4 multiport
serial 1/0 card, floppy disk controller card
(hard sectored, modified to handle the dual-sided
disks), extended configuration option (only
installed to handle the dual-sided disks), two 16
Kbyte memory cards, and three 8 Kbyte memory
cards (56 Kbyte static, total). There are also
two cassette cards.

o Original Heath manuals for all the above.

“I also have a lot of disks. I have unopened and
partially-used boxes of Scotch 10 RH disks. I have a
lot of disks with software on them; sofware written
in assembler by me... [Dave sent his custom software
to me at my request. I'll go through it early in the
new year for distribution through Staunch. Dave
retained the commercial software to accompany the
system. -Ed.]

"And there's an EPROM burner, one that runs off
a serial port. It can program 2708‘s, 2716's, and
the like. I have software that can program EPROMs
from .ABS files. (I used to do some contract
programming on embedded controllers, using the H8 as
a development system. It has been used.)...

“I'd take best-offer for the terminal, printer
(with paraphernalia), disk drives (with blank
disks), ... and the EPROM burner. The H8 can go to
anyone who has the patience and expertise to
determine what is usable and what is not; please
pick up shipping..."

Mark Hunt "I'm looking for Microsoft's BASIC
compiler under hard-sectored, 5" HDOS. Think you can
help? Would need the documentation. Will obtain free
& clear license from ■ Microsoft before I use this
program. (Purchased the CP/M version (soft-sector,
5") - don't use CP/M, but it was all that I could
find - still have it, new, unused. Interested?) If
you can help - my name is Mark Hunt - I live at the
PHS Hospital in Barrow, Alaska 99723 - My CompuServe
number is 73770,2333. Thanks."

Dan Jerome (801 E. 132nd St, Burnsville, MN 55337)
[I'm] ’...preparing to sell some of my stuff. I have
several shelves full of what may be called 'virgin'
software and Heath Continuing Education volumes.
Indeed, I have never opened some of the program
manuals or disks. I thought I would send you a list
and (1) give you first crack at them [and] (2)
include a note in the next Staunch. I am asking
only $30 for each book, plus $5 for U.P.S. shipping,
and the programs include the master hard sector
disk, and they are as follows:

BASIC Interpreter Program 1 book CP/M
Inventory Management Program 1 book CP/M

SuperCalc
SuperSort
WordMaster

Program 1 book
Program 1 book
Program 1 book

CP/M
CP/M
CP/M

Analog and Digital Meters HEC 1 book
BASIC Programming HEC 1 book
Digital Techniques HEC 1 book
Electronic Circuits HEC 1 book
Frequency Generation & Measurement HEC 1 book
Oscilloscopes HEC 1 book
Semiconductor Devices HEC 2 books
Special Measuring Instruments HEC I book

"If the customers need soft sector, I can convert to
soft sector for free. In that case, I send them both
hard and soft sector disks. It's a shame to waste
those virgin hard sector disks."

Edward V. Davie (506 Sky Lane, Forest Grove, OR
97116, 503-357-3185) "I was referred to you by Paul
Herman. I have a complete H8 system that is surplus.
I would appreciate it if you could advertise it for
me • • •

"The system consists of:

The H8 chassis with the original 2 MHz processor
board.

A 4-port serial board.
64K memory.
The H17 disk drive controller.
An updated ROM.
The associated, H17, disk drive consists of 2 full

height drives (95K bytes, single side).
H19 monitor/keyboard.
All of the original documentation.

“I have a quantity of disks along with HDOS and CP/M
operating systems. Some software including Big Eddy
(a HUG editor) and dBASE II for CP/M. I am setting a
price of $300.00 for everything above with the
understanding that price is negotiable.
"In addition, I have an intelligent printer buffer,
64 Kbytes that I am asking $50.00 for. A 360K, DSDD
floppy drive that was exchanged for a hard drive and
never used. It ought to be worth $40.00. Finally a
serial (A-B) data switch, that I will let go for
$25.00."

Tony Durner (40 Westgate Dr., Edison, NJ 08820,
908-668-1047) “Sorry I am to say that I no longer
use my H-89. Alas, I have been forced to an IBM
clone because I need Autocad and other graphics
software in my quest to make money as a teacher.

"I have therefore an H-89 with a single
hard-sector disk drive, an installed fixed disk, and
a separate double disk drive unit. These units are
in top shape. My problem is that I cannot bear to
drop them in the trash. I have tried to give them to
many people, both computer and electronic types,
with no luck.

“You are my last hope. Perhaps someone in your
readership is willing to take my *89 and give it a
good home. If you could put me in touch with such a
person, I would love to give it to them free, no
strings. I am even willing to deliver It to someone
within fifty miles of Edison, NJ. Edison is about
twenty miles from New York City...."

Page 24 THE STAUNCH 8/89'er Issue #20/21

Dick Shotwell (546 Grandview Drive N., Twin Falls,
ID 83301) *1 am overloaded with *89 computers and
components. We are moving and I have been instructed
by you know who to reduce my inventory. So the
following are available:

H89 with 64K and one hard sector drive on board.
This computer has a card in it for the H/Z67
10Mb hard disk drive. The '67 has become
inoperative so I will throw it in for next to
nothing. I feel that the right tinkerer can
resurrect this drive and have a real good
system.

H89 with 64K and two 96-tpi soft sector, half height
drives on board. This computer runs at 4 MHz and
is in excellent condition and is currently in
use.

H77 external drive cabinet with 2 hard sector
drives. Fully operational, this drive system was
used with the first *89 listed above. Excellent
condition.

H77 external drive cabinet with 2 96-tpi drives.
Fully operational. This was taken out of service
when I installed the two 96-tpi half height
drives in the 2nd *89 listed above.

Diablo 1640 daisy wheel printer. This is really a
dandy, heavy duty printer which is in excellent
condition and has a lot of life left in it.

"Drop me a line or give me a call and we can discuss
prices. My daytime telephone number is (208)
733-7774 and you can call 1n the evening at (208)
733-7815. Due to the circumstances, I will make
someone a very good deal and will throw in a lot of
software.”

Erven J. Buss (92-595 Palallai St., Makakilo, HI
96707) "...I have an H-89 with both hard sector and
soft sector cards and drives that I wish to sell.
Soft sector drives are 96 TPI. Also have an H-25
printer for sale..."

James H. Dummer (613 Wrightwood Terrace, Liberty
ville, IL 60048-3363, 708-362-3889) "After using a
group of H89-90's with Anderson-Jacobson 830-832
printers for business until last year, I have had to
upgrade to MSDOS with HP Laserjets. This leaves me
with a surplus of three H89-90's (one with a
soft-sectored controller), each with an internal
hard sectored drive and there are 2 dual double
sided outboard double-density drives and 2 outboard
dual single-sided drives. The computers all work,
but some of the external drives need work.

"I also have 2 surplus Anderson-Jacobson 831
daisy wheel printers that need work and one Smith-
Corona TP-1 unused daisy wheel printer.

"There are two unopened cartons containing a
total of 10 10-packs of 5-1/4-inch, 10 sector,
single-sided, double-density discs. In addition,
there are a lot of parts, programs and manuals.

I would prefer for all of the items to be taken
by the same party with a minimum of effort on my
part. I do not expect any payment, but I also do not
want to have to pay anything."

Pat Morrison (1003 Salem Dr., Las Vegas, NV 89107,
702-870-0131) "For Sale - Heath H-19-3 (H-19
converted to an H-88 computer), extra disk drive
H-77, and 5-1/4 hard-sector disks. Best offer."

John S. Barford (Box 434, Hudson, NY 12534,
518-828-5994) “FOR SALE: H/Z89 with the following
installed: 6 MHz speed up mod (Z80-B), 90K
hard-sectored drive, 48-tpi 360K soft-sectored
drive, 96tpi 720K soft-sectored drive, COR 1 meg RAM
drive with harddisk controller, Seagate 20 meg
harddrive, MPI-88 dot matrix printer, Angel print
buffer, mega software: CP/M, BASIC-80 compiler,
BASIC-80 interpreter, MAGIC WAND, SUPERCALC,
FORTRAN, COBOL, games, and much, much more. Make an
offer."

Jack Wert (21 High Road, Levittown, PA 19056) "A
recent change in my home computer hardware leaves me
with several H-89's for which I would like to find a
home - for a small monetary consideration, of
course. As I have no way of packing any of them for
shipment, my potential customer base will be limited
to those within driving distance of Levittown, PA
(northeastern Phila. suburb). My phone number is
(215) 945-0397. Typical of long time users of a
computer, I have accumulated enough goodies to allow
me to supplement each machine with substantial
software, documentation, etc.

"I am retired, and therefore available just
about all of the time. Anyone interested, please
give me a call and we can set up a visit."

Charles T. Huth (229 Melmore St., Tiffin, OH
44883, 4l9-448-007[s1c]) "Wanted: Microflash M-89
Expansion Unit with H89-1, -3, -4, and -5 cards."

*** BE A STAUNCH RENEWER! ***
Renewals for 1991 are now being accepted!

Send $12 if you live in the U.S. or Canada.
Overseas, send $16 in U.S. funds, please.

Make checks payable to "Kirk L Thompson" or
to The Staunch 8/89'er.

Do it now before you forget!

THE STAUNCH 8/89'er, created by Hank Lotz, 1s a
bimonthly newsletter on 8-bit H/Z computers. The
editor is Kirk L. Thompson; P.O. Box 548; West
Branch, IA 52358; home: 319-6437136. Subscriptions
always start and end with the calendar year. Rate:
$12.00/year. (Overseas, add $4.) Single copies: $2.
Make checks payable to "Kirk L. Thompson". Staunch
pays authors for their articles; write for an
author's guide. It also accepts commercial ads for a
modest fee; contact the editor. Neither this news
letter nor its editor is responsible for damages or
losses resulting from use of any information pre
sented herein. Info from THE STAUNCH 8/89'er may
be reprinted only if this publication's name and ad
dress is included. Credit should also be given to
authors and other sources of said material, if
known. This publication is archived by the Univer
sity of Iowa Libraries. CP/M is a registered trade
mark of Digital Research, Inc. REMark is a regis
tered trademark of Heath/Zenith Users' Group. EOF

